УДК 541.126, 532.529

ТРЕХМЕРНОЕ ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СПИНОВОЙ ГЕТЕРОГЕННОЙ ДЕТОНАЦИИ В ГАЗОВЗВЕСИ АІ/О₂ В КАНАЛАХ КРУГЛОГО СЕЧЕНИЯ

А. Н. Кудрявцев, А. В. Кашковский, А. А. Шершнев, Ю. В. Кратова

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск, antony@itam.nsc.ru

С помощью разработанного авторами кода HyCFS-R, предназначенного для моделирования на гибридных вычислительных системах, выполнено трехмерное численное моделирование детонационной волны, распространяющейся в круглой трубе, заполненной газовзвесью частиц алюминия в кислороде. Воспроизведен режим распространения с одноголовым спином, показано, что горение происходит в некоторой локализованной зоне фронта, вращающейся при его распространении, что характерно для спиновой детонации как в чисто газовых смесях, так и в гетерогенных средах. Получены данные об основных параметрах распространения детонационной волны в газовзвеси частиц алюминия в режиме спиновой детонации, проведено сравнение с теоретическими предсказаниями, численными и экспериментальными результатами других авторов.

Ключевые слова: численное моделирование, газовзвесь, спиновая детонация.

DOI 10.15372/FGV20230111

ВВЕДЕНИЕ

Спиновая детонация исторически является первым экспериментально обнаруженным нестационарным режимом распространения детонационных волн [1]. За прошедшее с тех пор время она была предметом многочисленных исследований. Результаты ранних работ суммированы в монографии [2], подробный обзор, включающий в себя новые результаты, можно найти в [3].

Спиновая детонация достаточно широко распространена, она встречается не только при горении газообразных топлив, но и при детонации газовзвесей и конденсированных взрывчатых веществ [4–9]. Как правило, спиновая детонация, наряду с галопирующей, является одним из предельных режимов распространения детонационных волн, за которым следует срыв детонационного горения. Таким образом, понимание механизмов возникновения и прекращения спиновой детонации имеет особое значение для проблемы взрывобезопасности.

В большей части работ, посвященных численному моделированию распространения детонационных волн, расчеты выполняются в двумерной постановке, хотя в последние годы появляется всё больше трехмерных расчетов газовой детонации, в том числе и в круглых каналах [10–17]. Среди этих работ хотелось бы выделить диссертацию [14], в которой получен большой объем как численных, так и экспериментальных данных по спиновой детонации. Следует также отметить недавние трехмерные расчеты непрерывно вращающейся детонации в кольцевом канале, выполненные в применении к описанию процессов в детонационных двигателях [18–20].

Что касается моделирования трехмерных режимов распространения гетерогенной детонации, такие расчеты вплоть до настоящего времени представлены только в отдельных работах [21, 22]. В последней работе впервые получен ряд важных данных о спиновой детонации в газовзвесях, однако основное внимание уделено режиму многофронтовой ячеистой детонации.

В настоящей статье численно моделируется режим спиновой детонации в круглой трубе, заполненной взвесью частиц алюминия в кис-

Работа частично выполнена при поддержке Российского фонда фундаментальных исследований (проект № 20-08-00295). Разработка расчетного кода проведена в рамках государственного задания (проект 121030500143-6). Для проведения расчетов использовались вычислительные ресурсы Центра коллективного пользования «Механика» (ИТПМ СО РАН).

[©] Кудрявцев А. Н., Кашковский А. В., Шершнев А. А., Кратова Ю. В., 2023.

лороде. Несущая и дисперсная фазы рассматриваются в виде двух взаимопроникающих континуумов. Горение частиц алюминия описывается моделью, использованной ранее в работах [23–25]. Параметры модели подобраны из условия соответствия экспериментальным данным по скорости горения частиц алюминия [26] и зависимости скорости детонационной волны от концентрации частиц [27].

Для расчетов использовался разработанный в лаборатории вычислительной аэродинамики ИТПМ СО РАН код HyCFS-R, предназначенный для моделирования сжимаемых течений на гибридных вычислительных кластерах с графическими процессорными устройствами (ГПУ). Проведено качественное и в некоторых случаях количественное сравнение результатов моделирования с численными [22] и экспериментальными [28] данными по газовой и гетерогенной детонации.

1. ОСНОВНЫЕ УРАВНЕНИЯ

Уравнения, описывающие течение химически реагирующей газовзвеси, в чисто эйлеровом подходе могут быть записаны следующим образом:

$$\begin{aligned} \frac{\partial \boldsymbol{Q}}{\partial t} &+ \frac{\partial \boldsymbol{F}^{x}}{\partial x} + \frac{\partial \boldsymbol{F}^{y}}{\partial y} + \frac{\partial \boldsymbol{F}^{z}}{\partial z} = \boldsymbol{S}, \\ \boldsymbol{Q} &= \begin{pmatrix} \boldsymbol{Q}_{g} \\ \boldsymbol{Q}_{d} \end{pmatrix}, \quad \boldsymbol{Q}_{g} = \begin{pmatrix} \rho_{g} \\ \rho_{g} \boldsymbol{u}_{g} \\ \boldsymbol{E}_{g} \end{pmatrix}, \\ \boldsymbol{Q}_{d} &= \begin{pmatrix} \rho_{d} \\ \rho_{d} \boldsymbol{u}_{d} \\ \boldsymbol{E}_{d} \end{pmatrix}, \quad \boldsymbol{F}^{\alpha} = \begin{pmatrix} \boldsymbol{F}_{g}^{\alpha} \\ \boldsymbol{F}_{d}^{\alpha} \end{pmatrix}, \\ \boldsymbol{F}_{g}^{\alpha} &= \begin{pmatrix} \rho_{g} \boldsymbol{u}_{g}^{\alpha} \\ \rho_{g} \boldsymbol{u}_{g} \boldsymbol{u}_{g}^{\alpha} + p_{g} \boldsymbol{e}^{\alpha} \\ (\boldsymbol{E}_{g} + p_{g}) \boldsymbol{u}_{g}^{\alpha} \end{pmatrix}, \\ \boldsymbol{F}_{d}^{\alpha} &= \begin{pmatrix} \rho_{d} \boldsymbol{u}_{d}^{\alpha} \\ \rho_{d} \boldsymbol{u}_{d} \boldsymbol{u}_{d}^{\alpha} \\ \boldsymbol{E}_{d} \boldsymbol{u}_{d}^{\alpha} \end{pmatrix}, \\ \boldsymbol{S} &= \begin{pmatrix} \boldsymbol{S}_{g} \\ \boldsymbol{S}_{d} \end{pmatrix}, \quad \boldsymbol{S}_{d} = \begin{pmatrix} -\mathcal{J} \\ \boldsymbol{f} - \mathcal{J} \boldsymbol{u}_{d} \\ \boldsymbol{q} + \boldsymbol{f} \cdot \boldsymbol{u}_{d} - \mathcal{J} \boldsymbol{E}_{d} \end{pmatrix}, \\ \boldsymbol{S}_{g} &= -\boldsymbol{S}_{d}, \qquad \alpha \in \{x, y, z\}. \end{aligned}$$

Переменные газовой и дисперсной фаз обозначены нижними индексами g и d соответственно. В систему уравнений (1) входят плотность фазы ρ , вектор скорости $u \equiv (u, v, w) \equiv$ (u^x, u^y, u^z) , полная энергия на единицу объема E, давление p, температура T. Через e_{α} обозначены единичные векторы вдоль осей α , $\alpha \in \{x, y, z\}$. Источниковые члены S описывают межфазное взаимодействие, включая силу сопротивления f, теплообмен q и массообмен \mathcal{J} .

Предполагается, что несущая фаза является калорически совершенным газом с молекулярной массой W_g и удельной газовой постоянной $R = \mathcal{R}/W_g$, где \mathcal{R} — универсальная газовая постоянная. В этом случае давление подчиняется уравнению состояния идеального газа

$$p = \rho_g R T_g. \tag{2}$$

Температура газа T_g в уравнении (2) определяется из значения внутренней энергии e_q :

$$E_g = \rho_g \left(\frac{\boldsymbol{u}_g^2}{2} + e_g\right), \qquad e_g = c_{v,g} T_g. \tag{3}$$

Удельная теплоемкость при постоянном давлении рассчитывается из числа степеней свободы \mathcal{K} газовой фазы:

$$c_{p,g} - c_{v,g} = R,$$

$$c_{p,g} = \frac{1}{2} R(\mathcal{K} + 2) = \frac{\gamma R}{\gamma - 1}, \qquad \gamma = \frac{c_{p,g}}{c_{v,g}},$$
(4)

где γ — показатель адиабаты газа.

Удельная полная энергия дисперсной фазы записывается в виде

$$E_d = \rho_d \Big(c_{v,d} T_d + \frac{\boldsymbol{u}_d^2}{2} + \vartheta_d \Big). \tag{5}$$

Здесь $c_{v,d}$ — теплоемкость материала частиц дисперсной фазы, ϑ_d — удельная теплота сгорания.

Сила сопротивления f, действующая со стороны газа на частицы, вычисляется следующим образом:

$$\boldsymbol{f} = \frac{3\varphi_d \rho_g}{4\delta_d} c_D \left| \boldsymbol{u}_g - \boldsymbol{u}_d \right| (\boldsymbol{u}_g - \boldsymbol{u}_d).$$
(6)

Здесь $\varphi_d = \rho_d / \rho_m$, ρ_m — плотность материала частиц, δ_d — диаметр частиц в дисперсной фазе. Коэффициент сопротивления c_D зависит от значений чисел Маха M_d и Рейнольдса Re_d , вычисленных по диаметру частицы и относительной скорости движения фаз. Используется формула из [29], валидированная по экспериментальным данным о траекториях частиц после взаимодействия с ударной волной:

$$c_D(\operatorname{Re}_d, \operatorname{M}_d) = \left[1 + \exp\left(-\frac{0.43}{\operatorname{M}_d^{4.67}}\right)\right] \times \left(0.38 + \frac{24}{\operatorname{Re}_d} + \frac{4}{\sqrt{\operatorname{Re}_d}}\right), \quad (7)$$

$$\operatorname{Re}_{d} = \frac{\delta_{d} \rho_{g} |\boldsymbol{u}_{g} - \boldsymbol{u}_{d}|}{\mu}, \quad \operatorname{M}_{d} = \frac{|\boldsymbol{u}_{g} - \boldsymbol{u}_{d}|}{a}. \quad (8)$$

Здесь $\mu = \mu_0 (T_g/T_{g,0})^{\omega}$ — динамическая вязкость, определяемая по степенному закону; $a = \sqrt{\gamma R T_g}$ — скорость звука в газе.

Источниковый член, описывающий теплообмен между фазами, имеет следующий вид:

$$q = \frac{6\varphi_d \lambda_g}{\delta_d^2} \operatorname{Nu}_d \left(T_g - T_d\right). \tag{9}$$

Теплопроводность газа λ_g вычисляется из уравнения

$$\lambda_g = \frac{\mu c_{p,g}}{\Pr},\tag{10}$$

где Pr — число Прандтля, определяемое по формуле Эйкена

$$\Pr = \frac{4\gamma}{9\gamma - 5}.$$
 (11)

Число Нуссельта рассчитывается по приближенной эмпирической формуле

$$\operatorname{Nu}_d = 2 + 0.6 \operatorname{Re}_d^{1/2} \operatorname{Pr}^{1/3}.$$
 (12)

Редуцированный механизм химической кинетики записывается в форме Appenuyca:

$$\mathcal{J} = \begin{cases} \frac{\rho_d - \rho_{d,\min}}{\tau_{d,\xi}} \exp\left(-\frac{E_a}{\mathcal{R}T_d}\right), \\ T_d > T_{ign} \equiv 900 \text{ K}, \\ \rho_d > \rho_{d,\min}, \\ 0, \quad \text{иначе}, \end{cases}$$
(13)

где $\rho_{d,\min}$ — минимальная плотность несгоревших частиц, $\tau_{d,\xi}$ — характерное время горения, E_a — энергия активации реакции. Характерное время горения приближенно зависит от диаметра частиц как

$$\tau_{d,\xi} = \tau_{d,0} \Big(\frac{\delta_d}{\delta_{d,0}}\Big)^2,\tag{14}$$

где $\tau_{d,0}$ и $\delta_{d,0}$ — некоторые эмпирические константы.

Стоит отметить, что в рамках используемой модели вязкость и теплопроводность газа учитываются только при вычислении источниковых членов для учета межфазного взаимодействия и корректного описания движения дисперсной фазы на основе приведенных выше эмпирических соотношений. При этом в целом течение считается невязким, как это обычно предполагается при численном моделировании газовой детонации. Такой подход используется в большинстве работ по численному моделированию детонации в газовзвесях и, как показывает практика, позволяет получать результаты, достаточно хорошо согласующиеся с экспериментальными данными.

Как упоминалось выше, описанная модель течения содержит ряд параметров и констант, подобранных таким образом, чтобы обеспечивать согласие с имеющимися экспериментальными данными. В работе в качестве несущей фазы рассматривается чистый кислород O₂ с молекулярной массой $W_{O_2} = 32$ кг/кмоль, число молекулярных степеней свободы $\mathcal{K} = 5$. В степенной зависимости вязкости от температуры используются значения параметров $\omega =$ 0.77, $\mu_0 = 1.919 \cdot 10^{-5}$ H·c/m², $T_{g,0} = 273$ K, взятые из [30].

Предполагается, что дисперсная фаза состоит из монодисперсных частиц алюминия с плотностью материала $\rho_m = 2\,700 \text{ кг/m}^3$, постоянной теплоемкостью $c_{v,d} = 880 \text{ Дж/(кг} \cdot \text{K})$ и теплотой сгорания $\vartheta_d = 2.94 \cdot 10^6 \text{ Дж/кг}$. Энергия активации реакции горения алюминия взята равной $E_a = 10^6 \text{ Дж/кг}$, а эмпирические константы для вычисления характерного времени горения равны $\tau_{d,0} = 2.4 \cdot 10^{-6}$ с и $\delta_{d,0} = 10^{-5} \text{ м}$.

2. ЧИСЛЕННЫЙ АЛГОРИТМ

Уравнения (1) решаются численно на структурированной сетке в общих криволинейных координатах с помощью схемы сквозного счета MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) TVD (Total Variation Diminishing). Значения примитивных переменных газовой фазы $U_g = (u_g, v_g, w_g, T_g, \rho_g)^{\top}$ реконструируются на гранях ячеек со вторым порядком точности, после чего применяется ограничитель наклона minmod для того, чтобы избежать появления численных осцилляций. Численные потоки через грань находятся из решения задачи о распаде разрыва с помощью приближенного солвера Роу [31].

Хотя уравнения для дисперсной фазы не являются гиперболическими, соответствующие численные потоки также могут быть вычислены путем решения задачи о распаде разрыва. Консервативные переменные Q_d реконструируются на грани ячейки с первым или вторым порядком точности, после чего для вычисления потоков используется подход, предложенный в [32]. Интегрирование уравнений (1) по времени выполняется с помощью явной схемы Рунге — Кутты второго порядка точности.

Расчетный алгоритм реализован в виде кода HyCFS-R [33, 34], написанного на языке C++. Код включает в себя многоуровневую параллелизацию на основе технологий CUDA, OpenMP и библиотеки MPI и позволяет проводить расчеты на гибридных вычислительных системах, состоящих из обычных многоядерных процессоров и графических ускорителей. Ранее он успешно применялся для численных исследований как газовой [35, 36], так и гетерогенной детонации [37, 38].

3. ПОСТАНОВКА ЗАДАЧИ

Моделируется распространение детонационных волн в каналах круглого сечения различного диаметра, заполненных газовзвесью частиц алюминия в кислороде. Диаметр частиц δ_d предполагается равным 10 мкм, средняя плотность дисперсной фазы взята равной $\rho_d = 1.34 \text{ кг/m}^3$ (соответствует объемной концентрации $\varphi_d = 4.96 \cdot 10^{-4}$), плотность несущей фазы $\rho_g = 1.28 \text{ кг/m}^3$. Давление задавалось равным p = 99773.5 Па, начальная температура газовзвеси $T_{g,d} = 300 \text{ K}$. На стенках каналов для скоростей обеих фаз задавалось условие непротекания.

Поскольку спиновая детонация является предельным режимом распространения детонационной волны, ее достаточно сложно инициировать в расчете. Поэтому численное моделирование проводилось в два этапа. Сначала в широком канале диаметром $d_c = 2$ м выполнялся локальный поджиг горючей смеси. В обла-

Рис. 1. Схемы расчетных областей и пример расчетной сетки в круглом канале

сти поджига, расположенной на оси канала, задавались высокая температура $T_{ign} = 20\,000$ К и высокое давление $p_{ign} = 3.13 \cdot 10^7$ Па. Образовавшаяся взрывная волна после взаимодействия со стенками канала инициировала детонационную волну с характерной ячеистой структурой (рис. 1). Из полученного поля течения вырезалась область в окрестности оси канала, размер которой примерно соответствовал величине крупной детонационной ячейки. После этого поле течения в вырезанной области поточечно переносилось на расчетные сетки в круглых каналах меньших диаметров, $d_c = 0.225$ и 0.1 м.

Топология расчетной сетки, использованной внутри цилиндрической расчетной области, схематично показана в выходном сечении, изображенном на рис. 1. Поскольку форма ячеек сетки сильно меняется в радиальном направлении, исходная форма детонационной ячейки при переносе в узкие каналы искажалась, что приводило в процессе счета к появлению дополнительных искусственных возмущений, существенно влиявших на формирование структуры течения.

Размер расчетной сетки на первом этапе составлял $350 \times 350 \times 2400 = 294$ млн ячеек, на втором — $100 \times 100 \times 1916 \approx 19.2$ млн ячеек. В зависимости от размера сетки использовалось от четырех игровых графических карт Nvidia GeForce 1080Ti 11Gb до восьми профессиональных графических ускорителей Nvidia Tesla V100 32Gb.

4. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Результаты численного моделирования, выполненного в каналах различного диаметра, иллюстрирует рис. 2, на котором приведена

Рис. 2. Полная развертка истории максимального давления на стенках каналов диаметром 2 (a), 0.225 (b), 0.1 м (b)

Рис. 3. Изоповерхность в поле истории максимального давления (a) и мгновенное поле температуры газа (b)

развертка истории максимального давления на стенках каналов. Как видно, рисунки очень похожи на отпечатки, получаемые в экспериментах на закопченной фольге. Следует отметить изменение структуры течения в зависимости от диаметра канала. В широком канале видна относительно нерегулярная ячеистая структура с ячейками различных размеров. В канале диаметром 0.225 м можно наблюдать, как после начальной перестройки течения устанавливается также многофронтовый режим, но уже с достаточно регулярными ячейками. Наконец, в самом узком канале диаметром 0.1 м реализуется режим с одноголовым спином. Это хорошо видно на рис. 3, а, где изображена изоповерхность, соответствующая максимальному давлению $p_{\text{max}} = 123.6$ бар. Она имеет вид вин-

Рис. 4. Изменение скорости фронта при распространении детонации в канале размером d = 0.1 м

товой линии с очень регулярной структурой. Мгновенное поле температуры газа приведено на рис. $3, \delta$. На нем также видны периодические структуры непосредственно за фронтом волны, которые постепенно диссипируют при удалении от фронта. В дальнейшем основное внимание уделялось именно режиму спиновой детонации, для которого были определены основные параметры: скорость распространения фронта волны, отношение шага винтовой линии (pitch в англоязычной литературе) к диаметру канала, а также частота вращения спина.

Для отслеживания скорости распространения волны в процессе расчета каждые 20 вычислительных шагов (в силу автоматического выбора величины временного шага это приблизительно соответствует периоду $0.1 \div 0.2$ мкс) вычислялись положение и форма фронта детонационной волны. Как видно из рис. 4, средняя скорость распространения фронта $\langle v \rangle$ ожидаемо оказалась близкой к скорости Чэпмена — Жуге $D_{\rm CI}$, равной при данном составе смеси 1803 м/с. Мгновенная скорость осциллирует около этого значения, причем амплитуда осцилляций постепенно уменьшается. Шаг винтовой линии хорошо виден на рис. 2,6 и составляет ≈ 0.4 м, а его отношение к диаметру канала равно 4. Шаг спирали соответствует одному обороту головы спина, поэтому из средней скорости фронта волны можно вычислить и частоту вращения $\nu \approx 1/(0.4/1\,803) \approx 4\,500$ Гц.

Визуализация формы фронта детонационной волны на рис. 5 дополнительно иллюстрирует процесс вращения головы спина. Сам

Рис. 5. Эволюция формы фронта детонационной волны в течение одного периода обращения спина (в центре иллюстрация из [28])

фронт определялся как изоповерхность числа Maxa M = 1, в качестве его положения принималась максимальная координата изоповерхности вдоль канала. Частота вращения, вычисленная на основе подобных изображений из периода между двумя кадрами с визуально похожими конфигурациями фронта, также примерно равна 4 500 ÷ 4 600 Гц.

Интересно сравнить полученную форму фронта с приведенной в экспериментальной работе [28] (показана в центре рис. 5). В этой работе изучалась спиновая детонация в разбавленной аргоном кислородоводородной смеси $(2H_2 + O_2 + Ar)$, форма фронта восстанавливалась по показаниям пьезокерамических датчиков давления. Видно, что в целом пространственные формы фронта в численном моделировании и эксперименте качественно похожи. Наиболее заметное отличие связано с отсутствием в наших расчетах характерного резкого излома фронта, наблюдавшегося в [28]. Нужно, однако, заметить, что в соответствии с [28] изломы отсутствуют в смесях, сильно разбавленных аргоном, когда детонация становится менее интенсивной, а ее структура — более регулярной. Таковой же, как правило, является и детонация в газовзвесях, так что отсутствие в нашем случае излома можно считать ожидаемым.

Провести сравнение других параметров спиновой детонации с полученными в данной экспериментальной работе представляется затруднительным, поскольку эксперимент проводился в другой среде, при другом размере

Рис. 6. Визуализация областей максимального тепловыделения в различные моменты времени с периодом 30 мкс (канал диаметром 0.1 м)

канала и давлении. Так, например, такой характерный параметр следовых отпечатков как угол наклона линии движения спина φ на стенке трубы в [28] находился в диапазоне 45 \div 47°, а в нашем расчете составлял около 38°.

Характерным свойством спиновой детонации является то, что горение происходит не на всем фронте волны, а лишь в некоторой области, которая вращается при распространении фронта. Для проверки этого свойства в расчетах дополнительно сохранялись поля источникового члена \mathcal{J} в системе уравнений (1), описывающего массообмен за счет химических реакций. На рис. 6 показано перемещение зоны максимального тепловыделения при распространении волны. В качестве такой зоны выбрана зона, в которой значение ${\mathcal J}$ не ниже 75 % от максимального по всей расчетной области. Такой широкий диапазон значений выбран специально для большей наглядности визуализации, поскольку абсолютный максимум достигается в очень локализованной области размером в несколько ячеек. Временные промежутки между кадрами составляют ≈10 мкс. Хорошо видно, что зона тепловыделения в основном локализована в голове спина и вращается вместе с ней, как и предсказывается классической теорией спиновой детонации в газах. Можно отметить, что показанные на рис. 6 визуализации близко напоминают те, что были получены в [14] для газовой детонации.

В первой половине 1950-х годов несколько исследователей независимо друг от друга предприняли попытки объяснить механизм спиновой детонации влиянием поперечных акустических возмущений за фронтом волны. В результате была сформулирована теория, обычно известная в литературе как акустическая теория Мансона — Тэйлора — Фэя — Чу (N. Manson, G. I. Taylor, J. Fay, B.-T. Chu). Она подробно описана в монографиях [2, 3]. Вкратце ее результаты можно сформулировать следующим образом. Возможные моды колебаний характеризуются радиальным n и азимутальным m числами, принимающими целые значения. Частота вращения спина ν_n и отношение его шага \hat{p}_n к диаметру канала $d_c = 2r_c$ для моды с номерами n и m равны

$$\nu_n = \frac{k_{nm}c_1}{n}, \qquad \frac{\hat{p}_n}{d_c} = \frac{n\pi}{k_{nm}} \left(\frac{D}{c_1}\right), \qquad (15)$$

где k_{nm} — нули производной функции Бесселя 1-го рода: $J'_n(k_{nm}r_c) = 0, D$ — скорость фронта детонационной волны, c_1 — скорость звука за фронтом. Для первой (n = m = 1) моды $k_{11}r_c =$ 1.841.

Для газовой детонации из теории Чэпмена — Жуге следует, что $D/c_1 \approx \rho_0/\rho_1 \approx (\gamma+1)/\gamma$. Взяв типичное значение для продуктов сгорания $\gamma = 1.2$, можно получить, что $\hat{p}_1/d_c \approx 3.128$, а $\nu_1 \approx 6\,450$ Гц. Это значение с хорошей точностью подтверждается экспериментальными измерениями [2].

В нашем случае одномерное решение дает $D = 1\,803$ м/с, $c_1 = 1\,064$ м/с, откуда $\hat{p}_1/d_c =$ 2.9, что существенно меньше значения 4, полученного при обработке результатов численного моделирования. В свою очередь, предсказываемая частота вращения больше наблюдаемой 4 600 Гц примерно на 40 %. Следует отметить, что наблюдаемое значение шага спирали, расходясь с предсказаниями акустической теории, находится в согласии с данными экспериментальных наблюдений [39], в которых для детонации алюминиевых частиц в кислороде были получены значения $\hat{p}_1/d_c = 3.4 \div 4.1$.

В то же время в расчетах гетерогенной спиновой детонации, выполненных в [22], где для моделирования горения алюминиевых частиц диаметром 8.6 мкм использовалась модель межфазного взаимодействия, учитывающая, в частности, диффузионный режим горения частиц, а также изменение диаметра частиц в процессе горения, было показано, что при увеличении диаметра канала с 0.025 до 0.07 м отношение \hat{p}_1/d_c уменьшается с 4.4 до 3.32 и приближается к значению, предсказываемому акустической теорией для газовой детонации. От-

метим, что если использовать для вычисления шага спирали приводимые в [22] значения параметров Чэпмена — Жуге для исследуемой газовзвеси D = 1592 м/с и $c_1 = 748$ м/с, то по акустической теории следует ожидать $\hat{p}_1/d_c = 3.63$.

В настоящее время трудно сделать окончательное заключение о возможных причинах данных расхождений. Очевидно, требуется проведение более детального исследования и, возможно, модификация используемой модели, в частности, в плане использования более реалистичного калорического уравнения состояния для несущей фазы при высоких температурах.

ЗАКЛЮЧЕНИЕ

С помощью гибридного ГПУ/ЦПУ расчетного кода, основанного на описании многофазной среды в виде двух взаимопроникающих континуумов и TVD-схемах сквозного счета, проведено трехмерное численное моделирование детонационной волны, распространяющейся в круглой трубе, заполненной газовзвесью частиц алюминия 10 мкм в кислороде. В расчетах воспроизведен режим распространения с одноголовым спином, получены данные об основных параметрах режима. В численном моделировании осредненная скорость фронта близка к скорости Чэпмена — Жуге, частота вращения практически постоянна и равна приблизительно 4600 Гц, а отношение шага винтовой линии составляет 4. Полученные данные сравниваются с данными экспериментов, результатами расчетов других авторов и предсказаниями акустической теории Мансона — Тэйлора — Фэя — Чу. Отмечается, что наблюдаемые расхождения требуют дополнительных исследований и, возможно, модификации используемой модели.

Мы планируем в дальнейшем выполнить численное моделирование спиновой детонации в газовзвесях для более широкого диапазона диаметров частиц и каналов, изучить возможность реализации режима с многоголовым спином и спиновой детонации в прямоугольных каналах.

Авторы выражают благодарность Т. А. Хмель за предложенное направление исследований и рецензенту статьи за высказанные замечания и указание на работы Ф. Виро с соавторами.

ЛИТЕРАТУРА

- Campbell C., Woodhead D. W. The ignition of gases by an explosion-wave. Part I. Carbon monoxide and hydrogen mixtures // J. Chem. Soc. — 1926. — V. 129. — P. 3010–3021. — DOI: 10.1039/JR9262903010.
- Войцеховский Б. В., Митрофанов В. В., Топчиян М. Е. Структура фронта детонации в газах. — Новосибирск: Изд-во СО АН СССР, 1963.
- 3. Lee J. The Detonation Phenomenon. Cambridge Univ. Press, 2008.
- 4. **Dunne B. B.** Transverse wave instability in a solid explosive // Sci. — 1970. — V. 167, N 3921. — P. 1124–1126. — DOI: 10.1126/science.167.3921.112.
- 5. Даниленко В. А., Кудинов В. М. Особенности детонации крупногабаритных зарядов смесевых ВВ // Физика горения и взрыва. — 1980. — Т. 16, № 5. — С. 56–63.
- Даниленко В. А., Кудинов В. М. Особенности потери устойчивости детонации в удлиненных зарядах // Физика горения и взрыва. 1983. — Т. 19, № 2. — С. 101–105.
- Козак Г. Д., Кондриков Б. Н., Обломский В. Б. Спиновая детонация в твердых веществах // Физика горения и взрыва. 1989. Т. 25, № 4. С. 86–93.
- 8. Митрофанов В. В. Детонация гомогенных и гетерогенных систем. Новосибирск: ИГиЛ СО РАН, 2003.
- Zhang F. Shock Wave Science and Technology Reference Library. V. 4. Heterogeneous Detonation. — Berlin; Heidelberg: Springer-Verlag, 2009.
- Hanana M., Lefebvre M. H., van Tiggelen P. J. Pressure profiles in detonation cells with rectangular and diagonal structures // Shock Waves. — 2001. — V. 11. — P. 77–88. — DOI: 10.1007/PL00004068.
- Tsuboi N., Katoh S., Hayashi A. K. Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures // Proc. Combust. Inst. — 2002. — V. 29, N 2. — P. 2783–2788. — DOI: 10.1016/S1540-7489(02)80339-X.
- 12. Deledicque V., Papalexandris M. V. Computational study of three-dimensional gaseous detonation structures // Combust. Flame. — 2006. — V. 144, N 4. — P. 821–837. — DOI: 10.1016/j.combustflame.2005.09.009.
- Виро Ф., Хасаинов Б. А., Деборд Д., Прель А.-Н. Численное моделирование влияния диаметра трубы на режим распространения и структуру детонации в смесях с двухстадийным тепловыделением и двухуровневой ячеистой структурой // Физика горения и взрыва. — 2009. — Т. 45, № 4. — С. 101–108.

- 14. Virot F. Experimental and numerical study of spinning detonation regime in H₂, CH₄, C₂H₆-O₂ mixtures diluted or not by N₂ or Ar: PhD Thesis / National School of Mechanics and Aerotechnics. — Poitiers, 2009.
- 15. Cho D.-R., Won S.-H., Shin J.-R., Choi J.-Y. Numerical study of three-dimensional detonation wave dynamics in a circular tube // Proc. Combust. Inst. 2013. V. 34, N 2. P. 1929–1937. DOI: 10.1016/j.proci.2012.08.003.
- Wang C., Shu C.-W., Han W., Ninga J. High resolution WENO simulation of 3D detonation waves // Combust. Flame. — 2013. — V. 160, N 2. — P. 447–462. — DOI: 10.1016/j.combustflame.2012.10.002.
- Chen W., Liang J., Cai X., Mahmoudi Y. Three-dimensional simulations of detonation propagation in circular tubes: Effects of jet initiation and wall reflection // Phys. Fluids. — 2020. — V. 32. — 046104. — DOI: 10.1063/1.5143105.
- Frolov S. M., Dubrovskii A. V., Ivanov V. S. Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer // Prog. Propul. Phys. — 2016. — V. 8. — P. 375–388. — DOI: 10.1051/eucass/201608375.
- 19. Gaillard T., Davidenko D., Dupoirieux F. Numerical simulation of a rotating detonation with a realistic injector designed for separate supply of gaseous hydrogen and oxygen // Acta Astronaut. — 2017. — V. 141. — P. 64–78. — DOI: 10.1016/j.actaastro.2017.09.011.
- Hayashi A. K., Tsuboi N., Dzieminska E. Numerical study on JP-10/air detonation and rotating detonation engine // AIAA J. — 2020. — V. 58, N 12. — P. 5078–5094. — DOI: 10.2514/1.J058167.
- Tsuboi N., Hayashi A. K., Matsumoto Y. Three-dimensional parallel simulation of cornstarch-oxygen two-phase detonation // Shock Waves. — 2000. — V. 10. — P. 277–285. — DOI: 10.1007/s001930000054.
- 22. Khasainov B., Virot F., Veyssiere B. Threedimensional cellular structure of detonations in suspensions of aluminium particles // Shock Waves. — 2013. — V. 23. — P. 271–282. — DOI: 10.1007/s00193-012-0425-4.
- Fedorov A. V., Khmel T. A., Fomin V. M. Non-equilibrium model of steady detonations in aluminum particles-oxygen suspensions // Shock Waves. — 1999. — V. 9. — P. 313–318. — DOI: 10.1007/s001930050191.
- Федоров А. В., Хмель Т. А. Численное моделирование формирования ячеистой гетерогенной детонации частиц алюминия в кислороде // Физика горения и взрыва. — 2005. — Т. 41, № 4. — С. 84–98.

- 25. Федоров А. В., Хмель Т. А. Формирование и вырождение ячеистой детонации в бидисперсных газовзвесях частиц алюминия // Физика горения и взрыва. — 2008. — Т. 44, № 3. — С. 109–120.
- Dreizin E. L. On the mechanism of asymmetric aluminum particle combustion // Combust. Flame. — 1999. — V. 17. — P. 841–850. — DOI: 10.1016/S0010-2180(98)00125-4.
- Strauss W. A. Investigation of the detonation of aluminum powder oxygen mixtures // AIAA J. — 1968. — V. 6, N 12. — P. 1753–1761. — DOI: 10.2514/3.4855.
- Ульяницкий В. Ю. Экспериментальное исследование объемной структуры спиновой детонации // Физика горения и взрыва. — 1980. — Т. 16, № 1. — С. 105–111.
- 29. Бойко В. М., Киселев В. П., Киселев С. П., Папырин А. Н., Поплавский С. В., Фомин В. М. О взаимодействии ударной волны с облаком частиц // Физика горения и взрыва. 1996. Т. 32, № 2. С. 86–99.
- Bird G. A. Molecular Gas Dynamics and Direct Simulation of Gas Flows. — Oxford: Clarendon Press, 1994.
- 31. Roe P. L. Approximate Riemann solvers, parameter vectors, and difference schemes // J. Comput. Phys. — 1981. — V. 43, N 2. — P. 357– 372. — DOI: 10.1016/0021-9991(81)90128-5.
- 32. Collins J. P., Ferguson R. E., Chien K., Kuhl A. L., Krispin J., Glaz H. M. Simulation of shock-induced dusty gas flows using various models // Fluid Dynamics Conf., 20–23 June, 1994, Colorado Springs, CO, USA. — AIAA Paper N 94-2309. — DOI: 10.2514/6.1994-2309.
- 33. Shershnev A. A., Kudryavtsev A. N., Kashkovsky A. V., Khotyanovsky D. V. HyCFS, a high-resolution shock capturing code for numerical simulation on hybrid computational clusters // AIP Conf. Proc. — 2016. — V. 1770. — 030076. — DOI: 10.1063/1.4964018.

- 34. Kudryavtsev A. N., Kashkovsky A. V., Borisov S. P., Shershnev A. A. A numerical code for the simulation of non-equilibrium chemically reacting flows on hybrid CPU-GPU clusters // AIP Conf. Proc. — 2017. — V. 1893. — 030054. — DOI: 10.1063/1.5007512.
- 35. Borisov S. P., Kudryavtsev A. N., Shershnev A. A. Development and validation of the hybrid code for numerical simulation of detonations // J. Phys.: Conf. Ser. — 2018. — V. 1105. — 012037. — DOI: 10.1088/1742-6596/1105/1/012037.
- 36. Borisov S. P., Kudryavtsev A. N., Shershnev A. A. Influence of detailed mechanisms of chemical kinetics on propagation and stability of detonation wave in H₂/O₂ mixture // J. Phys.: Conf. Ser. — 2019. — V. 1382. — 012052. — DOI: 10.1088/1742-6596/1382/1/012052.
- 37. Kashkovsky A. V., Kratova Yu. V., Shershnev A. A. Initiation of Richtmyer– Meshkov instability by a detonation wave // J. Phys.: Conf. Ser. — 2019. — V. 1404. — 012058. — DOI: 10.1088/1742-6596/1404/1/012058.
- 38. Kratova Yu., Kashkovsky A., Shershnev A. Numerical simulation of heterogeneous detonations in plane and rectangular channels on hybrid CPU/GPU systems // AIP Conf. Proc. — 2020. — V. 2288. — 030016. — DOI: 10.1063/5.0028360.
- Strauss W. A. Investigation of the detonation of aluminum powder oxygen mixtures // AIAA J. — 1968. — V. 6, N 9. — P. 1753–1756. — DOI: 10.2514/3.4855.

Поступила в редакцию 29.12.2021. После доработки 17.05.2022. Принята к публикации 22.06.2022.