УДК 532.5

## ИССЛЕДОВАНИЕ ЗАКРИТИЧЕСКИХ РЕЖИМОВ В НЕЛИНЕЙНОЙ ЗАДАЧЕ О ДВИЖЕНИИ ВИХРЯ ПОД СВОБОДНОЙ ПОВЕРХНОСТЬЮ ВЕСОМОЙ ЖИДКОСТИ

## В. П. Житников, Н. М. Шерыхалина, О. И. Шерыхалин

Уфимский государственный авиационный технический университет, 450000 Уфа

Предложен усовершенствованный метод Леви-Чивиты, в котором учтены особенности искомой функции путем добавления слагаемых, содержащих степенные особенности. Приведены результаты численного исследования нелинейной задачи об обтекании вихря ограниченным потоком идеальной весомой жидкости (Fr > 1). Исследованы предельные режимы течения: волны Стокса с одним и двумя горбами, выход критической точки на поверхность, отрыв вихря от солитона и равномерного потока. Показана возможность образования непериодических волн в локальной зоне вблизи критической точки.

Обтеканием точечного вихря может моделироваться течение около подводного крыла, если его размеры малы по сравнению с расстояниями до дна и свободной поверхности. Эта задача рассмотрена в [1–6]. В данной работе приведены результаты, позволяющие построить общую качественную картину решений солитонного вида для закритических режимов (Fr > 1). Найдены решения, переходящие в предельные с критическими точками на свободной поверхности (типа волны Стокса с изломом поверхности, образующим угол 120° или 360°, или без излома).

1. Постановка задачи. Рассматривается задача об обтекании вихря с интенсивностью  $\Gamma$ , расположенного в точке A под свободной поверхностью, ограниченным потоком идеальной весомой жидкости (рис. 1, a). Ускорение свободного падения g направлено вертикально вниз. В критической точке F скорость равна нулю (при  $\Gamma > 0$  эта точка расположена выше точки A); h — невозмущенная толщина потока,  $V_0$  — скорость на бесконечности. Форма потока симметрична относительно оси y. Течение полагается потенциальным и соленоидальным, тогда решение задачи можно искать в виде аналитической функции комплексной переменной (комплексного потенциала w(z) [6]). В этом случае значение, комплексно сопряженное скорости, в любой точке z = x + iy потока получается дифференцированием  $\overline{V} = dw/dz$ . Для определения w(z) необходимо решить краевую задачу. Краевыми условиями для функции w(z) являются условия непротекания Im w = 0 на BD, Im w = Q на CD ( $Q = hV_0$  — расход жидкости в струе).

Поскольку форма свободной поверхности неизвестна, решение можно искать в параметрическом виде  $w(\zeta)$ ,  $z(\zeta)$ , где  $\zeta$  — параметрическая переменная, область изменения которой известна, например половина круга единичного радиуса в комплексной плоскости (рис. 1, $\delta$ ). Для определения аналитической функции  $z(\zeta)$  также решается краевая задача. На прямолинейной границе  $BD \ y = \text{Im} \ z = 0$ . На свободной поверхности CD выполняется уравнение Бернулли

$$(V/V_0)^2 + 2y/(\text{Fr}^2h) = \text{const} = 1 + 2/\text{Fr}^2, \qquad \text{Fr} = V_0/\sqrt{gh}.$$
 (1.1)

70

Работа выполнена при финансовой поддержке Федеральной целевой программы «Государственная поддержка интеграции высшего образования и фундаментальной науки на 1997–2000 гг.».



Рис. 1

Зависимость комплексного потенциала w от  $\zeta$  можно представить в виде [5]

$$w(\zeta) = \frac{2hV_0}{\pi} \ln \frac{1+\zeta}{1-\zeta} + \frac{\Gamma}{2\pi i} \ln \frac{(\zeta - ip)(\zeta + i/p)}{(\zeta + ip)(\zeta - i/p)}.$$
 (1.2)

В критической точке  $F~(\zeta=iq)$ комплексная скорость dw/dzравна нулю. Отсюда и из (1.2) следуют равенства

$$\frac{dw}{d\zeta} = \frac{2}{\pi} \left[ \frac{2}{1-\zeta^2} + \frac{\gamma p(1-p^2)}{2} \frac{1-\zeta^2}{(\zeta^2+p^2)(p^2\zeta+1)} \right] = 0, \qquad \gamma = \frac{\Gamma}{hV_0}; \tag{1.3}$$

$$q = \sqrt{\frac{-[2+2p^4 - \gamma p(1-p^2)] + 2(1+p^2)\sqrt{1-p^2}\sqrt{1-p^2 - \gamma p}}{4p^2 + \gamma p(1-p^2)}}.$$
(1.4)

**2. Метод прямого конформного отображения.** Задача решается усовершенствованным методом Леви-Чивиты с выделением особенностей [7, 8].

Функцию  $z(\zeta)$  будем искать в виде суммы степенного ряда и некоторых функций, учитывающих заданные особенности в точках  $\zeta = \pm 1$ ,  $\zeta = \pm i$ :

$$z(\zeta) = (2h/\pi)[z_0(\zeta) + z_1(\zeta) + z_2(\zeta) + z_3(\zeta)], \qquad (2.1)$$

где  $z_0(\zeta) = \ln((1+\zeta)/(1-\zeta))$  — функция, отображающая полукруг на полосу;  $z_1(\zeta) = \sum_{m=0}^{\infty} C_{2m+1}\zeta^{2m+1}$  — степенной ряд, коэффициенты которого подбираются так, чтобы выпол-

нялось уравнение Бернулли (1.1);  $z_2(\zeta) = A_1[(1-\zeta)^{\alpha} - (1+\zeta)^{\alpha}]$  — функция, учитывающая особенности решения  $z(\zeta)$  при  $\zeta = \pm 1$ ;  $z_3(\zeta) = iA_2[((1+i\zeta)/2)^{2/3} - ((1-i\zeta)/2)^{2/3}]$  — функция, учитывающая особенности в точке излома свободной поверхности ( $\zeta = i$ ). Число  $\alpha$  определяется из решения трансцендентного уравнения Стокса

$$\alpha \,\frac{\pi}{2} \operatorname{ctg}\left(\alpha \,\frac{\pi}{2}\right) = \frac{1}{\operatorname{Fr}^2}, \qquad 0 < \alpha < 1.$$
(2.2)

**3.** Решение с помощью функции Жуковского. Как показали исследования, в некоторых случаях необходим учет особенностей решения более высокого порядка малости. Поэтому решение удобнее искать в виде функции Жуковского

$$\omega = \theta + i\tau = i \ln\left(\frac{1}{V_0} \frac{dw}{dz}\right),\tag{3.1}$$

где  $\theta$  — угол наклона вектора скорости к оси x. Краевым условием для определения функции  $\omega(\zeta)$  на свободной поверхности служит уравнение (1.1). На других участках границы имеют место следующие краевые условия:  $\theta = 0$  на AB, BD, FC,  $\theta = \pi$  на AF (рис. 1,a). В этом случае конформное отображение  $\zeta$  на zосуществляется с помощью численного интегрирования

$$z = \frac{1}{V_0} \int e^{i\omega} \left(\frac{dw}{d\zeta}\right) d\zeta.$$
(3.2)

Представим  $\omega(\zeta)$  в виде суммы

$$\omega(\zeta) = \omega_0(\zeta) + \omega_1(\zeta) + \omega_2(\zeta), \qquad (3.3)$$

где

$$\omega_0(\zeta) = i \ln \frac{(\zeta^2 + q^2)(p^2\zeta^2 + 1)}{(\zeta^2 + p^2)(q^2\zeta^2 + 1)}$$
(3.4)

 $(\omega_0(\zeta) - \phi$ ункция Жуковского для аналогичной задачи о невесомой жидкости [5]);  $\omega_1(\zeta) = i \frac{1-\zeta^2}{2} \sum_{m=0}^{\infty} C_{2m} \zeta^{2m}$  — степенной ряд, множитель  $(1-\zeta^2)/2$  введен для того, чтобы  $\omega_1(1) = 0$ ;

$$\omega_2(\zeta) = iB_1 \left(\frac{1-\zeta^2}{2}\right)^{\alpha} + iB_2 \left(\frac{1-\zeta^2}{2}\right)^{2\alpha} + iB_3 \left(\frac{1-\zeta^2}{2}\right)^{\alpha+1}$$
(3.5)

 $(\omega_2(\zeta) - \phi_{yhkuua}, yuutubaaa ocoбенности решения <math>\omega(\zeta)$  при  $\zeta = 1$  с включением членов более высокого порядка);

$$\omega_3(\zeta) = \frac{i}{3} \ln \frac{1+\zeta^2}{2} + iC_1 \left[ \left( \frac{1+\zeta^2}{2} \right)^\beta - 1 \right]$$
(3.6)

 $(\omega_3(\zeta) - функция, введенная для учета особенностей в точке излома свободной поверхно$ сти).

Подставляя (3.3) в (1.1) и приравнивая слагаемые одинакового порядка при  $\zeta \to 1$ , можно убедиться в справедливости уравнения (2.2) для  $\alpha$  и определить коэффициенты  $B_2$  и  $B_3$ :

$$B_2 = B_1^2(3/2) \operatorname{ctg}^2(\alpha \pi/2), \qquad B_3 = \alpha B_1. \tag{3.7}$$

Подставляя (3.3) в (1.1) при  $\zeta \to i$  и приравнивая члены одного порядка, получаем

$$\tau_1 \frac{\pi}{2} = -C_1 + \sum_{m=1}^{\infty} d_{2m} (-1)^m = \frac{1}{3} \Big[ \ln \Big( \frac{3}{\pi} \frac{1}{\text{Fr}} \Big) + \ln \Big( 1 - \frac{\gamma p}{1 - p^2} \Big) \Big],$$
  
(3.8)  
$$(\beta + 1)(\pi/2) \operatorname{ctg}(\beta \pi/2) = 1/\sqrt{3}, \qquad 0 < \beta < 1.$$

4. Численное решение. Задача сводится к решению уравнения (1.1), решать ее будем методом коллокаций [7, 8]. В бесконечной сумме  $z_1$  в уравнении (2.1) сохраняется конечное число N слагаемых, а равенство (1.1) удовлетворяется в дискретных точках  $\sigma_m = \pi m/(2N), m = \overline{1, N}$ . Полученные N нелинейных уравнений образуют систему, которая решается методом Ньютона с выбором шага [8] по параметрам  $C_{2m+1}, m = \overline{0, N-4}, A_1, A_2$ , Fr. Этим же способом задача решается в случае использования функции (3.2). Оценка погрешности производится по правилу Рунге путем сравнения значений параметров (например, числа Fr, координаты точки C и др.), полученных при последовательном возрастании N, а также по максимальной невязке  $\Delta_{\max}$  уравнения (1.1), рассчитанной в промежуточных точках между узлами коллокаций  $\sigma_m$ .

Для проверки разработанных методов расчета решена задача об уединенной волне с особенностью Стокса [8–11]. Это решение получается при  $\gamma = 0$ .

Проведен сравнительный анализ трех способов решения задачи: при представлении решения в виде функции  $z(\zeta)$  (2.1) или  $\omega(\zeta)$  (3.3) с выделением только главных членов особенностей ( $B_2 = B_3 = C_1 = 0$ ) и при использовании выражений (3.5), (3.6). Получены значения числа Fr и других параметров для  $N = 5 \div 1280$ . Из анализа результатов следует, что в качестве оценки погрешности значения числа Fr можно использовать максимальную невязку уравнения (1.1). При параметрическом исследовании решений задачи это позволяет избежать громоздких расчетов по увеличению N в каждой расчетной точке.

Из численных экспериментов следует, что как по значениям числа Fr, так и по величине погрешности и скорости ее уменьшения при удвоении N результаты, полученные первыми двумя способами, близки. Наибольшая погрешность при вычислении числа Фруда составляет  $\Delta_{\rm Fr} \sim 10^{-7}$ .

Учет коэффициентов  $B_2$ ,  $B_3$ ,  $C_1$  и равенств (3.7), (3.8) позволяет уменьшить погрешность приблизительно на четыре порядка и существенно ускорить сходимость метода. При этом наибольшая погрешность при вычислении числа Фруда, согласно оценке по правилу Рунге, составляет  $\Delta_{\rm Fr} \sim 10^{-12}$ . Результаты решения задачи тремя способами совпали в рамках полученных для каждого способа оценок погрешности.

Сравним значение Fr  $\approx 1,290\,890\,455\,863$ , полученное путем уточнения по схеме Ричардсона, с известными результатами. Значение числа Фруда, вычисленное в [9], составляет Fr  $\approx 1,290\,906$ , в [10] — Fr  $\approx 1,290\,889$ , в [11] — Fr  $\approx 1,290\,890\,53$ , в [8] — Fr  $\approx 1,290\,890\,455$ . В первом случае погрешность составляет  $1,6 \cdot 10^{-5}$ , во втором —  $1,5 \cdot 10^{-6}$ , в третьем —  $7,5 \cdot 10^{-8}$ , в четвертом —  $8 \cdot 10^{-10}$ .

**5.** Анализ результатов. На рис. 2 представлены зависимости 1/Fr от ординаты  $y_C$  точки C (см. рис. 1) для различных значений интенсивности вихря  $\gamma$  ( $y_C < 1$  при  $\gamma = 0.125$ ; 0.25; 0.375; 0.5; 0.625;  $y_C > 1$  при  $\gamma = -0.5$ ; -1; -1.5; -2; -3; -5; -6; -7; -8; -10; -20;  $y_C > 1$  (второе решение) при  $\gamma = 0$ ; 1; 2). Значения координат x и y на графиках нормированы на величину h. Высота расположения вихря  $y_A = 0.5$ . В области  $y_C < 1$  находятся решения со впадиной (вместо горба) при  $\gamma > 0$ . Видно, что для  $0 < \gamma < 0.5$  кривая  $\gamma = \text{const}$  состоит из двух кривых, одна из которых начинается на прямой Fr  $= \infty$  и заканчивается на прямой Fr = 1, другая начинается на прямой Fr = 1 (второе решение), а заканчивается на кривой a, соответствующей предельному режиму выхода критической точки F на свободную поверхность. Формы свободной поверхности для  $\gamma = 0.5$  при  $y_C = 0.82$  (Fr  $= \infty$ ); 0.75; 0.65; 0.51 показаны на рис. 3, a (кривые 1).

Формулы для расчета предельного режима выхода критической точки F на свободную поверхность можно получить из (1.4), (3.4) при  $q \to 1$ :

$$p = \frac{\sqrt{\gamma^2 + 4} - \gamma}{2}, \qquad \omega_0(\zeta) = i \ln \frac{p^2 \zeta^2 + 1}{\zeta^2 + p^2}.$$
(5.1)



Рис. 2



Рис. 3

Отметим, что в этом предельном случае скорость в точке C не равна нулю, т. е. при выходе на поверхность критическая точка исчезает. Течение при этом располагается на двулистной римановой поверхности, а вектор скорости при переходе по свободной поверхности через точку C меняет направление на угол  $2\pi$ . В частном случае такое течение имеет место при  $Fr = \infty$ . Функция  $\omega_0$  (5.1) есть точное решение этой задачи.

Все решения, рассмотренные выше, не имеют особенности Стокса на свободной поверхности, поэтому слагаемые  $z_3$  и  $\omega_3$  при расчете исключаются из соответствующих сумм (2.1), (3.3).

Кривые  $\gamma = \text{const} < 0$  (см. рис. 2;  $y_C > 1$ ) начинаются на прямой, соответствующей предельному значению  $\text{Fr} = \infty$  (обтекание вихря невесомой жидкостью), и заканчиваются на предельной кривой, соответствующей волне с особенностью Стокса (кривая *b* на рис. 2). Соответствующие формы свободной поверхности для  $\gamma = -0.5$  при  $y_C = 1.12$  (Fr =  $\infty$ ); 1,3; 1,5; 1,7; 1,9; 1,95 приведены на рис. 3,*a* (кривые 2).

Решение  $\gamma > 0$  с горбами на свободной поверхности начинается с предельного режима типа волны Стокса (кривая *b* на рис. 2), а заканчивается волной Стокса с двумя горбами (см. рис. 2, кривые для  $\gamma = 1$ ; 2; рис.  $3, \delta$ ). Предельная кривая, соответствующая режимам с двумя горбами (кривая *c* на рис. 2), начинается при  $\gamma = 0$  ( $y_C = 1$ ), а заканчивается, соединяясь с крайней точкой кривой *b* и образуя новый нестоксовский предельный режим с критической точкой в вершине горба без излома свободной поверхности (кривая *d* на рис. 2). При приближении к этому пределу на свободной поверхности образуются волны, количество которых растет, а амплитуда уменьшается (рис.  $3, \epsilon$ ). Значение  $\gamma$ , при котором достигается этот предел, является максимальным при данном  $y_A$ . При уменьшении  $\gamma$  происходит увеличение расстояния между горбами (рис.  $3, \epsilon$ ), и при  $\gamma \to 0$  обе волны уходят в бесконечность, между ними образуется равномерный поток. Нестоксовское течение с критической точкой в вершине волнового горба рассчитывается по формуле (3.3), где

$$\omega_0(\zeta) = i \ln \frac{p^2 \zeta^2 + 1}{\zeta^2 + p^2} + 2i \ln \frac{1 + \zeta^2}{2}, \qquad z_3 = \omega_3 = 0.$$

В отличие от (5.1) точка C является критической, однако свободная поверхность при этом остается гладкой.

Течение с двумя стоксовскими волнами рассчитывается путем добавления слагаемого  $\omega_3$ , аналогичного (3.6):

$$\omega_3 = \frac{i}{3} \ln \frac{1 - 2\zeta^2 \cos 2\sigma_0 + \zeta^4}{4\sin^2 \sigma_0} + iC_1 \Big[ \Big( \frac{1 - 2\zeta^2 \cos 2\sigma_0 + \zeta^4}{4\sin^2 \sigma_0} \Big)^\beta - 1 \Big],$$

имеющего особенность в точке окружности  $\zeta = e^{i\sigma_0}$ , положение которой определяется при расчете.

Множество решений задачи об обтекании вихря представляет собой трехпараметрическое семейство кривых. Для того чтобы достаточно полно исследовать решения и отобразить их на графике, недостаточно одного сечения с  $y_A = 0.5$ , рассмотренного выше (см. рис. 2). Как минимум необходимо рассмотреть еще сечения с  $\gamma = \text{const.}$  Как показали исследования, кривые  $1/\text{Fr}(y_C)$  для  $\gamma > 0$  подобны кривым, изображенным на рис. 2. На рис. 4 приведены зависимости параметров при различных  $y_A$ , соответствующие значению  $\gamma = -0.5$ . При  $y_A \leq 1$  кривые начинаются на прямой, соответствующей предельному значению  $\text{Fr} = \infty$ , и заканчиваются на предельной кривой типа волны Стокса. Для некоторого  $y_A^* > 1$  кривые (для каждого  $y_A$ )



состоят из двух кривых (например, кривая  $y_A = 1,25$ ), одна из которых, как и для  $y_A \leq 1$ , начинается на прямой, соответствующей  $Fr = \infty$ , и заканчивается волной Стокса, другая также начинается на прямой, соответствующей  $Fr = \infty$  (второе решение), а заканчивается предельными режимами с отделением вихря от солитона (кривая *a* на рис. 4) или от равномерного потока (кривая *b*). При увеличении  $y_A$  два решения при  $Fr = \infty$  сливаются и исчезают, а две кривые объединяются в одну (кривая  $y_A = 1,5$  на рис. 4).

Формы свободной поверхности для волн типа Стокса для  $\gamma = -0.5$  при  $y_C = 1.82$   $(y_A = 0)$ ; 1.98; 2.16; 2.10; 1.823; 1.63 показаны на рис. 3.*d*. На рис. 4 этим решениям соответствует кривая c (волна с особенностью Стокса). Следует отметить, что для волн Стокса (см. (1.1))  $y_C/h = 1 + \text{Fr}^2/2$ , но на рис. 4 для наглядности кривая c изображена состоящей из двух несовпадающих кривых  $c_1$  и  $c_2$ .

Решим предельную задачу об отделении вихря (см. рис. 4), в которой  $w = aV'_0\gamma'/(\pi i)\ln\zeta$  — комплексный потенциал,  $\gamma' = \Gamma/(aV'_0)$ ; a — расстояние от нижней точки вихревого течения до вихря;  $V'_0$  — скорость жидкости в нижней точке. Используя выражение (3.3) при  $\omega_0(\zeta) = -i \cdot 2\ln\zeta - \pi$ ,  $\omega_2 = 0$ , находим локальное значение числа Фруда Fr' =  $V_0/\sqrt{ga}$ . Затем определяем значение

$$\gamma' = \left(-\frac{1}{\pi}\int_{1}^{0} e^{i\omega(\zeta)} \frac{d\zeta}{\zeta}\right)^{-1}.$$

Отметим, что впервые решение задачи о замкнутом циркуляционном течении для достаточно больших Fr' найдено в [12].

Далее, используя известное решение о солитоне на свободной поверхности [8] в виде зависимости  $Fr(V'_0/V_0)$ , решаем нелинейное уравнение

$$(V_0'/V_0)^{3/2} \operatorname{Fr}(V_0'/V_0) = \sqrt{\gamma/\gamma'} \operatorname{Fr}', \qquad (5.2)$$

тем самым устанавливая связь между солитоном и вихревым течением. Отметим, что уравнение (5.2) имеет решение, только если  $\sqrt{\gamma/\gamma'}$  Fr'  $\leq 1$ . В противном случае имеет место отделение вихря от равномерного потока. При этом  $V'_0 = V_0$ , а значение числа Фруда Fr =  $\sqrt{\gamma/\gamma'}$  Fr'.

Фруда Fr =  $\sqrt{\gamma/\gamma'}$  Fr'. На рис. 2, 4 изображены только решения с Fr  $\geq 1$ . Наряду с этим описанными выше методами были получены и решения солитонного типа при Fr < 1 (см. [3, 4]). Однако, поскольку при Fr < 1 уравнение (2.2) не имеет решений, условием их существования является выполнение равенств  $A_1 = 0, B_1 = 0, \tau$ . е. отсутствие степенных особенностей, показатель которых находится в диапазоне  $0 < \alpha < 1$ . В этом случае асимптотическое поведение решения определяется следующим по порядку решением трансцендентного уравнения (2.2) при  $2 < \alpha < 3$ , которое возможно для всех значений числа Fr.

**6.** Выводы. В данной работе проведено численное исследование задачи об обтекании вихря потоком весомой жидкости. Описаны предельные режимы течения. Особый интерес представляют решения с волнами на поверхности жидкости при Fr > 1, ранее для таких решений характерным считался диапазон чисел Фруда Fr < 1 (докритические режимы [4]).

## ЛИТЕРАТУРА

- Salvesen N., Kerczek C. Non-linear aspect of subcritical shallow-water flow past twodimensional obstructions // J. Ship Res. 1978. V. 22, N 4. P. 203–211.
- 2. Liao S. J. A general numerical method for solution of gravity wave problems. Pt 2. Steady non-linear gravity waves // Intern. J. Numer. Methods Fluids. 1992. V. 14, N 10. P. 1173–1191.
- Tuck E. O. Ship-hydrodynamics free-surface problems without waves // J. Ship Res. 1991. V. 35, N 4. P. 277–287.
- 4. Маклаков Д. В. Нелинейные задачи потенциальных течений с неизвестными границами. М.: Янус-К, 1997.
- 5. Житников В. П., Шерыхалин О. И. О решениях солитонного вида в докритических течениях весомой жидкости при наличии источника и вихря // Гидродинамика больших скоростей: Тр. VI Всерос. науч. шк., Чебоксары, 27 мая – 5 июня 1996 г. Чебоксары: Чуваш. ун-т, 1996. С. 63–67.
- 6. Гуревич М. И. Теория струй идеальной жидкости. М.: Наука, 1979.
- 7. Житников В. П. Гравитационные волны на ограниченном участке поверхности жидкости // ПМТФ. 1996. Т. 37, № 2. С. 83–89.
- 8. Шерыхалина Н. М. Разработка численных алгоритмов решения задач гидродинамики с особыми точками на свободной поверхности и экспериментальное исследование скорости их сходимости / Уфимск. гос. авиац. техн. ун-т. Уфа, 1995. Деп. в ВИНИТИ 6.06.95, № 2550-В95.
- Hunter J. K., Vanden-Broek J.-M. Accurate computations for steep solitary waves // J. Fluid Mech. 1983. V. 136. P. 63–71.
- Williams J. M. Limiting gravity waves in water of finite depth // Philos. Trans. Roy. Soc. London. Ser. A. 1981. V. 302, N 1466. P. 139–188.
- Evans W. A. B., Ford M. J. An exact integral equation for solitary waves (with new numerical results for some internal properties) // Proc. Roy. Soc. London. Ser. A. 1996. V. 452. P. 373–390.
- 12. Маклаков Д. В. Струйное циркуляционное течение тяжелой жидкости внутри или вне круга // Тр. семинара по краевым задачам. Казань, 1975. Вып. 12. С. 161–171.

Поступила в редакцию 14/VII 1998 г., в окончательном варианте — 20/XI 1998 г.