2012. Том 53, № 2

Март – апрель

C. 213 – 218

УДК 539.2.01:541.57

ПРОСТРАНСТВЕННАЯ СТРУКТУРА И СТАБИЛЬНОСТЬ НАНОЧАСТИЦ Мо_nSi_m

© 2012 М.В. Рыжков¹*, Б. Дэлли²

¹Институт химии твердого тела УрО РАН, 620041, Екатеринбург ²Институт Поля Шеррера, Виллиген, CH-5232, Швейцария

Статья поступила 16 декабря 2011 г.

С доработки — 13 мая 2011 г.

С использованием неэмпирического метода DMol³ проведено теоретическое моделирование наночастиц Mo_nSi_m и фрагментов кристаллических решеток Mo_3Si и $MoSi_2$. Для обоих кристаллов рассмотрено несколько нейтральных фрагментов Mo_4Si_6 и Mo_6Si_6 различной формы и симметрии. В каждом случае после выделения кластера проводили оптимизацию его геометрии, в результате чего заметно менялась геометрическая структура и увеличивалась его стабильность. Для теоретического поиска пространственных конфигураций наночастиц Mo_4Si_6 и Mo_6Si_6 были использованы два пути: 1) в наиболее стабильных изомерах Fe_4C_6 и Fe_6C_6 , найденных ранее, заменяли атомы железа и углерода на молибден и кремний соответственно, затем проводили оптимизацию геометрии для получения новых равновесных расстояний и углов; 2) проводили поиск основных конфигураций Mo_4Si_6 и Mo_6Si_6 по "биноминальной" схеме, стартуя с димеров Mo_2 , MoSi и Si_2 . Получено, что структуры наночастиц содержат цепочки атомов металла и изолированные пары и тройки атомов кремния. В большинстве случаев стабильность наночастиц оказалась выше, чем у кристаллических кластеров.

Ключевые слова: неэмпирический расчет, наночастицы Mo_nSi_m, связь стабильности с геометрической структурой.

введение

Силициды переходных металлов характеризуются высокой температурой плавления, низкой плотностью, исключительной коррозионной стойкостью и относятся к наиболее перспективным материалам для различных применений при температурах выше 1000 °C, где невозможно использование традиционных алюминидов и никелевых суперсплавов [1,2]. Дисилицид молибдена MoSi₂ является одним из наиболее часто используемых соединений кремния и наиболее экспериментально и теоретически исследованным. В последнее время интерес также вызывают силициды с большим содержанием металла — Mo₅Si₃ и Mo₃Si. С другой стороны открытие в 1992 г. наночастиц Ti₈C₁₂ с аномально высокой стабильностью, названных металлокарбоэдренами (меткарами) [3], привело к тому, что молекулярные системы М_xC_v стали объектами интенсивных теоретических [4-7] и экспериментальных [8-10] исследований. В случае железо-углеродных систем теоретическое моделирование меткаров Fe_nC_m [7, 11-13] показало, что хотя кластеры с экстремально высокой стабильностью (так называемые "магические пики") в железо-углеродных системах маловероятны, но энергия диссоциации таких наночастиц заметно выше, чем у фрагментов кристаллического карбида железа того же состава. Возникает вопрос: имеет ли место аналогичная закономерность для силицидов молибдена и могут ли наноструктурированные системы в перспективе быть интересными для практического применения. Попытки моделирования наночастиц Мо"Sim уже предпринимались, в работе [14] была проведена оптимизация геометрии и исследование электронной структуры кластеров

^{*} E-mail: ryz@ihim.uran.ru

 $MoSi_m$, m = 1-6 ($MoSi_m$). Выбор таких объектов обусловлен простотой определения их геометрической структуры, однако полученные результаты мало помогают установлению закономерностей формирования наночастиц с более реальным составом.

Ранее нами был предложен "биноминальный" метод теоретического поиска геометрической структуры наиболее стабильных бинарных наночастиц $M_n X_m$ для любой стехиометрии (n,m) [11]. В таком подходе, представленном на схеме 1, к исходным димерам M_2 , X_2 и MX со всех возможных направлений приближаются атомы M и X, далее с использованием программы Dmol³ проводится оптимизация геометрии до получения устойчивого изомера. Затем полученные устойчивые геометрические структуры M_3 , M_2X , MX_2 , X_3 служат исходными объектами для генерации четырехатомных частиц и так далее. Такая процедура последовательного добавления атомов "один за другим" является надежным способом получения всех возможных изомеров для каждого состава $M_n X_m$.

Схема 1. Процедура поиска стабильных структур наночастиц М_nX_m

Выполненное нами моделирование электронного строения изомеров 3-, 4- и 5-атомных частиц Fe_nC_m [11, 12] показало, что количество возможных изомеров быстро растет с увеличением числа атомов (особенно для случаев $m \sim n$), и уже для m+n > 5 нахождение всех возможных структур становится трудно реализуемым. Однако, было также получено, что конфигурации с наибольшей энергией диссоциации (называемые "основными") для каждого Fe_nC_m во всех рассмотренных случаях получались из основных изомеров предшествующих составов Fe_{n-1}C_m и Fe_nC_{m-1} [11, 12]. Это обстоятельство позволяет ограничиться поиском наиболее стабильных геометрических конфигураций M_nX_m любого состава (n,m), добавляя один атом за другим только к предшествующим основным конфигурациям.

Целью настоящей работы является теоретический поиск и сравнительное исследование стабильности наночастиц Mo_nSi_m и соответствующих фрагментов решеток кристаллов Mo₃Si и MoSi₂.

ОБЪЕКТЫ И МЕТОДИКА РАСЧЕТОВ

Силициды молибдена $MoSi_2$ и Mo_3Si имеют тетрагональную и кубическую решетки соответственно с пространственными группами *I4/mmm* и *Pm3n* [15]. Для исследования стабильности фрагментов этих кристаллов в работе рассмотрено несколько нейтральных кластеров Mo_4Si_6 и Mo_6Si_6 различной формы и симметрии, выделенных из решеток $MoSi_2$ и Mo_3Si . В каждом случае после выделения кластера проводили оптимизацию его геометрии, в результате чего заметно менялась геометрическая структура и увеличивалась его стабильность. Для теоретического поиска пространственных конфигураций наночастиц Mo_4Si_6 и Mo_6Si_6 были использованы два пути: 1) в найденных ранее [13] наиболее стабильных изомерах Fe_4C_6 и Fe_6C_6 атомы железа и углерода заменяли на молибден и кремний соответственно, затем проводили оптимизацию геометрии для получения новых равновесных расстояний и углов; 2) поиск основных конфигураций Mo_4Si_6 и Mo_6Si_6 проводился по "биноминальной" схеме 1 [11], стартуя с димеров Mo_2 , MoSi и Si_2 .

Оптимизацию геометрии всех рассмотренных кластеров проводили с использованием программы DMol³ [16] в спин-поляризованном подходе с двойным численным базисом, включавшим поляризационные *d*-функции для Si (базис типа "*dnd*"). Кулоновский потенциал вычисляли с использованием модельной зарядовой плотности, получаемой разложением электронной плотности, найденной в предыдущей итерации, по мультипольным компонентам до l = 3 включительно. Для обменно-колрреляционного потенциала в градиентном приближении (GGA) в расчетах использовали модель "BLYP" [17, 18]. Поскольку на исследуемые свойства систем с атомами молибдена могли влиять релятивистские эффекты, все расчеты выполняли в скалярнорелятивистском приближении [19]. Оптимизацию геометрии проводили до тех пор, пока максимальное значение градиента энергии не становилось меньше 0,001 ат. ед. Для подтверждения того, что достигнута устойчивая пространственная структура, в каждом случае вычисляли частоты гармонических колебаний.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для получения более объективных данных о стабильности кристаллических кластеров были рассмотрены четыре различных по форме фрагмента кристаллических решеток $MoSi_2$ и Mo_3Si состава Mo_4Si_6 и три фрагмента состава Mo_6Si_6 . На рис. 1 приведены результирующие структуры этих кластеров, полученные после оптимизации их геометрии. Энергии связи этих фрагментов E_b (абсолютные значения E_b называют энергиями образования), вычисляемые как разности полных энергий кластера и полных энергий изолированных атомов из которых он состоит, показаны в таблице в порядке возрастания стабильности. При оптимизации геометрии кристаллических фрагментов их энергии образования заметно увеличиваются во всех случаях более чем на 2,5 эВ, при этом наибольший эффект наблюдался для "вытянутых" кластеров: четвертого фрагмента Mo_4Si_6 (с –29,72 до –35,33 эВ) и второго — Mo_6Si_6 (с –34,31 до –41,81 эВ).

Первый способ генерации наночастиц Mo₄Si₆ и Mo₆Si₆ заключался в использовании ранее полученных данных о наиболее стабильных изомерах Fe₄C₆ и Fe₆C₆ [13]. Очевидно, что замещение атомов железа на молибден, а углерода на кремний могло сделать основной изомер менее стабильным, чем другие, т.е. изменить порядок энергий связи различных геометрических структур. Поэтому такое замещение было выполнено не только для основной конфигурации Fe_4C_6 , но и для трех следующих менее стабильных структур. Аналогично, в случае Fe_6C_6 , кроме наиболее стабильного изомера, были рассмотрены еще два — с меньшими энергиями образования. Структура полученных в результате оптимизации геометрии частиц Mo₄Si₆ и Mo₆Si₆ показана на рис. 2. Энергии связи этих кластеров приведены в таблице. Как мы и предполагали, плоские изомеры Fe₄C₆ с цепочками из трех и четырех атомов углерода, являвшихся основными для меткаров, оказались энергетически невыгодными для силицидов, при этом кроме значительного уменьшения энергии связи с -45 эВ (Fe₄C₆) до -28,66 эВ и -30,43 эВ в Мо₄Si₆ произошла трансформация 3- и 4-атомных углеродных цепочек в треугольники из атомов кремния (первый и второй фрагменты Mo₄Si₆ на рис. 2). Частицы силицидов с неплоской структурой (третий и четвертый фрагменты на рис. 2) оказались заметно более стабильными — $E_{\rm b} = 33,63$ и 34,54 эВ соответственно. Сравнение полученных результатов с кристаллическими кластерами показывает, что даже основной изомер наночастицы Мо₄Si₆, найденный из геометрий меткаров, имеет энергию образования на 0,9 эВ меньше, чем соответствующий фрагмент кристалла. С другой стороны, наночастицы Mo₆Si₆, полученные из геометрических структур Fe₆C₆, оказались немного стабильнее, чем кристаллические кластеры.

Второй способ поиска геометрических структур наночастиц Mo_nSi_m это — добавление атомов "один за другим", начиная с димеров Mo₂, Si₂ и MoSi. Биноминальный способ генерации наночастиц начинается с получения равновесных длин связей для исходных димеров. В наших расчетах

Рис. 1. Структура кластеров Mo₄Si₆ и Mo₆Si₆, выделенных из кристаллических решеток Mo₃Si и MoSi₂, после оптимизации их геометрии (металл — темные сферы, кремний — светлые сферы)

М.В. РЫЖКОВ, Б. ДЭЛЛИ

Состав	Фрагменты кристаллов		Наночастицы (1)		Наночастицы (2)	
	Структура	Eb	Структура	Eb	Структура	$E_{\rm b}$
Mo ₄ Si ₆		-31,53		-28,66		-34,74
		-33,28		-30,43		-34,93
		-33,90		-33,63		-35,09
		-35,33		-34,54		-35,16
Mo ₆ Si ₆		-40,69		-41,82		-43,08
		-41,81		-43,21		-43,42
		-43,05		-43,71		-43,80

Геометрическая структура и энергии связи (эВ) кристаллических кластеров Mo₄Si₆, Mo₆Si₆ и наиболее стабильных наночастиц того же состава, полученных из железо-углеродных частиц (1) и по биноминальной схеме (2)

методом DMol³ получено, что межатомные расстояния в Mo₂ Si₂ и MoSi составляют 2,01, 2,24 и 2,31 Å соответственно. Энергии образования имеют обратный порядок: 3,99 (Mo₂), 3,36 (Si₂) и 2,80 эВ (MoSi). Далее с увеличением числа атомов энергии образования растут, однако если рассмотреть их удельные значения (энергия образования на один атом), то можно получить тенденции изменения стабильности основного изомера при увеличении числа атомов молибдена и кремния. На схеме 2 приведены величины удельных энергий образования для всех рассмотренных составов наночастиц Mo_nSi_m .

Легко видеть, что при увеличении числа атомов металла (при неизменном количестве кремния) стабильность частицы заметно увеличивается. В основном такая же закономерность имеет место и при увеличении числа атомов Si (при неизменном количестве Mo), однако эта

Рис. 2. Структура наиболее устойчивых изомеров наночастиц Mo_4Si_6 и Mo_6Si_6 , полученных из основных изомеров Fe_4C_6 и Fe_6C_6 (металл — темные сферы, кремний — светлые сферы)

тенденция заметно слабее, а при переходе от Mo_4Si_3 к Mo_4Si_4 имеет место уменьшение удельной энергии образования. Найденные этим методом наиболее стабильные изомеры для составов Mo_4Si_6 и Mo_6Si_6 показаны на рис. 3, энергии связи этих кластеров приведены в последнем столбце таблицы. Легко видеть, что, в отличие от предыдущего способа, все найденные в этой схеме изомеры имеют похожую структуру и соответственно близкие энергии образования. Так, второй и четвертый изомеры Mo_4Si_6 имеют одинаковый структурный тип, а отличаются длинами связей и углами (см. рис. 3). Сравнение наночастиц с кристаллическими фрагментами показывает, что в случае Mo_6Si_6 кластеров даже структура основного изомера железо-углеродных наночастиц дает энергию образования на 0,7 эВ выше, чем у наиболее стабильного фрагмента решеток силицидов. В случае использования второй схемы стабильность найденных наночастиц Mo_6Si_6 оказалась еще на 0,1 эВ выше по сравнению с кристаллическими кластерами.

Однако в случае меньших по размерам Mo₄Si₆ картина получилась более интересная. Вопервых, все четыре изомера, найденные по биноминальной схеме, оказались более стабильными, чем все структуры, полученные из меткаров. Данный результат не был неожиданным, поскольку поиск наиболее стабильных структур меткаров проводили для взаимодействий Fe—C, Fe—Fe и C—C, что могло не соответствовать оптимальному пространственному расположению атомов молибдена и кремния. Однако, даже основная конфигурация наночастицы Мо₄Si₆ с энергией связи –35,16 эВ (см. таблицу), оптимальная для связей Мо—Si, Мо—Мо и Si—Si, оказалась на 0,17 эВ менее стабильной, чем "вытянутый" фрагмент кристаллической решетки MoSi₂. Очевидно, что схема построения наночастицы путем добавления атомов "один за другим" обязана давать компактные структуры, поскольку на каждом промежуточном шаге они энергетически более выгодны. Отметим, что все найденные в этой схеме структуры состоят из "металлического каркаса", т.е. все атомы молибдена взаимодействуют друг с другом (являются ближайшими соседями), тогда как атомы кремния расположены парами или тройками, отделенными друг от друга цепочками атомов молибдена. Фрагмент кристаллической решетки, представляющий собой призму из пяти чередующихся пар Мо-Мо и Si-Si с энергией связи -35,33 эВ (см. рис. 1 и таблицу) оказался исключением из этого правила. Однако дальнейшее

Рис. 3. Структура наиболее устойчивых изомеров наночастиц Мо₄Si₆ и Мо₆Si₆, полученных по "биноминальной" схеме в настоящей работе (металл — темные сферы, кремний — светлые сферы)

удлинение этой цепочки (второй кристаллический кластер состава Mo₆Si₆ на см. рис. 1) привело к тому, что энергия образования оказалась заметно меньше, чем у компактных кластеров и наночастиц, имеющих металлический каркас.

Выводы. Результаты расчетов показали, что все неплоские структуры наночастиц Mo_nSi_m, полученных различными способами, содержат цепочки атомов молибдена, образующие металлический каркас, тогда как атомы кремния образуют изолированные друг от друга пары или тройки. Для кристаллических кластеров возможен структурный тип, состоящий из чередующихся пар Mo—Mo и Si—Si. В случае Mo₄Si₆ такая структура оказывается энергетически более выгодной, чем у наночастиц, однако при дальнейшем увеличении числа чередующихся пар такой структурный тип заметно проигрывает в стабильности наночастицам.

В рассмотренных бинарных Мо—Si кластерах энергии диссоциации кристаллических фрагментов и частиц, получаемых из газовой фазы, оказываются близкими. Однако для бинарных Fe—C кластеров, рассмотренных ранее [13], ситуация существенно другая — энергии диссоциации наночастиц оказались заметно выше, чем у кристаллических фрагментов того же состава. При этом для железо-углеродных систем до настоящего времени не найдены составы с аномально высокой стабильностью (их называют "магические пики"), полученные, например, для Ti—C кластеров. В последнем случае стабильность наночастиц (таких как Ti₈C₁₂) значительно выше, чем у фрагментов природных кристаллических карбидов титана [3].

Очевидно, что стабильность любой частицы определяется не только энергией диссоциации, но и энергетическими барьерами, препятствующими переходу в другие структуры. Ранее в работе [12] нами были оценены такие барьеры для всех возможных изомеров состава Fe_2C_3 (которых было найдено около пятидесяти). Получено, что энергии возбуждения, при которых происходят переходы из одной структуры в другую, находятся в интервале от 0,14 до 2,3 эВ. Отметим, что во всех случаях происходила либо диссоциация либо переход в какой-то из найденных стабильных изомеров, т.е. не было случаев трансформации в структуры, отличные от тех, которые были найдены по биноминальной схеме.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант 10-03-96015-р урал а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Petrovic J.J., Vasudevan A.K. // Mater. Sci. Eng. 1999. A261. P. 1 5.
- 2. Westbrook J.H., Fleisher R.L. // Intermetallic compounds, vol.3. West Sussex: John Willey&Sons Ltd. 2000.
- 3. Guo R.C., Kerns K.P., Castleman A.W. // Science. 1992. 255. P. 1411 1413.
- 4. Rohmer M.M., Benard M., Poblet J.M. // Chem. Rev. 2000. 100. P. 495 542.
- 5. Liu P., Rodriguez J.A. // J. Chem. Phys. 2004. **120**. P. 5414 5423.
- 6. Noya E.G., Longo R.C., Gallego L.J. // J. Chem. Phys. 2003. 119. P. 11130 11134.
- 7. Harris H., Dance I. // Polyhedron. 2007. 26. P. 250 265.
- 8. Pilgrim J.S., Duncan M.A. // J. Amer. Chem. Soc. 1993. 115. P. 6958 6961.
- 9. Kan S.Z., Lee S.A., Freiser B.S. // J. Mass Spectrom. 1996. **31**. P. 62 68.
- 10. Von Heldem G., Tielens A.G.G.M., Van Heijnsbergen D. et al. // Science. 2000. 288. P. 313 316.
- 11. Ryzhkov M.V., Ivanovskii A.L., Delley B. // Chem. Phys. Lett. 2005. 404. P. 400 408.
- 12. Ryzhkov M.V., Ivanovskii A.L., Delley B. // Theor. Chem. Accounts. 2008. 119. P. 313 318.
- 13. *Рыжков М.В., Ивановский А.Л., Дэлли Б. //* Труды Первого международного междисциплинарного симпозиума "Физика низкоразмерных систем". Ростов-на-Дону—Лоо, 2008. С. 258 261.
- 14. Han J.G., Hagelberg F. // J. Mol. Struct. (Theochem). 2001. 549. P. 165 180.
- 15. Бокий Г.Б. Введение в кристаллохимию. М.: Изд-во Моск. ун-та, 1954.
- 16. Dmol3 β version, Molecular Simulations, San Diego, 1997.
- 17. Becke A.D. // Phys. Rev. A. 1988. A38. P. 3098 3100.
- 18. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. B37. P. 785 789.
- 19. Koelling D.D., Harmon B.N. // J. Phys. C: Solid State Phys. 1977. 10. P. 3107 3114.