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Настоящее исследование посвящено анализу оползней, вызванных умеренным землетрясением 
(Mw = 4.9) в северо-восточном районе провинции Мила, которое привело к значительному ущербу и эко-
номическим потерям в районе Эль-Херба и городе Грарем-Гуга. Благодаря обширному полевому иссле-
дованию был составлен полный список оползней. Для оценки подверженности территории оползням, 
вызванным сейсмической активностью, была использована модель нечеткой логики на основе ГИС. Мо-
дель включает в себя различные входные факторы, такие как литология, угол наклона, нормализован-
ный относительный индекс растительности (NDVI), расстояние от рек и дорог, осадки и сейсмическая 
опасность, что отображено на карте. В исследовании сравниваются характеристики различных нечетких 
операторов и значений гаммы и установлено, что использование нечетких гамма-операторов со значе-
нием гаммы 0.8 обеспечивает удовлетворительную согласованность между приведенными факторами 
и распределением оползней. Более того, использование карты сейсмической опасности как причинного 
фактора повышает точность картирования районов, подверженных оползням. Данное исследование под-
черкивает важность модели нечеткой логики в управлении стихийными бедствиями и планировании 
опытно-конструкторских работ.

Оползни, вызванные землетрясениями, нечеткие операторы, ГИС, сейсмическая опасность, кар-
ты восприимчивости, бассейн Мила
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This research focuses on analyzing landslides triggered by a moderate earthquake (Mw = 4.9) in the 

northeastern region of the Mila province, which resulted in significant damage and economic losses in the El 
Kherba district and Grarem Gouga city. Through an extensive field-based investigation, a comprehensive inven-
tory of landslides has been compiled. To assess the susceptibility to landslides triggered by seismic activity, a 
GIS-based fuzzy logic model was employed. The model incorporates various input factors, such as lithology, 
slope angle, normalized difference vegetation index (NDVI), distance from rivers and roads, precipitation, and 
seismic hazard, which is shown on a map. The study compares the performance of different fuzzy operators and 
gamma values and determines that using fuzzy gamma operators with a gamma value of 0.8 yields a satisfactory 
consistency with the distribution of landslides. Moreover, incorporating the map of seismic hazard as a causative 
factor enhances the accuracy of landslide susceptibility mapping. This study underscores the utility of the fuzzy 
logic model in disaster management and the planning of development activities.

Earthquake-triggered landslides, fuzzy operators, GIS, seismic hazard, susceptibility maps, Mila basin

introduction

The global phenomenon of landslides poses a significant and multifaceted challenge, resulting in substan-
tial human casualties and economic damage in mountainous regions worldwide (Mezhoud et al., 2017; Razifard 
et al., 2019; Berkane et al., 2022). Recent statistics highlight the severity of this issue, with landslides affecting 
approximately 4.8 million people and causing over 18,000 fatalities between 1998 and 2017 (Wallemacq et al., 
2018). The monetary toll of landslides reaches billions of US dollars annually on a global scale, but it is worth 
noting that this estimate might underrepresent the true extent of the problem because of data gaps in many de-
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veloping countries (Grima et al., 2020). Many landslides have a tendency to reactivate during the winter season, 
which may be a common occurrence in the Mediterranean region but is not necessarily a global phenomenon. 
They are intricately linked to a range of predisposing factors encompassing geologic, tectonic, hydrologic, and 
geotechnical aspects as well as other triggering factors, such as human activities and seismic activity (Aicha et 
al., 2021, 2022). Consequently, efforts to assess landslide susceptibility, hazard, and risk involve a complex 
fusion of knowledge incorporating various methodologies (Giles and Griffiths, 2020).

The reliability of the resultant maps crucially hinges on factors like data volume and quality, working 
scale, and the choice of the appropriate modeling methodology (Baral et al., 2021). It is important to note that 
these different approaches to landslide susceptibility assessment, albeit diverse, are not mutually exclusive. In 
fact, comparing their results can significantly enhance the understanding of the quality and reliability of each 
method (Rahali, 2019).

Landslide susceptibility, hazard, and risk maps play a pivotal role in providing scientific support for gov-
ernment responses to land use practices and landslide hazard management (Wang et al., 2020). They are wide-
ly regarded as the initial steps toward mitigating landslide hazards (Mertens et al., 2018). A myriad of methods 
are employed in landslide susceptibility assessment, generally categorized as qualitative or quantitative (Shano 
et al., 2020). Some of the most commonly used techniques encompass deterministic models (Min and Yoon, 
2021), statistical models like logistic regression (Li and Wang, 2019), and the analytical hierarchy process 
method developed by Saaty (1977), which is widely adopted in landslide susceptibility mapping (Mandal and 
Mandal, 2018). More recently, innovative methods, such as fuzzy logic (Tsangaratos et al., 2018), artificial 
neural network models (Ortiz and Martínez-Graña, 2018), and machine learning (Mohan et al., 2021), have 
gained traction in landslide susceptibility assessment. Among these methods, GIS-based multicriteria decision 
analysis, grounded in fuzzy logic, stands out as an accurate and widely applied approach, not only for landslides 
but also for solving geospatial problems globally (Bahrami et al., 2021). This method leverages a range of 
membership functions supported by monotonically increasing, monotonically decreasing, and symmetric vari-
ables, making it a robust choice for landslide hazard analysis and prediction (Tsangaratos et al., 2018; Razifard 
et al., 2019; Bahrami et al.,, 2021).

This study delves into the intricate world of landslide susceptibility zoning by exploring the efficacy of 
various fuzzy logic operators. Our research focuses on an area that experienced a moderate earthquake 
(Mw = 4.9) in the northeastern part of the Mila province, which triggered significant landslides in the El Kherba 
district and Grarem Gouga city, leading to substantial economic losses. To underpin our analysis, we conducted 
rigorous fieldwork over several days to establish a comprehensive database of landslides that were induced by 
the earthquake. The fieldwork also involved scrutinizing the initial slope instability map created immediately 
after the seismic event. For our analysis, we selected input parameters, such as lithology, slope angle, normal-
ized difference vegetation index (NDVI), distance from rivers and roads, precipitation, and seismic hazard, 
which is quantified with peak ground acceleration (PGA). This hazard differs from the intensity measured on 
the MM, EMS, or MSK-64 scales. The seismic hazard, along with all other parameters, is integrated into a GIS 
environment. Our primary objective is to empirically assess the performance of different fuzzy logic operators 
in generating landslide susceptibility maps and to evaluate the accuracy of the optimal maps through the use of 
frequency curves.

Regional geologic setting

The Neogene basin of Mila is administratively located between Mila and Constantine cities (Fig. 1). It 
covers an area of about ​​1091 km2, with an average altitude of 543 m, the temperature ranges from 0 to 40 °C, 
fairly heavy precipitation (more than 500 mm/yr), well-developed hydrographic network, and a little plant 
cover, mainly limited to cereal crops and wild grasses. This low vegetation cover considerably favors soil ero-
sion. The Mila region is also characterized by a rugged topography and is located at the border between two 
geologic provinces; it seems to have lower seismic hazard than neighboring regions, such as the Constantine or 
Babors (west side of Mila) area. 

The Neogene basin of Mila is part of the large postnappe Constantine basin; it constitutes its western 
extension. It corresponds to a depression located between the Tellian massifs and the high plains of Constan-
tine. In the north, the reliefs of Msid Aïcha and Mt. Sidi Driss in the east and the Zouahra chain in the west 
separate the basin from the coastal massifs. The Neogene basin of Mila is bounded in the south by the massif 
of Ahmed Rachedi and Mt. Akehal, in the west by the Zeghaïa Mountains, and in the east by Mt. Kheneg. All 
these massifs represent the substratum of the Mila basin, belonging to different paleogeographic domains close 
together or superposed during the ante-Neogene tectonic phases. 

In addition, the Neogene basin of Mila, which serves as the study area, is almost entirely covered by Mio-
Pliocene continental deposits, as indicated in Fig. 2.
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Fig. 1. Location map of the study area.

Fig. 2. Lithological scheme of the study area. 
1 – Quaternary alluvium and scree; 2 – Miocene sandy clays; 3 – Miocene lacustrine limestone; 4 – Miocene conglomerate and sandstones; 
5 – Pliocene limestone scree; 6 – Cretaceous flysch with calcareous microbreccia; 7 – Miocene marine marl; 8 – Cretaceous limestone and 
marl; 9 – Cretaceous marl and Oligocene sandstone.
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Vila (1980) and Coiffait (1992) admit the following succession of Neogene deposits in the Mila basin: (a) 
gray gypsiferous sandy marls with marine fauna of Ostrea crassissima, known as Mila marls (commonly called 
clays); (b) a basic conglomerate, more or less reddish, with frequent streaks of sandy clays and sandstone 
lenses at the top; it is highly developed along the Mila Ouadi, known as the conglomerates of Mila Ouadi; (c) 
irregular alternations of red sandy detrital clays interspersed with some sandstone pastes and conglomerate 
lenses; (d) some travertine lake limestones exist at the top of this unit (limestone of Sidi Merouane); (e) gray to 
black marly clays, often with gypsum in their upper part, showing some sandstone levels; and (f) lacustrine 
limestone, sometimes travertine, white, pink or red, from the Pliocene.

The Quaternary deposits in the Mila basin are represented by actual and recent alluvium of wadis (Oued 
Rhumel, Oued Endja, and Oued el Kotone), as well as ancient alluvium from terraces, scree, and lacustrine 
calcareous formations, including limestone crusts. It is essential to note that the predominant deposits covering 
a substantial surface area in the Mila basin consist of clays and marl altered from Neogene, which are very 
sensitive to the presence of water, have high plasticity, low shear strength, and low cohesion, and, therefore, 
constitute zones prone to landsliding.

Seismotectonic setting

The Neogene Mila basin is a part of the Northeast Algeria region, which is located at a convergent 
boundary of the African and Eurasian tectonic plates. This region is considered an active seismic zone within 
Algeria (Fig. 3), which has been shaken by several low- to moderate-sized earthquakes during the last few cen-
turies (Ayadi and Bezzeghoud, 2015; Mouloud et al., 2023).

In the selection of seismic catalogs for this research, a thoughtful and comprehensive approach was un-
dertaken to ensure the reliability and inclusivity of the seismic data. Recognizing the global nature of seismic 
events, we incorporated data from renowned international catalogs, including USGS/NEIC, IGN, and ISC 2014. 
These catalogs are esteemed for their extensive coverage and meticulous recording of seismic activities on a 
global scale. To complement this global perspective with localized insights, information from national catalogs 
was also integrated, drawing upon datasets from the Center of Research in Astronomy, Astrophysics, and Geo-
physics, Algiers, Algeria (CRAAG)—CRAAG 2002—and the National Center for Applied Research in Earth-
quake Engineering (CGS)—CGS 2003. This dual-sourced strategy allows capturing both the broader seismic 
context and the nuances of seismicity specific to the study area. 

In the compiled catalog, seismic magnitude data are standardized to moment magnitude (Mw), emphasiz-
ing that the relationship between Ms (surface wave magnitude) and Mw in seismotectonics is not a straightfor-

Fig. 3. Seismicity of eastern Algeria. Faults are from (Vila, 1980; Bounif et al., 1987; Meghraoui, 1988; 
Bouhadad et al., 2003; Kherroubi et al., 2009). The seismicity data are from (Harbi et al., 2007; Ayadi and 
Bezzeghoud, 2015; Abbes et al., 2019). 
1 – sandstone and limestone (Oligocene); 2 – clays, marls, and lacustrine limestones (Mio-Pliocene); 3 – scree and Quaternary alluvium; 
4 – hidden faults; 5 – thrust faults; 6 – faults; 7 – active faults; 8 – strike-slip (Vila, 1980; Bounif et al., 1987; Meghraoui, 1988). The red 
star indicates the epicenter of the Mila earthquake on August 7, 2020. 
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ward, fixed formula. The conversion between these scales varies based on factors like seismic source and depth, 
often involving empirical relationships like Mw = a × Ms + b, with coefficients determined through regression 
analysis. The values of specific coefficients may vary by dataset and region if we acknowledge that such rela-
tionships are approximations influenced by various factors. This standardization aligns with empirical formulas 
outlined, for example, in the work by Lolli et al. (2014), addressing the conversion between teleseismic magni-
tudes and moment magnitude. In addition, the unification process aligns with established methodologies pre-
sented in works by Nosov and Bolshakova (2020).

The existing earthquake records reveal numerous instances of seismic activity with comparable magni-
tudes in this region. As indicated in Fig. 4, the October 27, 1985 Constantine earthquake with Mw = 6.0 was the 
largest instrumentally recorded earthquake in the region (Ousadou et al., 2013). Several other moderate-sized 
earthquakes were studied, such as the 1856 Jijelli earthquake, which caused a tsunami (Harbi et al., 2007), the 
1946 Berhoum and the 1937 Guelma moderate-sized earthquakes (Benouar, 1994), the November 10, 2000 (Mw 
= 5.7) Beni Ourtilane earthquake (Bouhadad et al., 2003), the Beni Ilmane earthquake sequence (Mw = 5.6) of 
May 14, 2010 (Beldjoudi et al., 2016), the Laalam earthquake of March 20, 2006, Mw = 5.2 (Abbes et al., 2019), 
and recently the Mw = 4.9 Mila earthquake (Benfedda et al., 2020).

According to Serkhane et al. (2022) and as shown by the focal mechanism solutions in Fig. 4, the study 
region is located within the Maghrebides chain. It develops at the foot of the southern limit of the internal zones, 
such as the internal flysch and the base of the Kabyle Ridge. This area is characterized by a complex neotec-
tonic system including reverse faulting, right-lateral and left-lateral strike-slip owing to NE–SW- to E–W-
trending faults, and even normal faulting in the Guelma basin. The several active and/or Quaternary faults 
surrounding the study area are well described by many authors (Vila, 1980; Meghraoui, 1988; Bouhadad et al., 
2003; Harbi et al., 2007; Abbes et al., 2019). 

Earthquake intensity and damage level

The Mila basin experienced a seismic event during the period of July–August 2020. The important events 
are the July 17, 2020 (Mw = 4.6) event at 08:12 (UTC), the August 7, 2020 (Mw = 4.9) main shock at 06:16 
(UTC), and the August 7, 2020 aftershock at 11:13 (UTC) (Mw = 4.4), as well as several other felt aftershocks, 

Fig. 4. Seismotectonic framework of eastern Algeria (Meghraoui, 1988; Belabbès, 2009). Focal mecha-
nisms are centroid moment tensor solutions. The focal mechanisms are given after (Bounif et al., 1987; 
Bouhadad et al., 2009; Ayadi and Bezzeghoud, 2015; Beldjoudi et al., 2016). The white square indicates 
the localization of the Mila region.
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particularly, following the August 7, 2020 (Mw = 4.9) event (Benfedda et al., 2020). These seismic events were 
recorded by several national seismological stations belonging to the CRAAG. 

To assess the damage level, a rigorous field-based investigation was conducted during several days in the 
Mila basin to prepare a database of triggered landslides in the earthquake-stricken area. The preliminary inves-
tigation results show that although the August 7, 2020 (Mw = 4.9) earthquake had a relatively low magnitude, it 
triggered extensive landslides in the epicentral area, which caused huge damage, including collapse of several 
constructions and severe damage to dozens of others, making hundreds of people homeless in the El Kherba 
district (Supplementary Materials, Fig. S1). At the same time, the July–August seismic events induced several 
landslides that caused damage in all the region of the Mila basin and are not considered by previous studies 
(Fig. 8; Suppl. Mat., Fig. S2).

Causative faults

The study area is cut by numerous faults, normal or reverse, strike-slip and affected by folds spilled, 
generally, toward the south (Fig. 5). The last earthquakes occurred along the fault zone extending from Guelma 
in the east to Mila in the west, corresponding to the boundary between pre-Neogene and Neogene domains of 
Petite Kabylie (Vila, 1980; Meghraoui, 1988; Bendjama et al., 2021). This zone exhibits a series of NE–SW- to 
E–W-trending fault segments and is characterized by seismicity pattern (Harbi et al., 2007). The eastern seg-
ment, known as the Guelma fault, is considered a major right-lateral fault.

In the southeast of the study area, there is the Aïn Smara fault, recognized as active during the Constan-
tine earthquake of October 1985 (Bounif et al., 1987). This fault consists of four segments, spanning nearly 
30 km. It is aligned in the NE–SW direction, with a stalling character attested by the focal mechanism of the 
Constantine earthquake of October 27, 1985 (Bounif et al., 1987). One more, the Sigus fault, oriented E–W and 
30 km long, however, is not considered causative (Vila, 1977, 1980). However, this selection of causative faults 
requires further seismotectonic investigations, including field detailed geological work and seismological/GPS 
monitoring to clearly identify them. 

Regarding the earthquake size distribution, the background historical earthquake intensity (Fig. 6a) 
shows that the largest ancient earthquake in the study area occurred in 1960. This figure shows also the Guten-
berg–Richter laws (Fig. 6b, c). As shown in the earthquake spatial distribution in Fig. 7, no large-magnitude 
earthquake has been reported in the study area during approximately 260 years for which documented records 
exist (Ayadi and Bezzeghoud, 2015). 

Relating to the focal depth of the latest earthquake (August 2020), a preliminary location analysis of the 
strong ground motion data suggests a focal depth of 10–12 km (Benfedda et al., 2020). This earthquake is con-
sidered to have a shallow depth, according to field observations and macroseismic data analysis. 

Fig. 5. Causative faults in the study area, from (Meghraoui, 1988). 
1 – Tertiary igneous rocks; 2 – Paleozoic shale; 3 – limestone and marl of the Jurassic–Cretaceous and lower Cenozoic basement; 4 – clay 
and conglomerate of Neogene postnappe time; 5 – Plio-Quaternary lacustrine limestone crust; 6 – Quaternary alluvium; 7 – faults; 8 – an-
ticline; 9 – reverse fault; 10 – strike-slip fault; 11 – normal fault.
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Fig. 6. Earthquake information in the study area. 
a – Earthquake historical distribution; b, c – Gutenberg–Richter laws.

Fig. 7. Earthquake spatial distribution in the study area.
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The fuzzy logic approach 

The fuzzy logic is a heuristic approach that was introduced by Lotfi Zadeh (1965) to analyze mathemati-
cally nondiscrete natural processes. This approach enables more sophisticated decision-tree processing and 
better rules-based programming integration. This is kind of generalization of the conventional logic, according 
to which all claims will not have truth values of zero or one but a partial truth value between zero and one. 

If X is a space of objects and x represents one of its generic elements, then X = {x}. The fuzzy set A in X 
is characterized by a membership function μA(x), which associates a real number in the interval [0, 1] with each 
object in X; the value of μA(x) is defined as “the grade of membership” of x in A (Zadeh et al., 1996; Kayastha 
et al., 2013). 

In the case of landslide susceptibility mapping, the spatial objects on a map are considered members of a 
set, and the expected occurrence of landslides can be also expressed as a fuzzy membership using subjective 
assessment or/and objective analysis based on fuzzy logic (Lee, 2007). This approach is very interesting in such 
a case of spatial analysis, because it is easy to use and understand and can be applied to any spatial data from 
any measuring scale. The desired parameters are measured at discrete intervals in a GIS environment, and the 
membership function is represented as a table that links map classes to membership values (Tangestani, 2004). 
For this reason, the fuzzy logic approach makes it possible to combine the weighted maps in more flexible ways 
and is easily implementable using a GIS modeling language (Razifard et al., 2019). The spatial (e.g., distance 
from faults) and zonal (e.g., lithology class) entities on a map are considered members of a set when applying 
fuzzy logic in landslide susceptibility mapping. When two or more maps with fuzzy membership functions for 
the same set are available, a variety of operators are used to merge the membership values.

In this context, six operators are often utilized in fuzzy logic-based landslide studies: fuzzy intersection 
(AND), union (OR), complement (NOT), fuzzy algebraic product, fuzzy algebraic sum, and fuzzy gamma. The 
logical operations AND, OR, and NOT are introduced by Zadeh as extensions of their Boolean origins. These 
operators are max, min, and (1 – μ), and they are expressed by equations 1–3: 

Union of fuzzy sets: 

	 � � � �combination A B Cmax� �� �, ,,  ;	 (1)

Intersection of fuzzy sets: 

	 � � � �combination A B Cmin� �� �, , , ;	 (2)

Complement of fuzzy set \A: 	 � �
\A A� �1  .	 (3)

The fuzzy operator OR employs the maximum function and is equivalent to the union defined by Eq. 1. 
In this equation μA, μB, and μC represent the fuzzy membership values of existing pixels in specific situations on 
different factor maps. In the case of the fuzzy operator intersection, or AND operator, it employs the smallest 
function for overlaying. This operation is usually used for the dependent parameters as well as evidence re-
quired to validate the hypothesis. The complement of fuzzy set A is defined by Eq. 3; however, this operator is 
not used for overlaying different factor maps.

In addition, the max, min, and complement operators do not reflect the level of compensation by which 
humans aggregate criteria. Some other fuzzy logic operators are available, and they more accurately represent 
the human decision-making. Zimmermann (1996) proposed and empirically tested an operator called “gamma 
operator” (γ), which is more general than the compensation between intersection and union of the fuzzy sets. 
This operator is defined in terms of the fuzzy algebraic product (Eq. 4) and the fuzzy algebraic sum (Eq. 5) as 
expressed in equation 6: 

The fuzzy algebraic product: 	 � �PRODUCT
i

n
i�

�
�

1
;	 (4)

The fuzzy algebraic sum: 	 � �SUM
i

n
i� � �

�
�1 1
1

( ) ;	 (5)

The fuzzy gamma operation:

	 � � �� �
combination SUM PRODUCT� � � �� � �1 ,	  (6)

where μi is the membership value of the i factor in the map and γ is a user input in the range [0, 1]. 
In the case of the fuzzy algebraic product (Eq. 4), the fuzzy membership values in the output map are 

more likely to be reduced when we use this function. Thus, the combination of elements will have decreasing 
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effects. In the case of the fuzzy algebraic sum (Eq. 5), when we use this operator, the fuzzified values in the 
output map are more likely to be increased. As a result, the combination of elements will have an increasing 
impact, resulting in the maximum risk due to the increasing effects of fuzzy mathematical addition. When the 
fuzzy gamma operation is used (Eq. 6), if γ is 0, the operator is equivalent to the fuzzy algebraic product, and 
when γ is 1, it is equivalent to the fuzzy algebraic sum. Selecting correctly γ between 0 and 1 yields flexible 
output values of all decreasing and increasing tendencies of fuzzy multiplication and addition, respectively.

The fuzzy logic approach was implemented using the Fuzzy Overlay tools within the ArcGIS software. 
These tools are instrumental in combining multiple criteria by assessing the likelihood of each cell being a 
member of various sets defined by the criteria. For example, they determine the likelihood that a specific loca-
tion belongs to the favorable suitability for slope, aspect, and distance to roads simultaneously. The implemen-
tation process involves two main steps in fuzzy logic for overlay analysis: fuzzification (fuzzy membership 
process) and fuzzy overlay analysis. These steps align with the reclassify/transform and add/combine steps, 
respectively, in the general overlay process. The use of Fuzzy Overlay tools ensures a robust and efficient inte-
gration of fuzzy logic into the GIS package. 

LANDSLIDE SUSCEPTIBILITY MAPPING METHOD

The landslide susceptibility mapping consists in exploring several causative factors that are effective in 
increasing landslide susceptibility. In general, there is a close link between geography, geologic history, tecton-
ics, lithology, and geomorphologic evolution of slopes as well as the landslide susceptibility (Li and Wang, 
2019). These parameters, when combined, tend to promote or inhibit the slope collapses (Chandrasekaran et al., 
2019). In the case of seismically induced landslides, they are frequently caused in the area near active faults or 
in the epicentral area of earthquakes. As a result, hazard evaluations would benefit from the mapping and study 
of such a case of landslide distribution.

In this case study, most of the parameters used in the literature are selected. These parameters are “slope,” 
“slope exposure,” “lithology,” “precipitation,” “proximity to faults,” “curvatures,” “altitude,” “proximity to hydro
graphic networks,” “road network,” “NDVI,” “annual solar radiation,” and “earthquake shock intensity.” Next, 
a GIS–fuzzy logic model was used in this study to assess landslide risk in the area affected by the earthquake. 

Several fuzzy classes or functions are used to define the transformation or to remap input values to new 
values based on a function to determine the fuzzy membership for each input value. There are several fuzzy 
functions: Gaussian, large, small, linear, near, mean and standard deviation (MS) small, and MS large. For ex-
ample, the large function is useful when the large input values have a higher membership, and the small func-
tion is useful when the small input values have a higher membership. In the case of the linear function, it is 
useful when the smaller values linearly increase in membership to the larger values for a positive slope and 
opposite for a negative slope. The fuzzification function should be chosen based on the criteria importance, 
nature, and relationship with the target. As the fuzzy logic model was used to map landslide susceptibility using 
raster analysis, each pixel should be assigned a membership value ranging from 0 to 1 in relation to the ideal 
function. Table 1 shows the fuzzy membership function types that were used for fuzzification in each factor for 
all the measured parameters.

The performance of various fuzzy operators in landslide susceptibility mapping was used by applying 
fuzzy operators: intersection (AND), union (OR), algebraic sum (SUM), multiplication (PRODUCT), and dif-
ferent fuzzy gamma values of fuzzy overlay—to determine the membership function of each criterion and su-
perposed information layer to detect zones susceptible to a landslide in the study area. The landslide susceptibil-
ity zonation maps were categorized: “very high, high, moderate, low, and very low.” The results were validated 
by the computing area under the receiver operating characteristic (ROC) curve. The ROC statistical validation 
allowed identifying the most efficient method. Finally, the risk map was obtained by the combination of the 
susceptibility to landslides and the vulnerability map.

As previously stated, the information used in this study was derived from Landsat and Aster satellite 
photos, the digital elevation model (DEM) obtained from the NASA Shuttle Radar Topography Mission Glob-
al (SRTMGL1), the 1: 50,000 geology maps provided by the Algerian Geological Surveys Agency (ASGA), 
and several other maps provided by County Mila.

T a b l e  1 .  The different function types of fuzzy membership of landslide parameters

Parameter Slope Exposure Lithology Rain Fault Curvature Altitude River Road NDVI Solar Shock 

Function type Linear Small Large Large Small Large Large Small Small Large Large Large
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EARTHQUAKE-INDUCED LANDSLIDES INVENTORY MAP

The landslide inventory map serves as the basis for landslide susceptibility mapping and aids in under-
standing the variables and circumstances influencing landslides. This is the most important and initial step, 
because future landslides are expected to occur in the same geologic, hydrologic, and geomorphic conditions as 
those in the past. In addition, the current landslides are taken into account to validate the results of such kind of 
study.

The earthquake-induced landslides inventory map of the study area (Fig. 8) has been made using the 
diachronic interpretation of Landsat 8 satellite images, topographic data, historical records provided publicly by 
the local municipality, and exhaustive fieldwork. This map gives information on the spatial distribution of the 
instabilities in relation with the case study. In general, the mapped landslides are both shallow (depth <5 m) and 
deep-seated (depth >5 m). They mainly occur in the Neogene complex and the central middle part of the basin 
and vary from simple localized sliding to large-scale movement. 

In addition to this preliminary work, the field investigation of landslides caused by the earthquake indi-
cates that most of them are soil slides. In the epicentral area, a few hours after the main shock, the cracks of the 
upstream part of the large-scale movement (Fig. 9a) started to develop in the El Kherba district and propagate 
on the ground surface along more than 2 km, resulting in the collapse of several buildings and serious damage 

Fig. 8. The earthquake-induced landslides inventory map of the study area.

Fig. 9. Nature of landslides induced by earthquake in the El Kherba district. 
a – Large movement scale; b – soil slide.
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in various local utilities. Those movements resulted in a landslide with a total length of 2.2 km, a width of 1.2 
km, and an approximate area of 2.64 km2. In other regions of the study area, far from the epicentral area, the 
landslides are mainly soil slides, rock slides, and rock falls, depending of the nature of the land, and are all 
noticed shortly after the earthquake occurs (Fig. 9b). Globally, landslides generated by seismic events in the 
case study have covered an area of over 9.5 km2. 

Causative factors related to landslides

The geoenvironmental characteristics of an area control the initiation of slope failures in many ways. They 
could be considered conditioning factors in the prediction of a phenomenon. In this research, both predisposition 
and triggering factors were selected (Fig. 10) among those most used in landslide susceptibility assessment. 

It is important to note that geomorphometric factors, such as slopes, contours, and aspects, are frequently 
used in landslide susceptibility analysis, because land types have a significant impact on slope instability, either 
directly or indirectly, by (1) increasing or decreasing shear strength; (2) controlling microclimatic parameters, 
such as exposure to sunlight, wind, rainfall intensity, and slope material properties; and (3) controlling land-
scape forms (Merghadi et al., 2018).

In addition, landslide occurrence is linked to density and proximity parameters (distance to faults, dis-
tance to the hydrographic network, and distance to road networks). These parameters cause (1) shear strength 
and cohesion, (2) permeability, (3) slope material deterioration, (4) slope footing erosion, and (5) saturation 
(Conforti et al., 2014). Furthermore, a reclassification process was performed for the geometric factors using 
geometric intervals because of the data distribution uniformity. However, the lithology remains unchanged. 
A brief description of these factors is given below.

In this case study, the DEM has a resolution of 30 m. It was obtained from the NASA Shuttle Radar 
Topography Mission Global (SRTMGL1). From these data, several factors were extracted: the slope map (Fig. 
11a), the elevation or contour map (Fig. 11b), and the aspects map (Fig. 11c). The slope angle is considered the 
most important causative factor for landslides because of the action of gravity. In theory, an increase in the 
slope angle causes an increase in shear stress, which leads to increased slope instability. The slope angle of the 
present study area was categorized into five classes: (1) <5°, (2) 15–15°, (3) 15–25°, (4) 25–35°, and (5) >35°. 
The slope angle grouping into five classes at specific intervals is based on the widely employed natural breaks 
classification method, which optimally divides numerical values to assess landslide susceptibilities. This statis-
tical approach minimizes average deviation within each class and maximizes mean deviation between classes, 
ensuring an effective categorization of slope parameters obtained through the slope unit method. The elevation 
map presents the spatial variation of altitude of the study area. This causative factor is important, because 
higher frequency of landslides is more often observed at higher elevation than at lower elevation; they are com-
mon within more or less the same elevation of 1500–1800 m (Bamutaze, 2019). In this study area, the elevation 
varies from 220 to 950 m. In the case of the slope aspect map, it presents the direction which the slope faces. 
Landslides are more likely to affect slopes facing rainfalls and the Sun than slopes in edge zones. The slope 
aspect was categorized into five classes: (1) north (N), (2) east (E), (3) south (S), (4) west (W), and (5) flat. 

The rainfall map (Fig. 11d) was generated according to the rainfall data from several local meteorological 
stations using the inverse distance weighted approach. This causative factor is important, because many land-
slides occur after rainfall exceeding a certain threshold value in terms of rain intensity or duration. Heavy rain 
or precipitation changes the pressure within the slope, resulting in slope instability. As a result, the heavy water-
laden slope materials will yield to gravity forces. The rainfall of the case study was categorized into five 
classes: (1) <500, (2) 500–550, (3) 550–650, (4) 650–700, and (5) >700. The precipitation classification is de-

termined also by the natural breaks classification 
method, a statistical approach commonly used for 
landslide susceptibility assessments. While there 
might not be a specific regulatory document refer-
enced, the classification aligns with established sta-
tistical practices.

In the case of annual solar radiation map (Fig. 
11e), higher annual solar radiation indicates a lower 
possibility of landslides. The link between solar ra-
diation and landslides is represented by various en-
vironmental processes. Solar radiation influences 
vegetation growth, impacting slope stability by af-
fecting the density and strength of vegetation cover. 
This factor is crucial to the slope stability. Tree Fig. 10. Selected landslide causative factors.
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Fig. 11. The selected causative factors related to landslides. 
a – Slope; b – elevation or contour; c – aspects; d – rainfall; e – annual solar radiation; f – NDVI; g – distance to river; h – distance to roads; 
i – land cover; j – distance to fault.

roots strengthen soil layers, anchor soil to bedrock, and form buttresses to prevent soil movement. Trees also 
reduce the risk of landslides by lowering soil moisture levels through interception, evaporation, or transpiration. 
Additionally, solar radiation contributes to evapotranspiration and temperature fluctuations, influencing soil 
moisture content and the mechanical properties of geologic materials. Understanding the nuanced connections 
between solar radiation and these factors is essential for assessing landslide susceptibility in different regions. 

According to the literature, the normalized difference vegetation index is an effective tool for differentiat-
ing and classifying the density of vegetation cover in a region. The NDVI map of the study area (Fig. 11f) was 
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prepared using a GIS software environment by analyzing remote sensing measurements of Landsat 8 data. The 
resultant values were reclassified into five groups from –0.073 to +0.610.

The distance to river (Fig. 11g) was considered to assess the effect of drainage on landslide occurrence. 
All research in the field has shown that proximity to streams has a significant impact on landslide occurrence, 
as intensive runoff is frequently the primary cause of mass wasting. The corresponding data for this parameter 
were extracted from the digital elevation model; this parameter was calculated by the GIS Euclidean distance 
tool, and the resultant values were reclassified into five groups: (a) <100 m, (b) 100–500 m, (c) 500–1000 m, 
(d) 1000–2000 m, and (e) >2000 m. It is important to note that almost all the slope instabilities occur in zones 
less than 100 m from the stream.

Road construction has a significant impact on slope stability. It is a human modification of the old natural 
existing land through major excavations or vegetation removal that causes sliding. In such a case, the landslide 
susceptibility increases as we approach the road. The distance to roads map (Fig. 11h) was calculated by the 
GIS Euclidean distance tool, and the resultant values were reclassified into five groups: (a) <100 m, (b) 100–
400 m, (c) 400–800 m, (d) 800–1500 m, and (e) >1500 m.

Land use has an impact on the occurrence of landslides. The land cover map of the study area (Fig. 11i) 
was elaborated using a supervised classification in a GIS environment. The study area contains a variety of land 
uses, including cultivated and built-up areas, forests, grassland, bare land, water bodies, and barren land.

One of the most important factors influencing landslides is lithology (Fig. 7). Each lithologic formation 
differs in its geotechnical properties and, consequently, in degrees of susceptibility to landslides. This map was 
generated from the geological maps at a scale of 1 : 50,000 provided by ASGA Company. This factor was well 
explained in the “Regional geologic setting” section. In addition, the distance to fault was considered (Fig. 11j), 
because landslides are expected to occur near faults and decrease as distance increases. The distance to faults 
map was calculated using the GIS Euclidean distance tool, and the resultant values were reclassified into five 
groups: (a) <100 m, (b) 100–500 m, (c) 500–1000 m, (d) 1000–2000 m, and (e) >2000 m.

SEISMIC HAZARD ASSESSMENT OF THE STUDY AREA

The seismic hazard assessment and mapping of the study area were carried out using the CRISIS proba-
bilistic seismic hazard estimation software. This software was developed by Ordaz et al. (2013). The results 
consist in seismic hazard curves, uniform hazard spectra, and hazard maps showing peak ground acceleration, 
in several spectral periods and for three levels of ground shaking (50, 10 and 2% probability of exceedance in 
50 years). These spectral periods and the different levels of ground shaking are commonly applied in Algerian 
seismic building codes. For the purpose of estimating ground motion at different points as close as possible, the 
study area was divided into grids of size 0.1° × 0.1°. In the computational scheme, parameters, such as a, b, Mc, 
and Mmax, and attenuation models are the input parameters in the CRISIS program, and peak surface accelera-
tions are the output parameters. The results obtained were prepared in tabular format and used in the CRISIS 
program to introduce effects of the user attenuation model. The estimated PGA was presented in the form of 
zone maps for different return periods, such as the calculation at the return period of 475 years (Fig. 12a), which 
corresponds to the probability of exceedance of 10% in 50 years.

In addition, to further enhance the seismic hazard map, Fig. 12b represents the earthquake intensity map 
in the EMS98 scale (from (Mouloud et al., 2023)). It is important to mention that the process of developing a 
probabilistic seismic hazard map involves identifying seismic sources that impact the area of interest and deter-
mining seismicity parameters for each zone. These parameters include seismic activity rate λ, the maximum 
expected earthquake magnitude Mmax, and the Gutenberg–Richter b value. The critical step in this process is 
preparing a homogeneous earthquake catalog through declustering data, involving the removal of aftershocks 
and foreshocks.

Additionally, the results include peak ground acceleration and spectral acceleration for periods of 0.2 and 
1.0 s along with spectral acceleration graphs (Fig. 13a, b). These comprehensive finds provide a detailed under-
standing of seismic hazard characteristics in the study area. 

LANDSLIDE SUSCEPTIBILITY MAPPING USING FUZZY LOGIC

The earthquake-induced landslides susceptibility maps were elaborated by combining several causative 
factors (geomorphometric factors, rainfall, annual solar radiation, vegetation cover, distance to river, distance 
to road, land cover, lithology, distance to faults, and seismic hazard intensity map) and using the fuzzy opera-
tors AND, OR, the algebraic sum, the algebraic product, and different fuzzy gamma values (0.2, 0.5, 0.8, and 
0.9). The results are displayed in Fig. 14.

It is important to clarify that the integration of simple algebraic functions, such as addition and multipli-
cation, in GIS-based analyses is a widely accepted and well-established practice. These operations serve as 



1487

Fig. 12. The seismic hazard scheme of the study area at a return period of 475 years (a) and the earthquake 
intensity map at the EMS98 scale (from (Mouloud et al., 2023) (b).

Fig. 13. Seismic hazard schemes of the study area. a – For a spectral acceleration of 0.2 s; b – for a spectral 
acceleration of 1.0 s.
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fundamental tools in spatial analysis, enabling the synthesis of diverse geospatial information. In the presented 
methodology, these operations were utilized to amalgamate various factors contributing to landslide suscepti-
bility, producing comprehensive maps that depict the cumulative impact of each factor. Additionally, the incor-
poration of fuzzy logic overlay further enhances the realism of the analysis by accommodating the inherent 
uncertainty and gradual transitions present in spatial data. Together, these techniques contribute to the robust-
ness and accuracy of our GIS-based landslide susceptibility mapping. 

Figure 14a presents the results of applying the fuzzy operator AND. The map shows that the study area 
is characterized by moderate susceptibility for almost all the parts, except those near the epicentral zone of the 

Fig. 14. Landslide susceptibility schemes created using fuzzy logic operators. 
a – AND; b – OR; c – sum; d – product; e – gamma 0.2; f – gamma 0.5; g – gamma 0.8; h – gamma 0.9.
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last earthquake or near the higher slope location, or closer to the fault. This might be because the AND operator 
extracts the minimum degree of membership by selecting the minimum value (weight) of the information layers 
of each pixel and considering it in the final map (Razifard et al., 2019). Figure 14b shows the results of applying 
the fuzzy operator OR. The resulting map indicates that the study area is characterized by very high susceptibil-
ity to landslides. 

This outcome can be elucidated, because the OR operator will display the highest value found in the sets 
to which the cell location belongs. In other words, it helps to identify the location that has at least one of the 
criteria being fully in the suitable set. Figure 14c shows the earthquake-induced landslide susceptibility maps 
by applying the algebraic sum. The resulting map by this operator presents very high landslide susceptibility 
similar to those obtained from the fuzzy OR. This result can be explained, because this operator will add the 
fuzzy values of each set the cell location belongs to. The resultant sum is an increasing linear combination func-
tion based on the number of criteria entered into the analysis. In the reverse case, when we use the algebraic 
product (Fig. 14d), the resulting map shows that the study area is characterized by moderate landslide suscepti-
bility. This operator will multiply each of the fuzzy values for all the input criteria. The resulting product will 
be less than any of the input, and the value can be very small. Figure 14e–h presents the earthquake-induced 
landslide susceptibility maps by applying different fuzzy gamma values (0.2, 0.5, 0.8, and 0.9). This operator is 
the algebraic product of the fuzzy product and fuzzy sum raised to the power of gamma. If gamma is set to 1, 
the output is the same as the fuzzy sum; if gamma is set to 0, the output is the same as the fuzzy product. This 
operator compromises the increasing effect of the fuzzy sum and the decreasing effect of the fuzzy product, 
because the values in the middle allow combining the product between these two extremes and may be different 
from fuzzy AND or fuzzy OR.

Validation OF THE MODELIZATION

The validation process is critical in such studies, because it is necessary to assess the model accuracy by 
comparing the result with the real landslide regions. According to literature, there are numerous methods; how-
ever, the receiver operating characteristic (ROC) analysis method is widely used for assessing predicting mod-
els in GIS-based studies. The ROC curve is elaborated by plotting the true positive rate against the false positive 
rate at several threshold settings, and the indicator frequently used to evaluate the model performance is the area 
under the curve (AUC). This AUC score varies between 0 and 1. A perfect predictor has an AUC score of 1.0, 
while a random guess predictor has an AUC score of 0.5. The AUC results were judged outstanding for AUC 
values ranging from 0.9 to 1.0, excellent for AUC values ranging from 0.8 to 0.9, acceptable for AUC values 
ranging from 0.7 to 0.8, and poor for AUC values ranging from 0.5 to 0.7 (Swets, 1988).

The area under the curve for the fuzzy AND operator is 0.818, implying acceptable overall success score 
accuracy of 81.80% (Suppl. Mat., Table S1). However, as mentioned in Fig. 14a, the landslide model shows 
that most of the study area has very low landslide susceptibility, except some parts with just moderate suscep-
tibility. These results suggest a lower estimation of the landslide strength. 

Regarding the fuzzy operator OR, the algebraic sum, and the algebraic product, they give higher AUC 
score rate, ranging from 94.3 to 97.0%. However, in the case of the OR and SUM operators, as seen in Fig. 14b, 
c, their landslide susceptibility values are higher than the expected level for most parts of the study area, sug-
gesting a higher overestimation. Inversely, in the case of the algebraic product operator (Fig. 14d), it gives a 
lower estimation of most of the study area. These outcomes indicate that the resulting maps and their fuzzy 
operator are not suitable for assessing landslide susceptibility.

In the case of the gamma operators, they seem clearly to produce excellent results, with AUC score ac-
curacy ranging from 82.1 to 96.2%. The fuzzy gamma operator for values equal to 0.1 and 0.2 gives higher 
AUC score even if the resulting maps show very low susceptibility of most of the study area. It seems that the 
gamma operator for the value equal to 0.8 generates very evenly spread combined fuzzy membership values, 
with AUC score accuracy of 83.1%. These results are demonstrated by its achievements in physical prediction 
of landslide locations, as shown in Supplementary Materials, Fig. S3.

Assessment and analysis of obtained results

As a result, the final landslide susceptibility map should be derived from the combined fuzzy membership 
map obtained with the fuzzy gamma operator for γ = 0.8. This map is divided into low, moderate, high, and very 
high landslide susceptible zones (Fig. 15a). In addition, to evaluate the effect of adding or removing the seismic 
hazard as a causative factor, Fig. 15b was added, showing an earthquake-induced landslide susceptibility map 
with the fuzzy gamma operator for γ = 0.8 but without integrating the seismic hazard. The AUC results in the 
case of fuzzy gamma operators for γ = 0.8 with seismic hazard intensity (83.1%) are better than AUC results in 
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the case without adding seismic hazard intensity (76.9%). It is evident that including the seismic hazard as a 
causal element improves the accuracy of locating the landslide that may be induced by an earthquake.

Inspired by the index of neotectonic activity, the presented methodology is distinguished by introducing 
seismic hazard as a key element, firmly grounded in physical principles. In contrast to the mentioned index, 
which relies solely on morphometric parameters (Manchar et al., 2022), the limitations of such data operators 
are acknowledged. Through the incorporation of seismic hazard, supported by a robust physical basis, an en-
hancement in the precision and reliability of landslide susceptibility assessments is expected. This strategic 
integration not only enriches the comprehensiveness of the model but also addresses concerns associated with 
simplistic reliance on morphometric parameters. 

To measure physically the accuracy of the obtained results, the landslide susceptibility zones displayed 
on maps in Fig. 15a, b can be compared and verified with field information on the earthquake-induced landslide 
inventory map, particularly for the highly and very highly susceptible zones. Table 2 shows the quantitative 
comparison with the observed landslide inventory. The results reveal that in the case of including the seismic 

Fig. 15. Landslide susceptibility schemes created using gamma 0.8. 
a – With earthquake; b – without earthquake.



1491

hazard map, the very highly, highly, and moderately susceptible zones account for 61.39% of the total observed 
landslide occurrences, while the surface of these zones accounts for 56.69% in the case of a map without includ-
ing the seismic hazard map. This trend is the same in the case of zones with low and very low susceptibility, 
which account for 38.61 and 43.31%, respectively. These results indicate that including the seismic hazard map 
is better in terms of physical validation.

Furthermore, when comparing the AUC scores with and without the inclusion of earthquakes (Fig. 16a, 
b), it is evident that incorporating seismic hazard enhances the AUC score, resulting in more accurate modeling 
compared with the actual occurrence of landslides. These finds strongly suggest that integrating seismic hazard 
information improves the physical validation of the model.

Conclusions

This study focused on assessing the susceptibility of landslides triggered by earthquakes in the Mila ba-
sin, employing fuzzy logic membership functions and a combination of various contributing factors, including 
geomorphometric elements, precipitation, annual solar radiation, vegetation coverage, proximity to rivers and 
roads, land cover, lithology, distance to faults, and a seismic hazard intensity map. An array of fuzzy operators, 
namely, AND, OR, algebraic sum, algebraic product, and gamma operators with different gamma values (0.2, 
0.5, 0.8, and 0.9), was applied to enhance the accuracy of seismically induced landslide mapping. This study 
pursued two objectives. First, it aimed to derive a seismically induced landslide susceptibility map with the 
highest attainable precision. Second, it sought to underscore the pivotal impact of integrating the map of seismic 
hazard as a contributing factor in identifying earthquake-induced landslide-prone areas.

The finds unequivocally indicate that, among the various fuzzy operators examined, the fuzzy gamma 
operators with a gamma value of 0.8 consistently yielded the most accurate results for earthquake-induced land-
slide mapping. Moreover, the results emphasize the significance of incorporating the map of seismic intensity as 
a causative factor in identifying regions susceptible to earthquake-induced landslides. This inclusion serves the 
dual purpose of safeguarding human lives and minimizing the potential damage to infrastructure and facilities, 
underscoring the critical importance of considering seismic hazards in landslide susceptibility assessments.

T a b l e  2 .  Physical validation of landslide susceptibility distribution for the several fuzzy operators
Susceptible
zones

Landslide surface distribution

With earthquake Without earthquake

Total
(km2)

Inside inventory area
(km2)

Density (%) Total
(km2)

Inside inventory area
(km2)

Density (%)

Very low 231.21 9.9413 12.96% 198.30 10.1850 13.26%
Low 276.98 19.6710 25.65% 304.80 23.0810 30.05%
Moderate 238.87 29.6130 38.61% 239.70 26.8700 34.98%
High 104.34 13.7330 17.90% 108.50 13.1340 17.10%
Very high 25.54 3.74150 4.88% 25.46 3.5397 4.61%

Fig. 16. AUC score. a – Including earthquake; b – without including earthquake.
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