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Проведены модельные эксперименты по ударно-волновому синтезу в механокомпозитах состава
64 % Ti + 36 % Al в разработанном проточном реакторе импульсного действия. Экстремаль-
ному термическому воздействию подвергались композиты после 3, 5 и 7 мин механоактивации,
разделенные на четыре фракции. Для активации смеси применялась планетарная шаровая мель-
ница «Активатор-2SL». Экспериментально установлено, что разное время механоактивацион-
ного воздействия и разная гранулометрия порошков не влияют на качественный фазовый состав

продуктов синтеза. В состав продуктов реакции входят аморфизированный Al, недореагировав-
ший Ti, интерметаллические соединения ТiAl, TiAl3 и Ti3Al, а также зародыши метастабильных
фаз или твердых растворов на основе Ti, находящихся в неравновесном слабоупорядоченном со-
стоянии. Выявлено, что при варьировании времени механоактивации и гранулометрического
состава меняется количественное содержание фазового состава конечных продуктов синтеза.
Микроструктуры полученных образцов подтверждают формирование многофазного продукта с

частично упорядоченной структурой, имеющего аморфную и кристаллическую составляющие.
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ВВЕДЕНИЕ

Одной из важных задач современного ма-
териаловедения является получение компози-
ционных порошков сложного состава, обладаю-
щих комплексом взаимодополняющих свойств,
для их применения в области газотермических

методов нанесения защитных покрытий, по-
лучения конструкционных материалов, газопо-
глотителей, изготовления имплантатов в ме-
дицине и т. д. В последнее время всё боль-
шее внимание исследователей привлекают ма-
териалы с аморфно-кристаллической струк-
турой, с разной степенью содержания кри-
сталлической составляющей, которые синте-
зируются в неравновесных условиях быстро-
го нагрева-охлаждения. Эффективным спосо-
бом получения бинарных и многокомпонентных
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соединений в виде порошков является саморас-
пространяющийся высокотемпературный син-
тез (СВС). Следует заметить, что в послед-
ние десятилетия для изучения процессов вы-
сокотемпературного синтеза применяются ме-
тоды быстрого нагрева смеси. К числу та-
ких методов следует отнести электротепловой

взрыв [1, 2], метод электроискрового спекания
[3], электротермографический метод [4]. Син-
тез с применением указанных методов происхо-
дит со скоростью нагрева порядка сотен кель-
винов в секунду, что позволяет провести реак-
цию в неравновесных адиабатических условиях

и значительно сократить период индукции.
Известно, что сверхбыстрое охлаждение

жидких металлов и сплавов приводит к то-
му, что процессы кристаллизации соедине-
ний и твердых растворов, которые реализу-
ются при сравнительно медленном охлажде-
нии, подавляются, и распределение атомов в
охлажденном продукте является неупорядочен-
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ным [5–7]. Сформированная таким образом

аморфная структура приводит к таким измене-
ниям магнитных, механических и химических
свойств, которые не наблюдаются в кристалли-
ческом материале [8]. Наиболее часто для по-
лучения аморфных сплавов используют мето-
ды закалки из жидкого состояния [9] и из газо-
вой фазы (ионно-плазменное распыление, тер-
мическое испарение) [10], методы электролити-
ческого и химического осаждения [11], а также
лазерного глазурирования [12]. Однако следу-
ет заметить, что в этих технологиях исходная
структура (жидкая смесь) и конечный продукт
(твердая аморфная фаза) находятся в гомоген-
ном состоянии и процесс не подразумевает хи-
мическую реакцию между компонентами. Ха-
рактерные скорости охлаждения в рассматри-
ваемых процессах составляют 102 ÷ 104 K/с.
Между тем нагрев гетерогенных систем со

сверхвысокими скоростями (104 K/с и выше)
до высоких температур с последующим быст-
рым охлаждением может привести к формиро-
ванию сложных неравновесных структур, ко-
торые могут содержать в себе аморфную фазу,
интерметаллические соединения, твердые рас-
творы и квазикристаллы в различном сочета-
нии.

Для осуществления процесса, в кото-
ром гетерогенный синтез сочетается со сверх-
быстрым нагревом, за основу взят метод

детонационно-газового напыления [13, 14]. Хо-
тя основной задачей этого метода является

получение защитных покрытий из порошко-
вых материалов [15, 16], хорошо известно, что
в процессе детонационно-газового напыления
скорость частиц достигает 300 ÷ 400 м/с, а
температура газовой струи — 1 700 К и вы-
ше [17, 18]. В этой ситуации скорости нагрева
частиц при попадании в ствол установки мо-
гут составлять 104 ÷ 106 K/с, что значитель-
но превосходит максимально возможные ско-
рости нагрева, которые используются в про-
цессах высокотемпературного синтеза. В свя-
зи с этим за основу экспериментального ком-
плекса взята установка детонационно-газового
напыления «Катунь-М», которая была модер-
низирована в целях использования в качестве

проточного СВС-реактора для экстремального
термического воздействия на порошковые си-
стемы.

Как известно, в качестве прекурсоров для
высокотемпературного синтеза применяются

порошковые смеси, предварительно подвергну-

тые механоактивационной обработке [19–21].
Результатом являются отдельные частицы-
механокомпозиты, имеющие матричную струк-
туру и содержащие в себе оба реагента (для
бинарных смесей). Установлено, что такие

структуры обладают повышенной реакционной

способностью. Полученные механокомпозиты
можно рассматривать в качестве элементар-
ных реакторов, в объеме которых могут проис-
ходить экзотермические гетерогенные реакции

[22, 23]. Установлено, что одним из наиболее

значимых факторов при проведении СВС в ме-
ханически активированных системах являются

скорости нагрева и охлаждения смеси порош-
ков, от величины которых во многом зависят

структура и фазовый состав синтезированно-
го продукта. В настоящее время наибольшая

скорость нагрева, которую можно реализовать
методами электротеплового воздействия на по-
рошковую смесь, составляет сотни кельвинов
в секунду. Однако при попадании отдельной
частицы в среду с температурой выше 1 700 К
скорости нагрева и охлаждения могут возрас-
ти на три-четыре порядка, что может способ-
ствовать формированию новых материалов с

аморфно-кристаллической структурой сложно-
го строения. Ударно-волновой нагрев позволя-
ет проводить синтез в существенно неравно-
весных условиях за счет высокого давления,
сверхбыстрых скоростей нагрева и охлажде-
ния в режиме детонирующих газовых смесей.
В связи с этим использование механически ак-
тивированной смеси порошков (в модельных
экспериментах использовались порошки техно-
логически значимой системы Ti—Al) в про-
цессах высокотемпературного синтеза в про-
точном реакторе экстремального термического

воздействия является актуальной задачей как

с точки зрения научной новизны, так и с точ-
ки зрения практической значимости, поскольку
в данном случае появляется возможность со-
здания материалов нового класса. Полученные
в условиях экстремального воздействия порош-
ковые материалы с аморфно-кристаллической
структурой могут быть применены для даль-
нейших исследований при консолидации мате-
риалов, например, в областях спекания и фор-
мирования покрытий с уникальным набором

физико-химических свойств.
Целью данного экспериментального иссле-

дования являлось получение порошковых ма-
териалов интерметаллидного класса, имеющих
аморфную и кристаллическую составляющие,
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из механокомпозитов системы Ti—Al при про-
ведении синтеза в среде продуктов детонации

газовой смеси.

ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

В качестве объектов исследования в мо-
дельных экспериментах использовалась смесь

состава 64 % Ti + 36 % Al, полученная из по-
рошка титана ПТХ-7-2 со средним размером

частиц 80 мкм (химический состав: Ti — осно-
ва, Fe — 0.9 %, Cl — 0.09 %, N — 0.08 %, H —
0.5 %) и порошка алюминия АСД-1 со средним
размером 20 мкм (химический состав: Al — ос-
нова, Fe — 0.11 %, Si — 0.11 %). Для получе-
ния прекурсоров применялась планетарная ша-
ровая мельница «Активатор-2SL». Отношение
массы исходной порошковой смеси к массе ме-
лющих тел составляло 1 : 20, время механиче-
ской активации (МА) — 3, 5 и 7 мин [24, 25].

Модельные эксперименты по ударно-
волновому синтезу проводили на разра-
ботанном в лаборатории ПНИЛ СВС им.
В. В. Евстигнеева АлтГТУ (г. Барнаул)
экспериментально-диагностическом комплек-
се [26], основным блоком которого является

детонационная камера со стволом и порошко-
вой ловушкой.

Комплекс изображен на рис. 1 и состоит
из детонационной камеры 1, оснащенной запор-
ным механизмом 2, краном для подачи пропан-
бутана 3, краном для кислорода 4 и стволом 5 с
загрузочным отверстием 6. Детонационная ка-
мера оснащена свечой зажигания 7. Порошко-
вая ловушка 8 состоит из корпуса 9 с крыш-
кой 10. В ловушку вкручен кран 11 для подачи
аргона в корпус. В корпусе установлена отра-

Рис. 1. Экспериментальный комплекс для

ударно-волнового синтеза:

1 — детонационная камера, 2, 13 — запорный ме-
ханизм, 3 — кран для подачи пропан-бутана, 4 —
кран для кислорода, 5 — ствол, 6 — загрузочное

отверстие, 7 — свеча зажигания, 8 — порошко-
вая ловушка, 9 — корпус ловушки, 10 — крышка,
11 — кран для подачи аргона, 12 — отражающая

пластина

жающая пластина 12. Корпус ловушки осна-
щен запорным краном 13.

Комплекс для ударно-волнового синтеза

использует продукты взрывного горения, обра-
зуемые в детонационной камере при поджиге

кислородной смеси c пропан-бутаном. Последо-
вательность элементов рабочего цикла следую-
щая.

1. Детонационная камера установки 1 за-
пирается механизмом 2, управляемым электро-
никой в процессе заполнения камеры газами.
В ствол через загрузочное отверстие 6 загру-
жается порошковая смесь (0.1 г). В последу-
ющем (при поджиге детонационной смеси) де-
тонационная камера открывается электронным

запорным механизмом 2.
2. Через кран для пропан-бутана 3 и кран

для кислорода 4 в детонационную камеру 1
закачивается мерное количество рабочих га-
зов (пропан-бутана и кислорода) в соотноше-
нии 0.75 : 1.

3. Порошковая ловушка 8, закрытая за-
порным механизмом 13, непрерывно заполня-
ется аргоном через кран 11. Аргон подается пе-
ред каждым циклом детонации, что позволяет
уменьшить влияние окислительных процессов

в ловушке. В последующем (при поджиге де-
тонационной смеси) запорный механизм 13 от-
крывается.

4. Газовую смесь, закачанную в детонаци-
онную камеру 1, поджигали электроискровым
разрядом от свечи зажигания. После перехода
горения в стационарную детонацию продукты

горения образуют высокоскоростной гетероген-
ный поток. Частицы дисперсной фазы подвер-
гаются ударно-волновому нагреву и перемеща-
ются по стволу 5 в сторону порошковой ловуш-
ки 8, где ударяются об отражающую пласти-
ну 12 и попадают на дно порошковой ловуш-
ки 8, которая постоянно продувается аргоном
через кран 11. Порошковая ловушка 8 через

0.3 с после выстрела закрывается запорным ме-
ханизмом 13.

5. Из порошковой ловушки 8 проводится
отбор частиц для анализа.

Выход продукта составляет 30 ÷ 40 %
от исходной массы порошковой смеси. Часть
порошка оседает на внутренних поверхностях

ствола 5 и порошковой ловушки 8, часть обрат-
ной волной переносится в детонационную каме-
ру 1.

Измерение давления проводилось с помо-
щью датчика ПД100-ДИ6,0-111-0,5. Для фикса-
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ции сигнала с датчика использовался цифровой

запоминающий осциллограф Rigol MSO1104Z.
Установлено, что при ударно-волновом нагре-
ве давление в камере высокого давления соот-
ветствует 5.51 МПа. Распределение темпера-
туры и скоростей для разных гранулометри-
ческих составов различное. Можно предпола-
гать, что разброс скоростей варьируется от 400
до 800 м/с. Вероятно, что при использовании
пропан-бутановой смеси температура воздей-
ствия на порошковую смесь составляет 3 000 К.
Для точного определения скорости и темпера-
туры планируется проведение высокоскорост-
ной съемки.

Фазовый анализ продуктов реакции вы-
полнялся на дифрактометре ДРОН-6 с Cu Kα-
излучением (λ = 1.5418 Å). Шаг сканирова-
ния — 0.05◦, время экспозиции — 3 с. Обра-
ботка экспериментальных данных осуществля-
лась пакетом программ PDWin. Для иденти-
фикации дифракционных максимумов приме-
нялась картотека PDF-2 Международного цен-
тра дифракционных данных (ICDD).

Микроструктуры продуктов реакции по-
лучены на сканирующем электронном микро-
скопе SEM S-3400N Hitachi.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На первом этапе были получены ме-
ханокомпозиты порошковой смеси состава

64 % Ti + 36 % Al с временем механической об-
работки 3, 5 и 7 мин.

Для уточнения фазового состава механо-
активированной порошковой смеси проведены

рентгенофазовые исследования. На рис. 2 пред-

Рис. 2. Дифрактограммы образцов порошко-
вой смеси состава 64 % Ti + 36 % Al

ставлены дифрактограммы исходной порошко-
вой смеси и механокомпозита 64 % Ti + 36 % Al,
прошедшего МА в течение 7 мин.

По данным рентгеновской дифрактомет-
рии фазовый состав порошковой смеси после

МА не отличается от исходного. Наблюдает-
ся повышение диффузного фона и уменьше-
ние интенсивности дифракционных отражений

обоих компонентов смеси. Уширение пиков ка-
чественно свидетельствует о наличии нерав-
новесных дефектов в продуктах размола и об

уменьшении размеров кристаллитов.
На следующем этапе было проведено экс-

периментальное исследование экстремального

термического воздействия на прекурсоры. Для
уточнения влияния гранулометрического со-
става механокомпозитов на фазовый состав

продуктов синтеза каждая партия механоком-
позитов (МА 3, 5 и 7 мин) была разделена
на четыре фракции: <50 мкм, 50 ÷ 100 мкм,
100 ÷ 160 мкм и >160 мкм. Ударно-волновой
синтез в проточном реакторе осуществлялся

в идентичных условиях для каждой партии.
На рис. 3,а представлены дифрактограм-

мы продуктов, синтезированных из прекурсо-
ров с временем МА 3 мин разного грануло-
метрического состава. Для более наглядного
представления идентификации фазового соста-
ва также приведены штрих-диаграммы пред-
полагаемых фаз в соответствии с базой данных

PDF-2 (ICDD).
При ударно-волновом воздействии на ме-

ханокомпозиты (МА 3 мин, фракция менее

50 мкм) продукт реакции имеет многофазный
состав. Фиксируются интерметаллические со-
единения Ti3Al, TiAl3, ТiAl и непрогоревший
Ti. Пиков Al не наблюдается. Диффузное гало,
фиксируемое при малых углах θ, может свиде-
тельствовать об аморфной составляющей.

Конечный продукт ударно-волнового син-
теза в механокомпозитах фракции 50 ÷ 100 мкм
с временем МА 3 мин имеет многофазный

состав, присутствуют основные соединения

(Ti3Al, TiAl3, ТiAl), а также большое количе-
ство непрогоревшего Ti (фиксируется большее
количество пиков Ti по сравнению с фракцией
<50 мкм). Диффузное гало при малых углах θ
получено, вероятно, отражением от аморфной
матрицы. Пиков Al не наблюдается.

При использовании фракции прекурсоров

100 ÷ 160 мкм с временем МА 3 мин на ди-
фрактограмме продуктов синтеза наблюдают-
ся диффузное гало при малых углах θ и оста-
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Рис. 3. Дифрактограммы продуктов, синтези-
рованных в проточном реакторе импульсного

действия из порошковой смеси всех исследуе-
мых фракций после МА 3 мин (а), 5 мин (б),
7 мин (в)

точный Ti, фиксируется зарождение фаз TiAl3
и Ti3Al. Вероятно, временного интервала не
хватило для прохождения реакции в указанных

прекурсорах, сверхбыстрое охлаждение замо-
розило выкристаллизовавшиеся фазы в начале

реакции.
При ударно-волновом нагреве прекурсо-

ров фракции более 160 мкм, механоактивиро-
ванных в течение 3 мин, на фоне диффузно-
го гало наблюдаются уширенные асимметрич-
ные пики непрореагировавшего Ti (интенсив-
ностью Imax (Ti(101)) = 28 усл. ед.). Также
фиксируются уширенные, малой интенсивно-
сти одиночные пики зародышей интерметал-
лических соединений TiAl3 и Ti3Al, находя-
щихся в неравновесном состоянии. Вероятно,
с одной стороны, малого времени МА (3 мин)
недостаточно для полного объемного переме-
шивания реагентов с формированием идеально-
го контакта поверхностей, способствующих по-
вышению реакционной способности смеси [27].
С другой стороны, при синтезе крупных меха-
нокомпозитов (фракции свыше 160 мкм) малый
временной интервал нахождения частиц в ре-
акторе и сверхбыстрое охлаждение способству-
ют тому, что частицы Ti не успевают распла-
виться, и реализация синтеза подавляется.

Следует отметить, что на дифрактограм-
мах не удалось идентифицировать некоторые

единичные пики по причине отсутствия соот-
ветствующих значений межплоскостных рас-
стояний в карточках картотеки PDF-2 (ICDD),
используемой для расшифровки фазового со-
става. Это могут быть отражения твердых

растворов, которые начали формироваться в
процессе реакции и были «заморожены» в усло-
виях сверхбыстрого охлаждения.

На рис. 3,б представлены дифрактограм-
мы продуктов, синтезированных при ударно-
волновом нагреве механокомпозитов разного

гранулометрического состава с временем МА

5 мин. При использовании механокомпозитов
фракции менее 50 мкм на дифрактограммах

при малых углах θ наблюдается диффузное га-
ло с Imax = 38 усл. ед. Также фиксируют-
ся уширенные, с малой интенсивностью пики

интерметаллических соединений ТiAl, TiAl3 и
Ti3Al, которые находятся в разупорядоченном
состоянии, и одиночный пик с малой интенсив-
ностью (практически на уровне фона) остаточ-
ного Тi.

При ударно-волновом синтезе механоком-
позитов фракции 50 ÷ 100 мкм с временем
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МА 5 мин в струе реактора формируется про-
дукт с частично упорядоченной структурой,
содержащий Al в рентгеноаморфном состоянии
и небольшое количество интерметаллидных

фаз, находящихся в разупорядоченном состо-
янии, что качественно подтверждается диф-
фузным гало (Imax = 30 усл. ед.) при ма-
лых углах θ и высоким уровнем диффузно-
го фона. Также на дифрактограмме фикси-
руются уширенные, с низкой интенсивностью
(практически на уровне фона) рефлексы, со-
ответствующие основным интерметаллидным

соединениям Ti3Al, TiAl3 и ТiAl. Наблюдает-
ся небольшое количество остаточного непрого-
ревшего Ti.

При ударно-волновом синтезе в механо-
композитах фракции 100 ÷ 160 мкм на дифрак-
тограмме появляется ярко выраженное диф-
фузное гало (Imax = 50 усл. ед.) со значениями
выше, чем гало на дифрактограммах при ис-
пользовании механокомпозитов меньших фрак-
ций. На диффузном фоне фиксируются пики

непрореагировавшего Ti. Также присутству-
ют отражения интерметаллических соедине-
ний Ti3Al, TiAl3 и ТiAl с неравновесной разу-
порядоченной структурой.

При ударно-волновом синтезе из прекурсо-
ров после 5 мин МА фракции свыше 160 мкм
конечный продукт на фоне рентгеноаморф-
ной составляющей (диффузное гало Imax =
30 усл. ед.) включает в себя большое количе-
ство непрореагировавшего Ti, находящегося в
неравновесном состоянии, зародыши интерме-
таллических фаз TiAl, TiAl3 и метастабильно-
го Ti3Al5, имеющих разупорядоченное состоя-
ние.

На рис. 3,в представлены дифрактограм-
мы продуктов, синтезированных из прекур-
соров разного гранулометрического состава с

временем МА 7 мин. При использовании самой
мелкой фракции (менее 50 мкм) на дифракто-
граммах при малых углах θ наблюдается диф-
фузное гало с Imax = 20 усл. ед. Пики Al от-
сутствуют. Также в обоих случаях фиксируют-
ся уширенные, с малой интенсивностью пики

интерметаллических соединений ТiAl, TiAl3 и
Ti3Al, находящихся в разупорядоченном состо-
янии, и недореагировавший Тi.

При проведении ударно-волнового синтеза
в механокомпозитах основных фракций (50 ÷
100 мкм и 100 ÷ 160 мкм) на обеих дифрак-
тограммах наблюдается диффузное гало. При-
чем для фракции 50 ÷ 100 мкм его интенсив-

ность составляет Imax = 47 усл. ед., а при
увеличении фракции до 100 ÷ 160 мкм ин-
тенсивность снижается до Imax = 27 усл. ед.
Фиксируемые отражения в обоих случаях со-
ответствуют интерметаллическим соединени-
ям ТiAl, TiAl3 и Ti3Al. Также присутствует
недореагировавший Ti. Указанные соединения
находятся в неравновесном состоянии, о чем
качественно свидетельствуют уширенные пи-
ки с низкой интенсивностью. Во всех случаях
основными фазами являются TiAl3 и ТiAl, пре-
обладает фаза TiAl3. Следует отметить, что
по количеству пиков образовавшихся фаз ка-
чественно можно судить о том, что их содер-
жание в конечном продукте больше, чем при

синтезе прекурсоров после 3 и 5 мин МА. Веро-
ятно, этому способствовала матричная струк-
тура механокомпозитов [28], сформировавша-
яся при 7-минутной активации, обеспечиваю-
щая практически идеальный контакт реаген-
тов в твердой фазе, что может служить уско-
рению процессов химических превращений при

прохождении реакции [24].
В случае ударно-волнового нагрева

механокомпозитов самой крупной фракции

(>160 мкм) с временем МА 7 мин на ди-
фрактограмме на фоне диффузного гало

наблюдаются уширенные асимметричные

пики непрореагировавшего Ti. Идентифици-
руются одиночные уширенные пики Ti3Al
и метастабильной фазы Ti3Al5, интенсив-
ность которых находится практически на

уровне фона. Вероятно, как и при исполь-
зовании прекурсоров после 3 и 5 мин МА,
при ударно-волновом нагреве более крупных

механокомпозитов (>160 мкм) частицы Ti
не успевают полностью расплавиться из-за
малого времени нахождения частиц в реак-
торе. Сверхбыстрое охлаждение способствует
подавлению химических реакций и реализации

синтеза, в результате конечный продукт имеет
аморфную составляющую, остаточный Ti и
зародыши интерметаллических соединений.

Следует отметить, что рассчитать в про-
дуктах реакции вклады кристаллической и

аморфной составляющих очень трудно, это мо-
жет привести к неоднозначным результатам и

искажению данных о степени кристалличности

структуры. Провести точный анализ количе-
ственного содержания продуктов реакции (на-
пример, методом Ритфельда) не представля-
ется возможным, вследствие «зашумленности»
дифрактограмм продуктов реакции, получен-
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ных в экстремальных условиях (сверхвысокие
скорости и температуры, сверхбыстрое охла-
ждение).

По данным рентгенофазового анализа на

дифрактограммах продуктов реакции во всех

случаях отсутствуют пики легкоплавкого ком-
понента алюминия, что свидетельствует о его
разупорядоченном состоянии. В проточном ре-
акторе под воздействием сверхвысоких темпе-
ратур алюминий полностью переходит в жид-
кое состояние. В расплавленную матрицу алю-
миния диффундирует часть атомов титана, в
результате чего начинают формироваться за-
родыши интерметаллидных соединений ТiAl,
TiAl3 и Ti3Al, а также твердые растворы, нахо-
дящиеся в неравновесном состоянии. Последу-
ющее сверхбыстрое охлаждение замораживает

процессы на этапе образования фаз. Недореа-
гировавший алюминий остается в разупорядо-
ченном структурном состоянии, что подтвер-
ждается рентгеноаморфным гало на дифракто-
граммах в области малых углов. Также в ко-
нечном продукте присутствует непрогоревший

титан, пики которого имеются на дифракто-
граммах. При синтезе механокомпозитов круп-
ной фракции (для всех времен предварительной
активации), вследствие короткого времени на-
хождения частиц в реакторе, остается большее
количество пиков непрореагировавшего тита-
на, соответственно меняется и соотношение пи-
ков сформировавшихся фаз. В связи с этим

вызывает интерес влияние времени предва-
рительной активационной обработки и грану-
лометрического состава механокомпозитов на

количественное содержание поликристалличе-
ских фаз в продуктах реакции, полученных в
условиях экстремального термического воздей-
ствия. Для наглядного представления измене-
ния содержания поликристаллических фаз в

продуктах реакции был использован полуко-
личественный метод. Метод полуколичествен-
ной оценки фазового состава, позволяет ори-
ентировочно оценить относительное содержа-
ние фаз по соотношению интенсивностей мак-
симальных пиков, без учета массовых коэффи-
циентов поглощения [29, 30]. Расчет проводил-
ся по соотношению интенсивностей дифракци-
онных максимумов определяемых фаз In от их
содержания в образце Xn, без учета аморфной
составляющей. В связи с тем, что однозначно
выделить и вычесть вклады диффузного гало и

фона из суммарной интенсивности очень слож-
но, количественное определение содержания за-

фиксированных фаз проводилось с неконтроли-
руемой погрешностью [29–31]. Следует отме-
тить, что определение относительного содер-
жания продуктов на данном этапе носит оце-
ночный характер.

На рис. 4,а представлена количественная
картина относительного содержания фаз, за-
фиксированных в продуктах ударно-волнового
синтеза из прекурсоров различного грануло-
метрического состава с временем активации

3 мин. Из рисунка следует, что при экс-
тремальных условиях (сверхвысокие скорости,
высокие температуры, сверхбыстрое охлажде-
ние), созданных в процессе ударно-волнового
синтеза из механокомпозитов с 3 мин МА, ми-
нимальное количество непрореагировавшего Ti
(≈25 %) наблюдается при использовании самой
мелкой фракции (<50 мкм), примерно столько
же (≈25 %) содержится TiAl3, а самое высокое
содержание (≈38 %) получено для TiAl. Следу-
ет заметить, что образование TiAl происходит
только в случае фракций до 100 мкм.

При увеличении размеров прекурсоров по-
вышается количество непрореагировавшего Ti
(для фракции 50 ÷ 100 мкм — до 42 %, для
100 ÷ 160 мкм — до 54 %). При использова-
нии механокомпозитов фракции 100 ÷ 160 мкм
фиксируется максимальное содержание TiAl3
(≈40 %).

Для самой крупной фракции прекурсоров

(>160 мкм) содержание непрореагировавшего
Ti составляет ≈83 %. Наблюдается формирова-
ние интерметаллида Ti3Al (≈11 %): для данно-
го случая это может быть твердый раствор на

основе Ti, из которого впоследствии формиру-
ется Ti3Al. Также происходит образование ин-
терметаллида TiAl3 (≈5 %).

На рис. 4,б представлена количественная
картина относительного содержания зафикси-
рованных фаз в продуктах ударно-волнового
синтеза из прекурсоров различного грануло-
метрического состава с временем МА 5 мин.
В этом случае (в отличие от 3 мин МА)
при использовании фракции <50 мкм основ-
ной фазой является TiAl3 (содержание ≈47 %)
при минимальном количестве недореагировав-
шего Ti (≈15 %). Следует отметить, что содер-
жание в продукте интерметаллида TiAl3 яв-
ляется доминирующим для механокомпозитов

с временем МА 5 мин во всех фракциях, кро-
ме самой крупной (для фракции 50 ÷ 100 мкм
содержание составляет ≈34 %, для фракции
100 ÷ 160 мкм — примерно 25 %). Интерме-
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Рис. 4. Относительное содержание зафикси-
рованных фаз в продуктах ударно-волнового
синтеза в зависимости от гранулометрическо-
го состава прекурсоров, полученных в резуль-
тате МА 3 мин (а), 5 мин (б), 7 мин (в)

таллид TiAl (в отличие от 3 мин МА) форми-
руется при использовании механокомпозитов

всех фракций. С увеличением размеров компо-
зитов растет содержание непрореагировавше-
го Ti в конечном продукте синтеза. Для фрак-
ции >160 мкм содержание Ti составляет около
≈73 %. При этом наблюдается только зарож-
дение интерметаллидов TiAl (≈12 %), TiAl3
(≈2.5 %) и метастабильного соединения Ti3Al5
либо твердого раствора на основе Ti (≈12 %).

На рис. 4,в представлена количественная
картина относительного содержания зафикси-
рованных фаз в продуктах ударно-волнового
синтеза из прекурсоров различного грануло-
метрического состава с временем МА 7 мин.
Самое малое содержание непрореагировавшего

Ti (в отличие от 3 и 5 мин МА) фиксирует-
ся в продуктах средних фракций: для фракции
50 ÷ 100 мкм — примерно 11 %, для фракции
100 ÷ 160 мкм — около 17 %. Для фракции
<50 мкм массовое содержание Ti составляет
≈24 %. Наибольшее содержание интерметал-
лидов в продуктах реакции наблюдается при

использовании фракции 50 ÷ 100 мкм: пример-
но 50 % TiAl3, 30 % TiAl, 11 % Ti3Al. Для
фракции >160 мкм фиксируются только заро-
дыши интерметаллида Ti3Al (с содержанием
≈13 %) и метастабильного Ti3Al5 (≈12 %). Воз-
можно, это твердые растворы на основе Ti, из
которых впоследствии формируются интерме-
таллидные соединения. Содержание непрореа-
гировавшего Ti составляет ≈75 %.

Из анализа полученных эксперименталь-
ных данных следует, что разное время ме-
ханоактивационного воздействия практически

не влияет на качественный фазовый состав

продуктов реакции, полученных при ударно-
волновом синтезе в проточном реакторе им-
пульсного действия. Во всех случаях продукты
реакции имеют рентгеноаморфную составляю-
щую, о чем свидетельствует присутствие диф-
фузного гало при малых углах на дифракто-
граммах, наличие недореагировавшего Ti, ин-
терметаллических соединений ТiAl, TiAl3 и

Ti3Al, а также зародышей метастабильных фаз
или твердых растворов на основе Ti, находя-
щихся в неравновесном слабоупорядоченном со-
стоянии.

Однако при варьировании времени меха-
ноактивационной обработки и гранулометри-
ческого состава прекурсоров меняется количе-
ственное содержание фазового состава конеч-
ных продуктов синтеза.
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Рис. 5. Микроструктуры продуктов реакции,
полученных в проточном реакторе импульс-
ного действия из порошковой смеси (МА
7 мин) фракции 50 ÷ 100 мкм (а) и фракции
>160 мкм (б)

На рис. 5 представлены характерные мик-
роструктуры продуктов ударно-волнового син-
теза. Карта распределения химических элемен-
тов получена методом сканирования поверх-
ности выбранного участка исследуемого об-
разца пучком электронов электронного мик-
роскопа с использованием детектора энерго-
дисперсионного рентгеновского спектрометра

(XFlash 4010) и модуля HyperMAP ориги-
нального программного обеспечения фирмы-
производителя данного оборудования «Bruker
ESPRIT».

В структурах образцов, полученных по-
сле ударно-волнового синтеза механокомпози-
та фракции 50 ÷ 100 мкм, фиксируются харак-

терные частицы (рис. 9,а), в центре которых
наблюдаются отдельные области алюминия с

дислокационной структурой и области титана

с мелкозернистой структурой. Также присут-
ствуют смешанные области, предположитель-
но состоящие из твердых растворов либо заро-
дышей интерметаллидных соединений. По пе-
риметру частиц наблюдается оболочка, имею-
щая характерные трещины, частично состоя-
щая из титана, а также из смешанных обла-
стей.

В структурах образцов, полученных ме-
тодом ударно-волнового синтеза в механо-
композитах крупного фракционного состава

(>160 мкм), наблюдаются частицы, имеющие
как участки с включениями титана в расплав-
ленной алюминиевой матрице, так и участ-
ки с алюминием в титановой матрице. Обла-
сти имеют четкие границы. Так же, как и

в предыдущем случае, существуют смешан-
ные области, предположительно состоящие из
твердых растворов и зародышей нанокристал-
лических фаз, которые, вероятно, начали вы-
кристаллизовываться из расплава и были за-
морожены в результате подавления начавшей-
ся реакции сверхбыстрым охлаждением. На-
блюдаются трещины, возникшие, вероятно, в
результате сверхбыстрой закалки под воздей-
ствием растягивающих напряжений, которые
могут создаваться при кристаллизации рас-
плава. Анализируя микроструктуры образцов,
следует отметить, что условия, созданные в
проточном реакторе, позволили подавить про-
цессы начавшейся кристаллизации соединений

и твердых растворов, заморозив реакцию. Дан-
ные электронной микроскопии коррелируют с

рентгенофазовым анализом, подтверждающим
формирование многофазного продукта с ча-
стично упорядоченной структурой, имеющего
аморфную и кристаллическую составляющие.

ЗАКЛЮЧЕНИЕ

Под действием высоких температур в про-
точном реакторе при использовании механо-
композитов состава Ti + Al во всех случаях
легкоплавкий компонент успевает расплавить-
ся за малый промежуток времени. В результа-
те разупорядочения фазы на дифрактограммах

при малых углах фиксируется диффузное га-
ло, свидетельствующее о рентгеноаморфной со-
ставляющей вещества. За короткое время пре-
бывания в проточном реакторе часть атомов Ti
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за счет сформировавшихся в результате меха-
ноактивации межфазных границ между поверх-
ностями частиц компонентов успевает диффун-
дировать в расплавленную матрицу Al.

Условия, создающиеся в проточном реак-
торе (сверхвысокие скорости, высокие темпе-
ратуры, сверхбыстрое охлаждение), подавля-
ют дальнейшие реакции и процесс кристалли-
зации, распределение атомов остается неупоря-
доченным. В результате в продукте формиру-
ются наноразмерные интерметаллидные соеди-
нения ТiAl, TiAl3 и Ti3Al, а также наблюдает-
ся зарождение твердых растворов на основе Ti,
находящихся в неравновесном слабоупорядо-
ченном состоянии. Сформировавшийся конеч-
ный продукт можно рассматривать как мно-
гофазный с частично упорядоченной структу-
рой, имеющий аморфную и кристаллическую

(с разной степенью кристалличности) состав-
ляющие.

Изменять количественный фазовый со-
ставов в конечном продукте при проведении

ударно-волнового синтеза в механокомпозитах
можно путем варьирования времени механоак-
тивационной обработки и гранулометрическо-
го состава прекурсоров. Указанные параметры
влияют на количественное содержание фаз в

кристаллической составляющей в продукте ре-
акции.

Наименьшее содержание остаточного Ti
в продуктах ударно-волнового синтеза фикси-
руется при использовании механокомпозитов

фракции 50 ÷ 100 мкм после 7 мин МА (≈10 %),
а самое большое его содержание (60 ÷ 80 %)
наблюдается при реагировании механокомпо-
зитов самых крупных фракций (>160 мкм) при
всех временах механоактивации.

Наибольшее содержание TiAl3 (до 50 %)
фиксируется при использовании обработанных

в течение 7 мин механокомпозитов всех фрак-
ций, кроме самой крупной (>160 мкм). Са-
мое низкое содержание TiAl3 обнаружено при
использовании механокомпозитов после 3 мин
МА практически всех фракций. Максимальное
содержание TiAl (≈38 %) выявлено для фрак-
ции <50 мкм при 3 мин МА. Для фракций бо-
лее 100 мкм с временем МА 3 мин формирова-
ние TiAl не обнаружено. Содержание Ti3Al при
всех временах МА и фракциях не превышает

15 %, кроме фракции 50 ÷ 100 мкм при време-
ни МА 5 мин (содержание Ti3Al около 35 %).

Таким образом, в результате проведенных
модельных экспериментальных исследова-

ний установлено, что результатом ударно-
волнового синтеза являются многофазные

порошковые материалы интерметаллидного

класса с частично упорядоченной структурой,
имеющей аморфную и кристаллическую со-
ставляющие. Следует отметить, что данный
способ синтеза новых материалов изучен

недостаточно, в связи с этим влияние предва-
рительной обработки порошковых материалов

и режимов синтеза при детонации газовой сме-
си на строение, состав и свойства продуктов
требуют дальнейших исследований.
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