2017

УДК 669.046:662.778

ОПРЕДЕЛЕНИЕ МАГНИТНЫХ ПАРАМЕТРОВ ПРОДУКТОВ СЕПАРАЦИИ И ЗАСОРЯЮЩИХ КОНЦЕНТРАТ РУДНЫХ СРОСТКОВ

Э. К. Якубайлик¹, И. М. Ганженко², А. Д. Балаев¹, П. Ю. Бутов²

¹Институт физики им. Л. В. Киренского СО РАН,

E-mail: churilov@iph.krasn.ru, Академгородок, 50, стр. 38, 660036, г. Красноярск, Россия ²ОАО "Евразруда", Кондомское шоссе, 39, 654018, г. Новокузнецк, Россия

По схеме обогащения Абагурской фабрики прослежено изменение показателей лабораторной сепарации и основных магнитных характеристик продуктов разделения с целью выяснения предельного содержания магнетитового железа в рудных сростках, засоряющих концентрат. Мокрый магнитный анализ выполнен в магнитном поле H=175 кА/м, магнитные характеристики измерены методом вибрационного магнитометра в полях до 800 кА/м. Засоренность концентрата определяется относительным количеством в нем породных и рудных сростков, которые могут быть удалены обогащением при данном уровне технологии.

Технологическая схема обогащения, мокрая лабораторная сепарация, засоренность концентрата, магнитные характеристики продуктов

DOI: 10.15372/FTPRPI20170619

Абагурская обогатительная фабрика ОАО "Евразруда" поставляет на Западно-Сибирский металлургический комбинат вторичный железорудный концентрат — конечный продукт многостадиальной технологии обогащения первичных магнетитовых концентратов сухой магнитной сепарации руд сибирских месторождений.

Содержание железа в исходных промпродуктах (класса -0.071 мм) наблюдается в пределах: 50.9-47.1% Fe_{общ} и 46.0-42.4% Fe_{маг} в магнетитовых рудах; 36.0-41.2% Fe_{общ} и 32.1-30.9% Fe_{маг} — в слабоокисленных [1]. На "выходе" технологии — в конечном концентрате количество железа достигает 65.3% Fe_{общ} и 63.8% Fe_{маг} [2]. Однако часть железа, связанного с серой, силикатами, окисленными минералами, уходит в хвосты, а сростки могут остаться в магнитном продукте.

На каждом этапе технологической схемы увеличивается содержание железа в магнитном продукте. Таким образом, по технологической схеме обогащения содержание железа в продуктах сепарации закономерно изменяется, что отражается на химическом составе и магнитных параметрах магнитных и немагнитных продуктов. Отсюда можно заключить, используя термин "засоренность концентрата", что магнитные характеристики продуктов обогащения соответствуют степени засоренности, т. е. содержанию в каждом из них сростков магнетита.

Основная задача настоящей работы — проследить изменения магнитных характеристик продуктов на стадиях сепарации по технологической схеме и установить соответствующие границы разделения по содержанию магнетитового железа в каждом из классов крупности обогащаемого материала при действующей технологии Абагурской фабрики [3].

№ 6

Разделение исходного материала по классам, лабораторный мокрый магнитный анализ выполнены в Техническом отделе Абагурской фабрики и в Институте физики СО РАН; измерения магнитных характеристик образцов — в Институте физики; химический анализ исходных и изученных проб проведен в Центральной технологической лаборатории ОАО "Евразруда".

ОБРАЗЦЫ ДЛЯ ИССЛЕДОВАНИЙ

На Абагурской обогатительной фабрике по схеме обогащения отобраны четыре представительных пробы крупностью -1+0 мм для лабораторной сепарации и других исследований: слив классификаторов, концентрат 1-й стадии, концентрат 2-й стадии, концентрат конечный. Для проведения ситового и химического анализов поступившие исходные пробы разделены на четыре класса частиц от +1 до -0.071 мм. Результаты ситового и химического анализов рассеянных абагурских продуктов представлены в табл. 1.

Пробо	V zooo vyz	Drmon 0/	Содержание, %		
Tipoda	Класс, мм	Быход, 70	Fe _{общ}	Fe _{маг}	
	+1	3.5	32.3	26.8	
	-1 + 0.2	28.5	40.3	35.9	
Слив классификатора	-0.2 ± 0.071	26.5	45.3	41.0	
	-0.071+0	41.5	41.1	36.5	
	Итого	100.0	_		
	+1	5.0	35.3	30.0	
	-1 + 0.2	35.3	46.5	42.2	
Концентрат 1-й стадии	-0.2 ± 0.071	23.1	54.5	52.6	
	-0.071+0	36.6	60.8	58.8	
	Итого	100.0			
	+1	0.3	35.4	30.3	
Концентрат 2-й стадии	-1 + 0.2	8.5	37.6	33.7	
	-0.2 ± 0.071	28.5	56.2	53.4	
	-0.071+0	62.7	63.2	61.2	
	Итого	100.0			
Концентрат конечный	+1	0.3	37.5	33.5	
	-1 + 0.2	7.0	39.3	36.2	
	-0.2 + 0.071	27.5	58.0	55.7	
	-0.071+0	65.2	65.4	64.2	
	Итого	100.0			

ТАБЛИЦА 1. Ситовый состав и химический анализ продуктов рассева проб

Наибольшее содержание Fe_{общ} и Fe_{маг} в классе – 0.071 + 0 мм в конечном концентрате составляет 65.4 и 64.2 % соответственно, возрастая от цифр-аналогов на сливе классификаторов: 41.6 и 36.4 %. В тонких классах количество железа растет, однако на сливе классификаторов содержание железа больше в среднем классе – 0.2 + 0.071 мм, что обусловлено лучшей степенью измельчаемости породных минералов.

Прослеживается снижение количества крупных классов от слива классификаторов (28.5%) до конечного концентрата (7%) и рост объема тонких классов по схеме обогащения — от слива и концентрата 1-й стадии (41.5 и 38.5%) до конечного концентрата (65.2%).

Кратко минералогия исходного материала сепарации — слива классификаторов: основного рудного минерала — магнетита ~58 %, сульфидов — пирита, пирротина ~4 %, нерудных — ~36 %, присутствуют серпентин, карбонаты, пироксен, гранат, эпидот.

ЛАБОРАТОРНАЯ СЕПАРАЦИЯ ПРОДУКТОВ

Лабораторная мокрая магнитная сепарация (MMC) абагурских продуктов выполнена на анализаторе 25T на материале трех классов крупности (мм): -1+0.2; -0.2+0.071 и -0.071+0 в магнитном поле напряженностью H=175 кА/м.

Рассмотрим результаты на "основном" классе сепарации — частицах размером – 0.071 + 0 мм. Показатели сепарации и содержания железа в полученных фракциях представлены в табл. 2, данные "исходных" проб — в табл. 1.

Проба	16	Магнитный продукт			Немагнитный продукт		
	класс, мм	Выход	Fe _{общ}	Fe _{маг}	Выход	Fe _{общ}	Fe _{маг}
	-1 + 0.2	76.9	49.3	46.3	23.1	10.0	1.23
Crup wroeen thuman an a	0.2 + 0.071	73.2	57.8	55.7	26.8	11.3	1.05
Слив классификаторов	-0.071 + 0	55.8	65.9	64.7	44.2	9.5	0.38
	Итого	64.5	57.9	55.9	32.0	10.0	0.70
	-1 + 0.2	92.9	49.2	45.2	7.1	11.1	2.38
	0.2 + 0.071	94.3	57.5	55.7	5.7	12.6	1.90
Концентрат 1-и стадии	-0.071 ± 0	91.0	65.6	64.4	9.0	11.1	1.87
	Итого	87.1	56.8	54.4	6.9	11.4	2.09
Концентрат 2-й стадии	-1 + 0.2	90.0	40.9	37.0	10.0	8.8	2.51
	0.2 + 0.071	95.6	55.5	53.6	4.4	11.6	1.77
	-0.071 + 0	94.1	65.7	64.9	5.9	12.6	3.26
	Итого	93.9	60.7	59.4	5.8	11.8	2.73
Концентрат конечный	-1 + 0.2	96.1	42.5	39.4	3.9	9.5	2.61
	0.2 + 0.071	98.0	56.5	54.6	2.0	12.5	3.26
	-0.071 + 0	97.8	66.2	65.6	2.2	13.7	5.29
	Итого	97.4	61.9	60.7	2.3	12.9	4.48

Примечание. Суммарные показатели подсчитывались за вычетом класса + 1 мм (его качества и количества)

На начальном этапе технологической схемы, в сливе классификатора (см. табл. 1), выход частиц данного класса составил 41.5 %, железа в нем: $Fe_{oбщ} - 41.1$, $Fe_{mar} - 36.5$ %. Лабораторная сепарация слива (см. табл. 2) дает выход магнитного продукта, равный 55.8 %, в котором содержание железа $Fe_{oбщ} - 65.9$ и $Fe_{mar} - 64.7$ %. На заключительном этапе технологии, в кончном концентрате (см. табл. 1), в исходной пробе частиц крупности -0.071 + 0 мм - 65.2 %, в которых $Fe_{oбщ} - 65.4$ и $Fe_{mar} - 64.2$ %. Сепарация (см. табл. 2) выделяет 97.8 % магнитного продукта с содержанием железа: $Fe_{oбщ} - 66.2$ и $Fe_{mar} - 65.6$ %.

Показательно количество немагнитного продукта при лабораторной сепарации класса -0.071+0 мм: в сливе — 44.2 %, в конечном концентрате — всего 2.2 %, т. е. засоренность этого класса в конечном концентрате составила 2.2 %.

По данным табл. 2 подсчитано изменение содержания железа — обозначим его ∆Fe_{маг} — в продуктах по этапам схемы обогащения. Результаты собраны в табл. 3, там же для сравнения приведены и цифры содержания железа в немагнитных продуктах.

Пробо	Исходный	Магнитный		Немагнитный		
проба	Fe _{маг}	Fe _{маг}	ΔFe_{Mar}	Fe _{маг}	Fe _{общ}	
Слив	36.5	64.7	28.2	0.38	9.5	
Концентрат 1-й стадии	58.8	64.4	5.6	1.87	11.1	
Концентрат 2-й стадии	61.2	64.9	3.7	3.26	12.6	
Конечный концентрат	64.2	65.6	1.4	5.29	13.7	

ТАБЛИЦА 3. Изменение содержания железа в продуктах сепарации по схеме обогащения (класс - 0.071 + 0 мм), %

Если прирост ΔFe_{Mar} в магнитном продукте слива в лабораторных опытах составил 28.2%, то в конечном концентрате — всего 1.4%.

Обратная картина в немагнитных продуктах: для слива $Fe_{mar} = 0.38$ %, для конечного концентрата — 5.29 %; Fe_{obm} растет от 9.5 % (слив) до 13.7 % (конечный концентрат). Таким образом, согласно данным табл. 2, 3, породные сростки вымываются из обогащаемого материала на этапах схемы обогащения по мере уменьшения его засоренности с 44.2 % в сливе классификатора до 2.2 % в конечном концентрате. При этом содержание железа магнетитового в бедных рудных сростках, удаляемых в хвосты, достигает своего истинного предела, представляя собой искомую границу разделения по магнетитовому железу для технологической схемы Абагурской фабрики, что фактически отражено в анализе классов крупности немагнитных продуктов из конечного концентрата.

В итоге по данным табл. 2 определяем, что границей разделения по магнетитовому железу для Абагурской фабрики является его содержание: для класса – 1 + 0.2 мм — 2.61 %; для класса – 0.2 + 0.071 мм — 3.26 %; для класса – 0.071 + 0 мм — 5.29 %.

МАГНИТНЫЕ ХАРАКТЕРИСТИКИ ПРОДУКТОВ ЛАБОРАТОРНОГО РАЗДЕЛЕНИЯ

На автоматизированном вибрационном магнитометре компенсационным методом в магнитных полях до 800 кА/м измерены магнитные параметры проб, обусловливающие процесс разделения минералов в магнитном поле сепаратора: удельная намагниченность насыщения σ_s , удельная остаточная намагниченность насыщения σ_{rs} , коэрцитивная сила H_c [4]. Методика измерения магнитных свойств на вибрационном магнитометре описана в [5].

Магнитные характеристики абагурского концентрата (конечного) известны [2], однако данные по магнитным продуктам технологической схемы обогащения и продуктам их разделения в литературе отсутствуют.

Магнитные параметры исходных проб измерены на частицах класса -0.071+0 мм. Магнитные характеристики магнитных и немагнитных продуктов сепарации всех технологических продуктов также измерены на классе -0.071+0 мм, а немагнитных продуктов конечного концентрата — на всех трех классах крупности (табл. 4).

Значения удельной намагниченности насыщения σ_s исходных проб по схеме сепарации от слива до конечного концентрата существенно различаются: на сливе — 46.6, в конечном концентрате — 81.4 Am²/кг. В то же время значения σ_s магнитных продуктов лабораторной сепарации близки: от 74.6 (слив) до 82.4 Am²/кг (конечный концентрат). Очевидно, это объясняется разным содержанием железа в соответствующих пробах (см. табл. 2).

Проба	Пролукт	Класс,	$\sigma_{_s}$	$\sigma_{\scriptscriptstyle rs}$	H_{c}	$\sigma_{H} = 80$	$\sigma_{H} = 111$	$\sigma_{\scriptscriptstyle H}=175$
	продукт	MM	Ам²/кг		кА/м	А м ² /кг		
Crup	Исходный	-0.071 + 0	46.6	3.3	5.0	31.5	36.6	41.6
Слив классификаторов	Магнитный	-0.071+0	74.6	4.6	3.2	55.1	62.2	69.0
классификаторов	Немагнитный	-0.071+0	0.67	0.07	12.6	0.34	0.42	0.49
IC	Исходный	-0.071+0	75.2	7.6	4.6	56.9	63.3	69.2
Концентрат 1-й стадии	Магнитный	-0.071+0	81.8	9.1	4.6	62.9	70.0	75.8
	Немагнитный	-0.071+0	1.93	0.16	7.9	1.1	1.3	1.6
Концентрат 2-й стадии	Исходный	-0.071+0	78.4	8.9	5.0	60.4	66.6	72.4
	Магнитный	-0.071+0	81.7	9.5	4.7	63.8	70.0	75.7
	Немагнитный	-0.071+0	3.83	0.3	7.1	2.2	2.7	3.2
Концентрат конечный	Исходный	-0.071+0	81.4	8.9	4.7	62.6	69.1	75.4
	Магнитный	-0.071+0	82.4	9.6	4.8	64.3	70.4	76.3
	Немагнитный	-1 + 0.2	3.96	0.18	4.4	2.4	2.8	3.4
	Немагнитный	-0.2 + 0.071	2.72	0.14	1.5	1.8	2.1	2.4
	Немагнитный	-0.071+0	4.5	0.35	7.2	2.8	3.3	3.8

ТАБЛИЦА 4. Магнитные характеристики исходных проб и продуктов сепарации

На немагнитных продуктах сепарации хорошо виден рост магнитных параметров (удельной намагниченности насыщения и других) параллельно с ростом количества магнетитового железа с 0.38 до 5.29 %: на сливе $\sigma_s - 0.67$, на конечном концентрате — 4.5 Ам²/кг. Основные кривые намагничивания немагнитных продуктов всех проб по схеме обогащения приведены на рис. 1, прирост магнитных параметров немагнитных продуктов разделения нагляден.

Рис. 1. Основные кривые намагничивания немагнитных продуктов, класс – 0.071 + 0 мм: *1* — концентрат конечный; *2* — концентрат 2-й стадии; *3* — концентрат 1-й стадии; *4* — слив

Закономерно падает от слива к конечному концентрату с увеличением количества частиц класса -0.071 + 0 мм коэрцитивная сила H_c немагнитного продукта — с 12.6 до 7.2 кА/м.

По значениям удельной намагниченности σ в разных магнитных полях и значениям этих полей H вычислена удельная магнитная восприимчивость χ (для класса -0.071+0 мм) продуктов по технологической схеме (табл. 5). На рис. 2 представлены зависимости удельной восприимчивости χ магнитных и немагнитных продуктов из конечного концентрата. Вид данной зависимости продуктов разделения подобен графикам $\chi(H)$ магнетитов и первичных концентратов сильномагнитных руд [6, 7].

Проба	Продукт	Макси Н,	імум χ кА/м	Восприимчивость χ <i>H</i> , кА/м		
		Н	χ	H=80	H=111	<i>H</i> =175
Слив	Магнитный	4.6	1.1	0.27	0.12	0.03
	Немагнитный	14.7	4.9	2.6	1.7	0.7
Концентрат 1-й стадии	Магнитный	6.3	1.4	0.26	0.11	0.03
	Немагнитный	13.0	16.0	8.5	5.0	2.0
Концентрат 2-й стадии	Магнитный	6.6	1.4	0.26	0.11	0.04
	Немагнитный	11.7	32.2	17.1	8.9	3.9
Концентрат конечный	Магнитный	10.9	1.4	0.26	0.12	0.03
	Немагнитный	19.5	40.1	20.3	12.5	4.0

ТАБЛИЦА 5. Удельная магнитная восприимчивость продуктов сепарации в различных полях

Примечание. Магнитный продукт — $\chi \times 10^{-3}$, немагнитный — $\chi \times 10^{-6}$ м³/кг

Рис. 2. Зависимость удельной магнитной восприимчивости χ продуктов разделения от величины поля; концентрат конечный, класс -0.071 + 0 мм ($\chi \times 10^{-6}$)

Данные табл. 5 свидетельствуют о том, что удельная магнитная восприимчивость χ магнитных продуктов значительно (на три порядка) превышает восприимчивость немагнитных проб. Поле максимума восприимчивости больше у немагнитных проб приблизительно в 2 раза. Отметим, что у магнитных продуктов нет роста удельной восприимчивости по схеме сепарации; на немагнитных — увеличение восприимчивости "по схеме" — в ~ 8 раз. В целом данные по удельной восприимчивости χ коррелируют с изменением "по схеме" удельной намагниченности насыщения σ_s .

МАГНИТНЫЕ ПАРАМЕТРЫ И ЗАСОРЕННОСТЬ ПРОДУКТОВ

Засоренность концентрата при магнитном методе обогащения определяется на лабораторном мокром магнитном анализаторе при "эталонной" напряженности магнитного поля H, которая на Абагурской обогатительной фабрике принята равной 175 кА/м. Взаимосвязь качества и засоренности концентрата при мокром магнитном обогащении, их зависимость от поля сепарации, конструкции магнитных систем сепараторов и механических характеристик установлена в [8–10].

Степень засоренности концентрата неудаленной породой и бедными сростками характеризуется содержанием магнетитового железа Fe_{Mar} в немагнитной фракции лабораторной сепарации. Из данных табл. 2, 3 видно, что по технологической схеме Fe_{Mar} в немагнитной фракции последовательно возрастает: для класса -0.071 + 0 мм от 0.38% в сливе классификаторов до 5.29% в конечном концентрате. Параллельно увеличиваются и значения магнитных параметров немагнитных продуктов (табл. 4): удельной намагниченности насыщения σ_s — от 0.67 для слива классификаторов до 4.5 Am²/кг для конечного концентрата. Такова же динамика удельной магнитной восприимчивости χ немагнитных продуктов по схеме (табл. 5), как максимума восприимчивости — от 4.9 до 40.1 · 10⁻⁶ м³/кг, так и удельной восприимчивости в магнитном поле H=175 кА/м — от 0.7 до 4.0 · 10⁻³ м³/кг. Подобное изменение магнитных параметров подтверждает установленный по данным лабораторной сепарации продуктов вывод, что породные сростки вымываются в процессе обогащения и немагнитный продукт из конечного концентрата представлен практически одними рудными сростками, которые по содержанию магнетитового железа находятся на границе разделения.

Очевидно, что сростки магнетита, попадающие как засоряющий материал в конечный концентрат, практически достоверно определяют фактическую границу разделения обогащаемого материала по магнетитовому железу при существующей технологии, которая составляет: для класса – 1 + 0.2 мм — 2.61 %, для класса – 0.2 + 0.071 мм — 3.26 % и для класса – 0.071 + 0 мм — 5.29 %. Магнитные значения дополняют эти экспериментальные результаты.

Таким образом, магнитные параметры немагнитных продуктов пропорциональны содержанию в них магнетитового железа Fe_{маг}. Заметна как их динамика по степени засоренности продуктов по этапам обогащения (по классу – 0.071 + 0 мм: 44.2 % — слив; 9.0 % — концентрат 1-й стадии; 5.9 % — концентрат 2-й стадии и 2.2 % — концентрат конечный), так и разница для границ разделения в разных классах крупности конечного концентрата.

О ВОЗМОЖНОСТИ ПОВЫШЕНИЯ КАЧЕСТВА ЖЕЛЕЗНЫХ КОНЦЕНТРАТОВ

В последние годы проведено много исследований, посвященных путям повышения эффективности процесса магнитной сепарации железорудного сырья, в которых учитывается многообразие типов руд, их минералогия, магнитные свойства, способы и аппаратуры магнитного обогащения. Отметим работы научно-технического центра Московского государственного горного университета совместно с Михайловским и Лебединским ГОКами, а также Воронежским заводом "Рудгормаш" [11–14].

Результаты изучения магнитных свойств и процессов магнитного обогащения железосодержащих руд Сибирского региона, промышленных испытаний при модернизации магнитных систем сепараторов на дробильно-обогатительных фабриках АО "Евразруда" содержатся в [3].

Многолетнее сотрудничество Института физики и Абагурской обогатительной фабрики ОАО "Евразруда" позволяет сформулировать "направления – методы" снижения потерь железа с хвостами, т. е. роста его качества: повышение напряженности и градиента магнитного поля сепарации; увеличение частоты смены полюсов и угла охвата магнитной системы; магнитная подготовка материала перед сепарацией (флокуляция и дефлокуляция); сепарация в переменных магнитных полях; разделение концентрата по крупности (тонкое грохочение).

В последние годы на Абагурской обогатительной фабрике реализованы технические мероприятия, направленные на повышение качества концентратов. Проведена реконструкция магнитных систем сепараторов: смонтированы новые системы из сплава неодим-железо-бор. Промышленными опытами на 1, 2-й стадиях ММС и операции сгущения установлено: на сепараторах ПБМ-П-90/250 с магнитной системой из сплава Nd-Fe-B на основной сепарации (1-я стадия) содержание железа Fe_{общ} снижается в концентрате на 0.78 %, Fe_{маг} — на 1.77 %; в хвостах Fe_{obij} — на 0.49 %, Fe_{mar} — на 0.34 %. На операции сгущения ММС содержание железа Fe_{obij} повышается на 0.31 %, Fe_{mar} — на 0.54 %; в хвостах Fe_{obij} — на 0.33 %, Fe_{mar} — снижается на 0.37 %. На 2-й стадии обогащения содержание железа Fe_{obij} в концентрате увеличивается на 0.51 %, Fe_{mar} — на 0.48 %; в хвостах Fe_{obij} — на 0.16 %, Fe_{mar} — на 0.02 %. В настоящее время в эксплуатации находятся 23 сепаратора с новыми системами (8 — на 1-й стадии, 11 — на 2-й, 4 агрегата — на операции сгущения).

На секции измельчения 2-й стадии на питании гидроциклона ГЦК(М)-380 установлен размагничивающий аппарат фирмы Eriez DRW9 с напряженностью поля H=50 кА/м. Размагничиваниие (дефлокуляция) улучшает качество слива гидроциклонов — содержание готового класса -0.071 мм возросло на 2%, в песках гидроциклона прирост составил 3%. При этом удельная производительность мельниц 2-й стадии по готовому классу увеличивается на 2.5%, циркулирующая нагрузка мельниц 2-й стадии по готовому классу — на 22%.

С целью повышения контрольного класса крупности в конечном концентрате на фабрике выполнен монтаж 12 грохотов "Стек Сайзер" корпорации "Деррик" (США). На грохота подается концентрат 2-й стадии ММС. Надрешетный продукт возвращается на классификацию в гидроциклоны, а подрешетный направляется на операцию сгущения.

выводы

Для исследований лабораторной сепарации и измерений магнитных характеристик абагурских проб использовались частицы крупностью – 0.071 + 0 мм.

По схеме сепарации от слива до конечного концентрата прирост выхода магнитной фракции составляет 42 %, прирост "качества" по $Fe_{Mar} - 0.9$ %; выход немагнитной фракции соответственно уменьшается на 42 %, в то время как Fe_{Mar} в ней возрастает от 0.38 до 5.29 %. Можно заключить, что в немагнитных фракциях последовательно собираются породные и бедные рудные сростки с наименьшей засоренностью в немагнитном продукте конечного концентрата.

Содержание магнетитового железа Fe_{маг} в немагнитных продуктах конечного концентрата фактически определяет границу разделения материала по Fe_{маг} в разных классах по существующей технологии на фабрике. Магнитные характеристики немагнитных фракций пропорциональны содержанию в них магнетитового железа Fe_{маг} и степени засоренности концентрата, что подтверждает границы разделения обогащаемого материала по классам крупности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Yakubailik E. K., Kilin V. I., Chizhik M. V., Ganzhenko I. M., Kilin S. V. Magnetik characteristics of primary concentrates supplied as a feedstock to Abagur enrichment-agglomerationplant, J. of Mining Science, 2013, Vol. 49, No. 1. P. 153–159.
- 2. Ганженко И. М., Якубайлик Э. К. Снижение потерь магнетита на Абагурской обогатительной фабрике // Обогащение руд. 2015. № 1. С. 22–25.
- **3.** Килин В. И. Повышение эффективности магнитной сепарации магнетитовых руд. Чита: ЧитГУ, 2011. 328 с.
- **4.** Ломовцев Л. А., Нестерова Н. А., Дробченко Л. А. Магнитное обогащение сильномагнитных руд. М.: Недра, 1979. 235 с.
- 5. Балаев А. Д., Бояршинов Ю. В., Карпенко М. М., Хрусталев Б. П. Автоматизированный магнитометр со сверхпроводящим соленоидом // ПТЭ. — 1985. — Т. 3. — С. 167–168.
- **6.** Рычков Л. Ф., Ломовцев Л. А. Удельная магнитная восприимчивость сильномагнитных руд при различной напряженности магнитного поля // ФТПРПИ. 1978. № 6. С. 108–110.

- 7. Якубайлик Э. К., Килин С. В., Килин В. И., Ганженко И. М. Магнитные свойства и процессы мокрой магнитной сепарации первичных концентратов железосодержащих руд Сибири // ГИАБ. 2013. № 2. С. 114–124.
- 8. Laurila E. On the magnetic permeability of mixtures containing ferromagnetic particles and porous ferromagnetic materials, Ann. Acad. Scientiarum Fennicae, Ser. A, VI Phys., 70, 1961.
- **9.** Деркач В. Г. Динамика движения руды в магнитных сепараторах с нижним питанием // Обогащение руд. 1964. № 3. С. 22–25.
- 10. Деркач В. Г. Специальные методы обогащения полезных ископаемых. М.: Недра, 1966. 338 с.
- 11. Кармазин В. В. Новые перспективы развития производства железорудного сырья в России // Бюл. науч.-техн. и экон. информации "Черная металлургия". 2011. № 4. С. 22–28.
- 12. Кармазин В. В., Андреев В. Г., Пожарский Ю. А. Совершенствование техники и технологии стадиального обогащения магнетитовых кварцитов Лебединского и Михайловского ГОКов // Бюл. науч.-техн. и экон. информации "Черная металлургия". — 2012. — № 3. — С. 26–33.
- **13.** Улубабов Р. С. Новые возможности повышения эффективности добычи и переработки бедных магнетитовых руд // Бюл. науч.-техн. и экон. информации "Черная металлургия". 2009. № 12. С. 21–25.
- **14.** Пелевин А. Е. Пути повышения качества железных концентратов // Бюл. науч.-техн. и экон. информации "Черная металлургия". — 2013. — № 12. — С. 11–14.

Поступила в редакцию 30/III 2017