УДК 532.54

Экспериментальное исследование формирования вихревой структуры в газовихревом биореакторе^{*}

И.В. Наумов¹, Р.Г. Геворгиз^{1,2}, С.Г. Скрипкин¹, Б.Р. Шарифуллин¹

¹Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

²Институт биологии южных морей им. А.О. Ковалевского РАН, Севастополь

E-mail: naumov@itp.nsc.ru

Проведено экспериментальное исследование формирования циркуляционных вихревых ячеек в жидкой среде газовихревого биореактора. Исследование выполнено в промышленном стеклянном биореакторе объемом 10 литров с диаметром реакторной емкости D = 190 мм. Вихревое движение воздуха генерировалось лопастным колесом (активатором) при заполнении реакторной емкости на 50 и 80 % модельной средой. В качестве модельной среды использовался 65 % -й водный раствор глицерина с плотностью $\rho = 1150$ кг/м³ и с кинематической вязкостью v = 15 мм²/с. Для наблюдения картины вихревого движения применялся метод цифровой трассерной визуализации (PIV). Показано, что при вращении активатора одновременно возникает меридиональное и циркуляционное движения реактора и интенсивности вращения активатора. Выявлено, что под границей раздела возникают ячейки центробежной циркуляции, которые при увеличении частоты вращения активатора развиваются в глубь реактора. Установлено, что развитие центробежной циркуляции жидкости происходит аналогично тому, как это имеет место в замкнутом вихревом течении одной жидкости и в системе ограниченного вихревого движения двух несмешиваемых жидкостей.

Ключевые слова: гидродинамика, замкнутое вихревое течение, тепломассоперенос, вихревые биореакторы.

Введение

Исследование режимов вихревых течений с целью их практического применения для интенсификации тепломассообменных процессов при разработке вихревых аппаратов в химических, биологических и энергетических технологиях является важнейшим направлением [1]. Во многих вихревых аппаратах наблюдается взаимодействие вращающейся рабочей жидкости с другой жидкостью или газом, например, при неполном заполнении реактора рабочей жидкостью [2-4]. Изучение особенностей вращательного движения несмешиваемых сред в таких условиях становится важной задачей как с точки зрения оптимизации работы действующих установок, так и для проектирования новых устройств, одним из которых является газовихревой биореактор.

^{*} Работа выполнена при финансовой поддержке гранта РНФ (код проекта 19-19-00083).

[©] Наумов И.В., Геворгиз Р.Г., Скрипкин С.Г., Шарифуллин Б.Р., 2022

Наумов И.В., Геворгиз Р.Г., Скрипкин С.Г., Шарифуллин Б.Р.

Биореакторы являются одним из основных звеньев в процессе промышленного микробиологического синтеза [5], где их применяют для обеспечения оптимальных условий жизнедеятельности культивируемых сред. Важной особенностью газовихревых биореакторов является создание вихревых потоков, имитирующих движение естественной среды обитания микроорганизмов, что в значительной мере расширяет возможности получения интенсивных культур практически любых видов микроорганизмов в промышленных масштабах. Например, биомасса бентосных микроводорослей характеризуется высокой удельной плотностью, поэтому «тяжелые» клетки достаточно быстро оседают на дно [6]. Такая биологическая особенность бентосных микроводорослей не позволяет выращивать их в современных промышленных фотобиореакторах из-за недостаточной эффективности перемешивания культуральной среды и наличия у современных биореакторов гидродинамических теней (застойных зон), где оседают и скапливаются бентосные микроводоросли, т.е. нарушается главное условие интенсивного культивирования низших фототрофов — равномерное распределение клеток во всем рабочем объеме фотобиореактора.

В связи с развитием газовихревых биореакторов внимание исследователей привлекли двухжидкостные вращающиеся течения. Закрученный поток жидкости, прилегающей к вращающемуся диску, генерирует вихревое течение второй жидкости, которая не имеет прямого контакта с завихрителем [7]. В отличие от твердотельного вращения, где угловая скорость постоянна, а максимум линейной скорости находится на периферии диска, в случае жидкой вращающейся среды этого не наблюдается. В первых экспериментальных исследованиях, посвященных изучению структуры вихревого ограниченного движения двух несмешиваемых жидкостей, были определены закономерности развития ячеистой структуры течения [8], а также обнаружен осевой противоток (распад вихря) как в верхней [9], так и в нижней жидкости [10]. В работе [11] было показано, что важным отличием от случая с твердым диском является и то, что на границе раздела радиальная скорость не равна нулю, так как закручивающая жидкость сходится к оси цилиндра. В работе [12] исследовалась передача углового момента через границу раздела двух несмешиваемых жидкостей в длинном цилиндрическом контейнере с верхним вращающимся диском. Было установлено, что развитие центробежной циркуляции в нижней жидкости происходит так же, как и в случае одной жидкости. В первом экспериментальном исследовании закрученных течений в газовихревом реакторе [13] было показано, что, несмотря на различие плотности более чем на три порядка, сходящий к оси реактора спиральный воздушный поток формирует расходящееся вихревое движение модельной жидкой среды.

В настоящей работе определены закономерности организации вихревого течения рабочей жидкости в газовихревом биореакторе при различных параметрах вращения активатора.

Экспериментальная установка и методика эксперимента

Работа посвящена изучению структуры вихревого движения жидкости в газовихревом биореакторе в режиме, при котором формируется мягкое ламинарное циркуляционное движение рабочей жидкости для выращивания биокультур, неустойчивых к неблагоприятным гидродинамическим условиям и требующих мягкого перемешивания.

Экспериментальное исследование проводилось в промышленном стеклянном цилиндрическом биореакторе «ГВ ФБР 10-И», изготовленном компаний «Центр вихревых технологий», объемом 10 литров с диаметром реакторной емкости D = 190 мм и высотой h = 300 мм (рис. 1). В реакторе перемешивание рабочей среды осуществлялось

Рис. 1. Схема вихревого течения и фотография установки.

путем создания в ней квазистационарного вращательного движения, генерируемого закрученным потоком воздуха. Этот поток воздуха типа «торнадо» генерировался лопаточным колесом (активатором) над поверхностью рабочей жидкости. Составляющая более двух порядков разница в скорости воздуха и жидкости обеспечивала интенсификацию межфазного массообмена за счет высокой скорости движения аэрирующего газа и равномерного перемешивания жидкости без застойных зон. Благодаря такой закрутке аэрирующего газа, имеющей место вследствие трения на границе раздела фаз и разницы давлений между периферией и центром вихря, обеспечивалось движение модельной жидкости в виде вихревого кольца, вращающегося относительно оси емкости, с одновременным нисходящим движением жидкости на периферии ёмкости и восходящим — в приосевой зоне [14, 15].

При изучении топологии замкнутого вихревого течения использовалась установка для бесконтактных оптических методов исследования ограниченных закрученных течений, изображенная на рис. 1, где h_g — высота слоя жидкости, L — осевая протяженность ячейки циркуляции, схематически изображенная на рисунке под границей раздела (стрелки указывают направление движения потока). В качестве модельной жидкости использовался 65 % -й водный раствор глицерина, плотность которого $\rho_g = 1150$ кг/м³, а кинематическая вязкость $v_g = 15$ мм²/с. Индексом «g» обозначен водный раствор глицерина. Оптимальный рабочий диапазон вращения активатора, при котором отсутствуют колебания границы раздела, составляет $\Omega = 150 - 1800$ об/мин при заполнении реакторной емкости на 50 % ($h_g = 150$ мм) и 80 % ($h_g = 240$ мм).

Для наблюдения картины вихревого движения применялся метод цифровой трассерной визуализации (PIV). Система PIV состояла из двухимпульсного Nd:YAG-лазера Beamtech Vlite-200 (длина волны 532 нм, частота 15 Гц, длительность импульса 10 нс, энергия импульса 200 мДж), CCD-камеры IMPERX IGVB2020 (8 бит на пиксель, разрешение матрицы 2056×2060 пикселей), оснащенной объективом AF Nikkor 28мм f/2.8D, и синхронизирующего процессора [14]. Расчет двумерных полей скорости проводился с помощью коммерческого программного обеспечения ActualFlow. Толщина лазерного ножа, образованного цилиндрической линзой, составляла около 0,8 мм в плоскости измерения. Поток жидкости засеивался полиамидными частицами плотностью 1030 кг/м³ со средним размером частицы 10 мкм. Исследования проводились в вертикальном сечении, проходящем через ось реактора, и в горизонтальном сечении под границей раздела на расстоянии 1 мм. Для уменьшения оптических аберраций и термостабилизации газовихревой реактор помещался в стеклянный контейнер размером 300×300×400 мм.

Экспериментальные результаты

Экспериментальное исследование структуры течения проводилось для нескольких стационарных режимов при $\Omega = 360, 720, 1080, 1440$ и 1800 об/мин. При помощи метода PIV были получены и проанализированы поля скорости. Длина ячейки циркуляции, прилегающей к границе раздела, определялась по изображениям полей скорости в выделенном сечении, где треки от периферийного течения сходятся к оси, а осевая компонента скорости принимает нулевые значения на основной части горизонтального сечения. На рис. 2 приведены примеры полей скорости, демонстрирующей разворот течения и формирование восходящего потока вдоль оси цилиндра при $\Omega = 720, 1800$ об/мин и $h_g = 0,5h$. Цветом обозначено значение осевой компоненты скорости. Для удобства на рисунке приведены половины полей скорости в жидкости, где левый край изображения соответствует оси реакторной емкости, а правый — периферии.

Как было показано в экспериментальном исследовании структуры замкнутого вихревого течения двух несмешиваемых жидкостей [12], при одной и той же длине ячейки циркуляции распределение тангенциальной скорости под границей раздела близко к распределению тангенциальной компоненты скорости под вращающимся диском. Наблюдается подобие в развитии ячеистой структуры в случаях одной и двух жидкостей, а число Рейнольдса нижней жидкости близко к числу Рейнольдса в случае одной жидкости.

Для определения числа Рейнольдса в рабочей модельной жидкости (Re_{g}) биореактора было выполнено измерение тангенциальной (V_{tg}) и радиальной (V_r) компонент скорости в горизонтальном сечении под границей раздела при $\Omega = 360, 720, 1080, 1440$ и 1800 об/мин. На рис. 3 представлены профили скорости при различных Ω . Число Рейнольдса в данном случае определялось как $\text{Re} = V_{tgm} R/v_g$, где V_{tgm} — максимальное значение тангенциальной компоненты скорости, R — радиус реакторной емкости, v — кинематическая вязкость рабочей жидкости. В таблице представлены максимальные

Рис. 2. Векторное поле скорости при $\Omega = 720$ (слева) и 1800 (справа) об/мин.

Таблица

488,6

Рис. 3. Профили тангенциальной (V_{tg}) и радиальной (V_r) компонент скорости в жидкости на расстоянии 1 мм от границы раздела при $h_{\rm g} = 0.5h$. $\Omega = 360$ (1), 720 (2), 1080 (3), 1440 (4) об/мин.

значения измеренных тангенциальных скоростей ($V_{\rm tgm}$) в зависимости от частоты вращения активатора (Ω) при $h_{\rm g} = 0.5h$ и 0.8h. По данным значениям были определены Re_g.

На рис. 4 представлена зависимость длины ячейки циркуляции жидкости (L), нормированной на радиус цилиндра (R), от числа Рейнольдса (Re) в газовихревом биореакторе при $h_g = 0.5h(1)$ и 0.8h(2). Переход к безразмерным величинам показал, что данные биореактора при $h_{\rm g} = 0,5h$ и 0,8h ложатся на одну прямую, полученную линейной аппроксимацией (3). Для сравнения на рис. 4 представлена зависимость распространения циркуляционного движения в одной жидкости (4) из работы [12]. Наблюдается соответствие данных, полученных в биореакторе и в цилиндрическом контейнере. Небольшая разница связана с тем, что закрутка потока происходит разными способами. В отличие от закрутки потока диском, где угловая скорость постоянна, а максимум линейной скорости находится на периферии диска, в случае закрутки потока газовым вихрем этого не наблюдается. Также важным отличием от случая твердого диска является и то, что на границе раздела радиальная скорость не равна нулю [11]. Анализ представленных на рис. 3 и 4 результатов показывает, что при увеличении частоты вращения активатора происходит сближение кривых. Это связано с приближением профиля тангенциальной компоненты скорости к форме профиля при твердотельном вращении (см. рис. 3).

под границей раздела и число Рейнольдса в жидкости в зависимости от вращения активатора				
Высота слоя жидкости Активатор	$h_{\rm g} = 0.5h$		$h_{\rm g} = 0.8h$	
Ω, об/мин	$V_{ m tgm}$, мм/с	Re	$V_{ m tgm}$, мм/с	Re
360	7,7	48,8	9,7	61,3
720	18,1	114,6	18,5	117,4
1080	29,2	184,9	32,4	205,5
1440	36	228	52,5	332,7

46,8

296,5

77,1

1800

Максимальные значения тангенциальной скорости

Рис. 4. Зависимость длины ячейки циркуляции под границей раздела. $1 - h_g = 0.5h, 2 - h_g = 0.8h,$ 3 -линейная аппроксимация, 4 -в случае одной жидкости [12].

Заключение

Проведено экспериментальное исследование вихревого течения жидкости в газовихревом биореакторе. Показано, что при вра-

щении активатора в жидкости возникают меридиональное и циркуляционное течения. Под границей раздела появляются ячейки центробежной циркуляции, которые при увеличении частоты вращения активатора увеличиваются вглубь реактора. Определены закономерности вихревого движения модельной среды в зависимости от ее объема и интенсивности вращения активатора. Установлено, что развитие центробежной циркуляции жидкости аналогично тому, как это происходит в замкнутом вихревом течении в случае одной жидкости и в нижней жидкости в системе двух закрученных несмешиваемых жидкостей [12].

Данные результаты представляют интерес для развития вихревых технологий, формирования вихревого движения рабочей жидкости без прямого механического контакта с закручивающим устройством с целью обеспечения мягкого (при небольших касательных напряжениях) и неинтрузивного (без пропеллера в рабочем объеме) перемешивания.

Список литературы

- 1. Гупта А., Лилли Д., Сайред Н. Закрученные потоки. М.: Мир, 1987. 590 с.
- Savelyeva A.V., Nemudraya A.A., Podgornyi V.F., Laburkina N.V., Ramazanov Y.A., Repkov A.P., Kuligina E.V., Richter V.A. Analysis of the efficiency of recombinant escherichia coli strain cultivation in a gas-vortex bioreactor // Biotechnology and Applied Biochemistry. 2017. Vol. 64, Iss. 5. P. 712–718.
- 3. Fang S., Todd P.W., Hanley T.R. Enhanced oxygen delivery to a multiphase continuous bioreactor // Chemical Engng Sci. 2017. Vol. 170. P. 597–605.
- 4. Chaplina T.O. Experimental study of substance transfer in vortex and wave flows in multicomponent media // Physical and Mathematical Modeling of Earth and Environment Processes. 2019. P. 159–173.
- 5. Мертвецов Н.П, Рамазанов Ю.А., Репков А.П., Дударев А.Н., Кислых В.И. Газовихревые биореакторы «БИОК». Использование в современной биотехнологии. Новосибирск: Наука, 2002. 117 с.
- 6. Gevorgiz R.G., Gontcharov A.A., Zheleznova S.N., Malakhova L.V., Alyomova T.E., Maoka T., Nekhoroshev M.V. Biotechnological potential of a new strain of cylindrotheca fusiformis producing fatty acids and fucoxanthin // Bioresource Technology Reports. 2022. Vol. 18. P. 101098
- 7. Shtern V.N. Cellular flows. Topological metamorphoses in fluid mechanics: Cambridge: Cambridge University Press, 2018. 584 p.
- Naumov I.V., Glavniy V.G., Sharifullin B.R., Shtern V.N. Formation of a thin circulation layer in a two-fluid rotating flow // Physical Review Fluids. 2019. Vol. 4, Iss. 5. P. 054702-1–054702-17.
- 9. Tsai J.-C., Tao C.-Y., Sun Y.-C., Lai C.-Y., Huang K.-H., Juan W.-T., Huang J.-R. Vortex-induced morphology on a two-fluid interface and the transitions // Phys. Rev. E. 2015. Vol. 92. P. 031002-1–031002-5.
- 10. Naumov I.V., Sharifullin B., Shtern V.N. Vortex breakdown in the lower fluid of a two-fluid swirling flow // Physics of Fluids. 2020. Vol. 32, No. 1. P. 014101-1-014101-16.
- Naumov I.V., Sharifullin B.R., Tsoy M.A., Shtern V.N. Dual vortex breakdown in a two-fluid confined flow // Physics of Fluids. 2020. Vol. 32. P. 061706-1–061706-5.
- 12. Шарифуллин Б.Р., Наумов И.В. Передача углового момента через границу раздела двух несмешиваемых жидкостей // Теплофизика и аэромеханика. 2021. Т. 28, № 1. С. 67–78.
- 13. Наумов И.В., Скрипкин С.Г., Шарифуллин Б.Р., Штерн В.Н. Исследование вихревого движения в газожидкостном биореакторе // Процессы в геосредах. 2021. № 3(29). С. 1242–1250.
- 14. Naumov I.V., Skripkin S.G., Shtern V.N. Counter flow slip in a two-fluid whirlpool // Physics of Fluids. 2021. Vol. 33, Iss. 6. P. 061705-1–061705-7.
- 15. Наумов И.В., Штерн В.Н. Двухэтажное торнадо // Природа. 2021. № 4. С. 12–19.

Статья поступила в редакцию 24 июня 2022 г.,

после доработки —24 июня 2022 г.,

принята к публикации 2 сентября 2022 г.