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На основе уравнений неизотермической двухфазной фильтрации рассматривается зада-
ча о движении растворенной соли в тающем снеге. Теплопроводность снега и зависи-
мость температуры замерзания воды от солености верифицированы с помощью извест-
ных экспериментальных данных. Численные эксперименты позволили оценить влияние
наличия растворенной соли на фазовый переход.
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Введение. Талая вода, образующаяся в сезонном снежном покрове в период снего-
таяния, вносит большой вклад в формирование весеннего речного водотока в северных
странах. В процессе снеготаяния различные химические примеси и соли, которые были на-
коплены в снежном покрове в зимний сезон, поступают в реку и почву совместно с поверх-
ностным и подземным стоками талой воды соответственно [1]. Количество загрязнений и
время, за которое они вымываются, зависят от динамики жидкости в снежном покрове. На-
пример, техническая соль широко используется в качестве противогололедного средства.
Однако интенсивное использование соли вызывает ряд экологических проблем, поскольку
она распределяется непосредственно на поверхности дорожного покрытия до выпадения

снега и легко смывается талой водой. Для уменьшения экологического ущерба и замедле-
ния высвобождения соли используются асфальтные смеси с солью. В работе [2] проведено
экспериментальное исследование нескольких дорожных смесей с различным содержанием

соли и показана их противогололедная эффективность, но математические модели, оцени-
вающие эффективность снеготаяния и экологический ущерб, не были предложены.

Существует большое количество эмпирических моделей, описывающих снежный по-
кров в целом без учета пористой структуры снега. В то же время результаты наблюде-
ний и полевых исследований свидетельствуют о неравномерном выделении органических

загрязнителей из снега, что обусловлено неравномерным распределением насыщенности
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примеси в объеме снежного покрова [3]. Большинство эмпирических моделей являются
одномерными балансовыми моделями, не позволяющими вычислять скорость фильтрации
жидкости, а модели, с помощью которых можно вычислить скорость фильтрации жидко-
сти, обычно не учитывают фазовые переходы или применимы только для специфических
режимов движения воды в снежном покрове. В настоящее время исследования балансовых
моделей сосредоточены на учете дополнительных факторов, вносящих изменения в снеж-
ный покров, таких как выпадение осадков в виде дождя на уже сформированный снежный
покров, промерзший и непромерзший грунт, наличие нескольких слоев снега. В работе [3]
предложена модель, описывающая перенос органических веществ в многослойном снежном
покрове. Учитываются такие факторы, как толщина снежного покрова, перенос загрязня-
ющих веществ талой водой, а также скорость выхода твердых химических веществ на
поверхность снежного покрова. Предполагается однородность снежного покрова, а также
постоянство физических параметров.

Многомерные модели, в отличие от одномерных, оценивающих величину потока жид-
кости только относительно вертикального уровня, позволяют вычислить распределение
потока жидкости в объеме пористого снега. В работе [4] предложена двумерная модель
тепломассопереноса в тающем снеге, учитывающая повторное замораживание талой во-
ды внутри снежного покрова. Предложенный численный метод позволяет получить более
точную оценку поверхностного стока по сравнению с оценками, полученными в рамках
одномерных моделей. Однако предлагаемая модель не в полной мере учитывает фазовые
переходы и деформацию ледового скелета снега (движение льда). Переход жидкости в лед
уменьшает пористость снега, а сублимация, наоборот, увеличивает ее, что существенно
влияет на траектории движения жидкости и загрязняющих веществ в снежном покрове.

Основы теории движения воды и воздуха в тающем снеге изложены в работе [5], в ко-
торой на основе классической модели двухфазной фильтрации исследовалось движение

воды в снеге с заданной постоянной пористостью и без учета фазовых переходов. В рабо-
те [6] снежный покров рассматривается как трехфазная среда (вода, воздух, лед). Приведе-
ны эмпирические зависимости для капиллярного скачка (вода — воздух) и эмпирические
формулы для коэффициента проводимости снега. Однако в [6] не учитывается движение
воздуха и существенно упрощено уравнение для температуры. В результате трехфазная
модель сводится к уравнению для температуры и уравнению для объемной концентрации

водной фазы.

В работе [7] построено автомодельное решение системы уравнений двухфазной филь-
трации при естественных граничных условиях. В работах [8, 9] проведены численные

расчеты одномерных задач тепломассопереноса, исследовано изменение пористости и во-
донасыщенности снега. В [10] приведены постановки задач о движении воды и воздуха

в тающем снеге с учетом фазовых переходов и деформации ледового скелета и о распреде-
лении водного стока тающего снега между грунтовыми и поверхностными водами. В [7–10]
исследования проводились в предположении, что пористость является заданной функцией
температуры.

В данной работе используется более общий подход, развитый в работах [11, 12], в кото-
рых проведена верификация математической модели по экспериментальным данным [13].
Это позволяет учесть влияние растворенной соли на термодинамические характеристики

снега.

Целью настоящей работы является моделирование движения растворенной соли в та-
ющем снеге с учетом фазовых переходов, зависящих от солености воды. Разработан алго-
ритм численного решения одномерной задачи и проведены соответствующие расчеты.
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1.Математическая модель. Будем рассматривать тающий снег как сплошную сре-
ду, состоящую из воды (i = 1), воздуха (i = 2) и льда (i = 3), представляющего собой
твердый пористый скелет. Предполагается, что в воде присутствует только растворен-
ная примесь с концентрацией σ, фазовые переходы (выпадение в осадок и растворение) не
учитываются. Фильтрация воды и воздуха в пористом ледовом скелете описывается урав-
нениями сохранения массы для каждой фазы с учетом фазовых переходов, уравнениями
двухфазной фильтрации и уравнением теплового баланса для трехфазной среды. Для опи-
сания движения консервативной примеси (соли) в тающем снеге используется уравнение
конвективной диффузии.

Уравнения баланса массы для каждой фазы имеют вид

∂ρi

∂t
+ div (ρiui) =

3∑
j=1

Iji, i = 1, 2, 3, Iji = −Iij ,
3∑

i,j=1

Iij = 0. (1)

Здесь ui — скорость i-й фазы; ρi — приведенная плотность, связанная с истинной плот-

ностью ρ0
i и объемной концентрацией αi соотношением ρi = αiρ

0
i (условие

3∑
i=1

αi = 1

является следствием определения ρi); Iji — интенсивность перехода массы из j-й в i-ю со-
ставляющую в единице объема в единицу времени; α1 = φs1; α2 = φs2; α3 = 1−φ; s1, s2 —
насыщенности воды и воздуха (s1+s2 = 1); φ — пористость снега. Процессами сублимации
и испарения пренебрегается (I12 = 0, I23 = 0), интенсивность фазового перехода вода —
лед является заданной функцией I13 = I(φ, θ, s1). Далее будем считать, что фильтрация
воды и воздуха подчиняется закону Дарси и частицы льда неподвижны (u3 = 0), струк-
тура льда как сплошной среды не уточняется [9]. Тогда уравнения сохранения импульса
принимают вид

φsiui = −K0
k̄0i

µi
(∇pi − ρ0

i g), i = 1, 2, p2 − p1 = pc(s1, θ), (2)

где K0(φ) — коэффициент проницаемости пористой среды; k̄0i — фазовые проницаемости

(k̄0i = k̄0i(si) > 0, k̄0i|si=0 = 0); µi — динамические вязкости; pi — давления фаз; pc —
капиллярное давление; θ — температура снега; g — ускорение свободного падения.

Предполагается, что температуры всех трех фаз совпадают, т. е. θi = θ (i = 1, 2, 3).
Уравнение баланса тепла в снежном покрове имеет вид( 3∑

i=1

ρ0
i ciαi

) ∂θ

∂t
+

( 3∑
i=1

ρ0
i αiciui

)
∇θ = div (λc∇θ)− νI. (3)

Здесь ci — удельная теплоемкость i-й фазы при постоянном объеме; ν — удельная теплота

плавления льда; λc — теплопроводность снега.
Движение растворенной примеси описывается уравнением конвективной диффу-

зии [14]

∂

∂t
(φs1σ) + div (σv1 −D∇σ) = 0. (4)

Здесь σ — концентрация примеси; v1 — скорость фильтрации воды (vi = φsiui). В данной
работе для коэффициента диффузии D используется зависимость [15]

D = D0(1 + 0,029(θ − 293,15)),

где D0 = 1,39 · 10−9 м2/c.
Система (1)–(4) дополняется соотношениями ρ0

i = const > 0 (i = 1, 2, 3), ρ0
2 < ρ0

3 < ρ0
1.
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Для моделирования интенсивности фазового перехода лед — вода, как правило, ис-
пользуется методология решения задачи Стефана, т. е. предполагается, что существует
межфазная граница, на которой при определенной температуре происходит скачкообраз-
ный переход льда в воду. При таком подходе не требуется задавать интенсивность фазо-
вого перехода лед — вода. Предположение о существовании в системе четко выраженной
границы фазового перехода справедливо не всегда. Так, накопление примеси перед фрон-
том затвердевания, обусловленное ее вытеснением при увеличении объема твердой фазы,
приводит к возникновению перед границей жидкость — твердая фаза зоны концентраци-
онного переохлаждения.

Согласно другому подходу к описанию процесса таяния снега фазовый переход лед —
вода происходит во всей толще снежно-ледового покрова и для описания процесса рас-
пространения тепла нужно использовать уравнение вида (3) с измененной соответству-
ющим образом правой частью. Однако следует учитывать, что наличие примеси может
приводить к изменению температуры замерзания воды. Близкой к рассматриваемой зада-
че является задача о тепломассопереносе в протаивающих (промерзающих) грунтах [16].
Имеется ряд экспериментальных данных о зависимости концентраций льда и воды в по-
ристой среде от температуры [11, 13]. Используемые в данной работе зависимости для
интенсивности фазового перехода лед — вода предложены в работах [11, 12, 16]:

I =


−λ1φθs, θ < θ−,

0, θ− 6 θ 6 θ+,

λ2(1− φ)2 eβ(θ−θ+), θ > θ+.

(5)

Здесь s ≡ s1 — водонасыщенность (1−s = s2); θ+ — температура плавления льда; θ−(σ) —
температура замерзания воды; β, λ1, λ2 — размерные постоянные, характеризующие ин-
тенсивность фазового перехода ([β] = 1/K, [λ1] = кг/(м3 · c · K), [λ2] = кг/(м3 · c)).

Рассматривается следующая задача. В комнате с низкой температурой воздуха рас-
положен контейнер со снегом. Снег полагается однородным, рассматривается движение
воды и воздуха в снеге. На верхней границе задаются температура, давление воздуха,
концентрация растворенной соли, предполагается отсутствие ветра в комнате (v2 = 0).
На нижней границе известна температура и ставятся условия непротекания для всех фаз.
В начальный момент времени известны водонасыщенность, температура, концентрация
растворенной примеси и пористость.

2. Алгоритм численного решения одномерной задачи. Система (1)–(4) сводится
к пяти уравнениям для s, φ, θ, σ, p [11], где функция p (приведенное давление) задается
следующим образом:

p = p2 +

1∫
s

k01(ξ)

k(ξ)

∂pc

∂ξ
dξ. (6)

Перейдем к безразмерным переменным для одномерного случая (ось y направлена
вниз, y ∈ [0, l], t ∈ [0, t0]):

ỹ =
y

ysc
, t̃ =

t

tsc
, p̃ =

p

psc
, ṽ =

v

vsc
, θ̃ =

θ

θsc
.

Здесь ysc = l; psc = ρ0
1gl; температура θsc принимается равной температуре плавления

льда; vsc = Bρ0
1g/µ1; характерное время определяется соотношением tsc = ysc/vsc. Тогда

область изменения y есть единичный отрезок [0, 1], а система уравнений (1)–(4) в одно-
мерном случае принимает следующий вид [11]:

φ
∂s

∂t̃
=

∂

∂ỹ

(
ã

∂s

∂ỹ
+ bṽ + F̃

)
+ (1− s)

∂φ

∂t̃
,
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∂

∂ỹ

(
K̃

∂p̃

∂ỹ
+ f̃

)
=

(
1− ρ0

3

ρ0
1

)∂φ

∂t̃
, Q̃

∂θ̃

∂t̃
=

∂

∂ỹ

(
λ̃c

∂θ̃

∂ỹ

)
+ Ṽ

∂θ̃

∂ỹ
− χĨ,

∂φ

∂t̃
= Ĩ , φs

∂σ̃

∂t̃
− ∂

∂ỹ

(
D̃

∂σ̃

∂ỹ

)
+ ṽ1

∂σ̃

∂ỹ
= −σ̃

∂ṽ1

∂ỹ
− σ̃s

∂φ

∂t̃
− σ̃φ

∂s

∂t̃
.

Здесь χ = ν/(c3θsc) — безразмерная постоянная,

ṽ = ṽ1 + ṽ2 = −K̃
∂p̃

∂ỹ
− f̃ ,

K̃ = K̃0k̃, ṽ2 = ã
∂s

∂ỹ
+ bṽ + F̃ , b(s) =

k̄02

µk̄01 + k̄02
, µ =

µ2

µ1
,

ã(s, φ) = −K̃0
k̄01k̄02

µk̄01 + k̄02

∂p̃c

∂s
, F̃ = K̃0

k̄01k̄02(ρ
0
2/ρ

0
1 − 1)

µk̄01 + k̄02
, K̃0 =

Bρ0
1g

vscµ1

φ3

(1− φ)2
,

f̃ = −K̃0

(
k̄01 +

ρ0
2

ρ0
1µ

k̄02

)
, Q̃ =

ρ0
1c1

ρ0
3c3

sφ +
c2ρ

0
2

c3ρ0
3

(1− s)φ + 1− φ, k̃ = k̄01 +
k̄02

µ
,

λ̃c =
actsc

y2
scρ

0
3c3

(
1 +

bc

ac
ρ2

c

)
, Ṽ = −ρ0

1c1

ρ0
3c3

ṽ1 −
ρ0
2c2

ρ0
3c3

ṽ2,

Ĩ =
tsc
ρ0
3

I, D̃ =
tscD

y2
sc

.

Опуская символ “∼”, получаем

φ
∂s

∂t
=

∂

∂y

(
a(s, φ)

∂s

∂y
+ b(s)v + F (s, φ)

)
+ (1− s)

∂φ

∂t
; (7)

∂

∂y

(
K(s, φ)

∂p

∂y
+ f(s, φ)

)
=

(
1− ρ0

3

ρ0
1

)∂φ

∂t
; (8)

Q(s, θ)
∂θ

∂t
=

∂

∂y

(
λc

∂θ

∂y

)
+ V (v1, v2)

∂θ

∂y
− χI; (9)

∂φ

∂t
= I; (10)

φs
∂σ

∂t
− ∂

∂y

(
D

∂σ

∂y

)
+ v1

∂σ

∂y
= −σ

∂v1

∂y
− σs

∂φ

∂t
− σφ

∂s

∂t
. (11)

Следует отметить, что v является искомой функцией и определяется при решении зада-
чи [11].

В качестве начала отсчета выбрана поверхность снежного покрова, ось y направлена
вниз (y ∈ [0, l]). Начальные и граничные условия задавались в виде

s(x, 0) = s0(x), θ(x, 0) = θ0(x), σ(x, 0) = σ0(x), φ(x, 0) = φ0(x); (12)

p2(0, t) = pa, θ(0, t) = θ∗(t), σ(0, t) = σ∗(t) (13)

(pa — атмосферное давление). Из условия v2|y=0 = 0 (предполагается отсутствие ветра в
комнате) следует условие для водонасыщенности

a
∂s

∂y
(0, t) = −F − b(s)v1. (14)
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Используя (2), (6), получаем граничное условие для приведенного давления

p(0, t) = pa +

1∫
s(0,t)

k01(ξ)

k(ξ)

∂pc

∂ξ
dξ. (15)

На нижней границе задавались температура θ(l, t) = θl(t) и условия непротекания для во-
ды, воздуха и растворенной соли. Из представления для суммарной скорости при v|y=l = 0
получаем условие для приведенного давления (∂p/∂y)(l, t) = −f/K. Для водонасыщенно-
сти при v2|y=l = 0 выполнено условие

a
∂s

∂y
(l, t) = −F. (16)

Для концентрации растворенной соли аналогично получаем (∂σ/∂y)(l, t) = 0.
Введем сетку с распределенными узлами yi = ih, tn = nτ (i = 0, . . . , N ; n = 0, . . . , T ;

h — шаг по пространственной координате; τ — шаг по времени). Уравнение (7) аппрокси-
мировалось на основе разностной схемы для модели Маскета — Леверетта с использова-
нием направленной разности для конвективного слагаемого [17]. Разностная схема первого
порядка точности по пространственной координате и времени имеет вид

φn
i

sn+1
i − sn

i

τ
= an

i+1/2

sn+1
i+1 − sn+1

i

h2
− an

i−1/2

sn+1
i − sn+1

i−1

h2
+

(
1− sn

i + b(sn
i )− b(sn

i )
ρ0
3

ρ0
1

)
In
i +

+
(|Gn

i |+ Gn
i )sn+1

i+1 − 2|Gn
i |s

n+1
i + (|Gn

i | −Gn
i )sn+1

i−1

2h
+ Fn

φi

φn
i+1 − φn

i−1

2h
. (17)

Здесь

an
i−1/2 =

2a(sn
i−1, φ

n
i−1)a(sn

i , φn
i )

a(sn
i−1, φ

n
i−1) + a(sn

i , φn
i )

, an
i+1/2 =

2a(sn
i+1, φ

n
i+1)a(sn

i , φn
i )

a(sn
i+1, φ

n
i+1) + a(sn

i , φn
i )

,

Fn
si =

∂F

∂s
(sn

i , φn
i ), Fn

φi =
∂F

∂φ
(sn

i , φn
i ), Gn

i =
∂F

∂s
(sn

i , φn
i ) + vn

i
∂b

∂s
(sn

i ),

(18)

i = 1, . . . , N − 1, τ = 0, . . . , T − 1.

Уравнение (8) аппроксимируется неявной схемой второго порядка точности. В резуль-
тате получаем следующую систему разностных уравнений:

Kn
i+1/2

pn
i+1 − pn

i

h2
−Kn

i−1/2

pn
i − pn

i−1

h2
+ fn

si

sn
i+1 − sn

i−1

2h
+

+ fn
φi

φn
i+1 − φn

i−1

2h
=

(
1− ρ0

3

ρ0
1

)
In
i . (19)

При аппроксимации уравнений для температуры (9) и концентрации примеси (11)
используется направленная разность для конвективных слагаемых. Разностная схема пер-
вого порядка по пространственной переменной и времени имеет вид

Q(sn
i , φn

i )
θn+1
i − θn

i

τ
=

1

h2
(λn

ci+1/2(θ
n+1
i+1 − θn+1

i )− λn
ci−1/2(θ

n+1
i − θn+1

i−1 )) +

+
(|V n

i |+ V n
i )θn+1

i+1 − 2|V n
i |θ

n+1
i + (|V n

i | − V n
i )θn+1

i−1

2h
− χIn

i ; (20)
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φn
i sn

i

σn+1
i − σn

i

τ
−Dn

i+1/2

σn+1
i+1 − σn+1

i

h2
+ Dn

i−1/2

σn+1
i − σn+1

i−1

h2
+

+
(|vn

1i|+ vn
1i)σ

n+1
i+1 − 2|vn

1i|σ
n+1
i + (|vn

1i| − vn
1i)σ

n+1
i−1

2h
=

= −σn
i

vn
1i+1 − vn

1i−1

2h
− σn

i sn
i

φn+1
i − φn

i

τ
− σn

i φn
i

sn+1
i − sn

i

τ
. (21)

Для аппроксимации граничных условий уравнения для водонасыщенности использо-
вался подход, предложенный в работе [18]. Предполагается, что уравнение (7) справедливо
также на границах x = 0 и x = l. Рассмотрим границу x = 0. Используя уравнение (7),
получаем разностную аппроксимацию граничного условия (14) со вторым порядком точ-
ности

an
1/2

sn+1
1 − sn+1

0

h
= −F (sn

0 , φn
0 )− b(sn

0 )(v1)
n
0 +

h

2
B, (22)

где a1/2 определяется по формуле (18),

B = φn
0

sn+1
0 − sn

0

τ
− (1− sn

0 )In
0 −

∂F

∂s

sn+1
1 − sn+1

0

h
− ∂F

∂φ
In
0 .

Аналогично строится разностная аппроксимация для краевого условия (16). Остальные
краевые условия второго рода аппроксимируются с первым порядком точности.

Системы линейных алгебраических уравнений (17)–(22), полученные в результате ап-
проксимации уравнений (7)–(11) и граничных условий (12)–(16), решаются методом про-
гонки [19].

Уравнение (10) аппроксимируется неявной схемой Рунге — Кутты второго порядка

точности, причем найденное на первом этапе значение

φ̃n+1
i = φn

i + τIn
i (23)

уточняется затем следующим образом:

φn+1
i = φn

i + τ
I(φn

i , sn
i ) + I(φ̃n

i , sn
i )

2
. (24)

Здесь

Kn
i−1/2 =

2K(φn
i−1, s

n
i−1)K(φn
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i )

K(φn
i−1, s

n
i−1) + K(φn
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, Kn
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n
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n
i−1, s

n
i−1)λc(φ

n
i , sn

i )

λc(φn
i−1, s

n
i−1) + λc(φn

i , sn
i )

, λci+1/2 =
2λc(φ

n
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n
i+1)λc(φ
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i , sn

i )

λc(φn
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i , sn
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,

fn
si =

∂f

∂s
(sn

i , φn
i ), fn

φi =
∂f

∂φ
(sn

i , φn
i ),

Dn
i−1/2 =

2D(vn
1i−1)D(vn

1i)

D(vn
1i−1) + D(vn

1i)
, Dn

i+1/2 =
2D(vn

1i+1)D(vn
1i)

D(vn
1i+1) + D(vn

1i)
,

i = 1, . . . , N − 1, τ = 0, . . . , T − 1.

Используется следующий алгоритм численного решения начально-краевой задачи.
С помощью начального значения пористости φ0

i , температуры θ0
i и концентрации s0

i нахо-
дим начальное распределение приведенного давления p0

i (i = 0, . . . , N) из уравнения (19).
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Используя найденное давление, определяем скорость фильтрации v0
i . Из равенства (20)

получаем температуру θ1
i на следующем шаге по времени. Из равенства (23) находим

пористость снега φ1
i на следующем шаге по времени. Из уравнения (17) определяем кон-

центрацию воды s1
i . Рассчитываем давление на следующем шаге по времени. Используя

найденные значения искомых функций φ̃1
i , s1

i , p1
i , θ1

i , выполняем коррекцию значения пори-
стости на первом шаге по времени с помощью формулы (24). С использованием начального
значения концентрации примеси σ0

i , найденных значений скорости фильтрации и водонасы-
щенности из уравнения (21) получаем распределение концентрации примеси σ1

i в тающем

снеге. Повторяя данный алгоритм для следующих шагов по времени, вычисляем значения
искомых функций на всем временном интервале.

3. Численные эксперименты. В численных расчетах использовались следующие
значения модельных параметров: p2(0, t) = 101 кПа, l = 0,25 м, g = 9,8 м/с2, k0i = s2

i
при 0 6 s 6 1, k0i = 0 при si 6 0, k0i = 1 при si > 1, ρ0

1 = 103 кг/м3, ρ0
2 = 1,292 кг/м3,

ρ0
3 = 916,2 кг/м3, t0 = 4000 c, µ1 = 2·10−3 кг/(м · c), µ2 = 2·10−5 кг/(м · c), ν = 333,8 Дж/г,

c1 = 4,18 Дж/(г ·K), c2 = 0,838 Дж/(г ·K), c3 = 2,06 Дж/(г ·K).
При численном исследовании системы дифференциальных уравнений (7)–(11) для ка-

пиллярного давления использовалась зависимость [5, 6]

pc = γ(s−1/m − 1)1/n,

где γ — размерная постоянная, Па; m, n — заданные постоянные (в численных расчетах
γ = 0,02 Па, m = n = 1 [5. C. 374]).

Коэффициент проницаемости определяется зависимостью K0 = bφm (значения пара-
метров b и m получены при анализе экспериментальных данных работы [13]).

Для определения интенсивности фазового перехода использовалась зависимость (5)
при следующих значениях постоянных: β = 1 K−1, λ1 = 10−3 кг/(м3 · c ·K), λ2 = 3 ×
10−3 кг/(м3 · c). Эти параметры определены в работе [11] путем подбора в ходе решения
задачи и сопоставления результатов моделирования и экспериментальных данных.

В работе [20. C. 63] теплопроводность снега λc определяется на основе теории тепло-
проводности многокомпонентных систем и задается следующей зависимостью:

λc = (λaϕ + λi(1− ϕ)βc)/(ϕ + (1− ϕ)βc).

Здесь ϕ = 1 − ρc/ρ
0
3; βc — безразмерный параметр (в численных расчетах βc = 0,21); λa,

λi — теплопроводность воздуха и льда соответственно.
Существенным является учет зависимости температуры замерзания θ− от солености

воды θ− = −γσ, где постоянная γ = 55 · 10−6 ◦C. Эмпирическая зависимость проверена с
использованием экспериментальных данных [21].

Для определения влияния растворенной соли в фильтрующейся воде на фазовый пе-
реход проведено два численных эксперимента: 1) на поверхности снега отсутствует слой
соли (σ(y, t) = 0); 2) на поверхности снега имеется слой соленой воды толщиной 2 см
(рис. 1–4).

На верхней границе (y = 0) температура в начальный момент времени составляла
−1 ◦C и затем линейно возрастала до 3 ◦C, задавались граничные условия (13)–(15), при
этом концентрация соли в воде полагалась постоянной: σ(0, t) = 35 %0. На нижней границе
поддерживалась отрицательная температура T = −1 ◦C. На границе рассматриваемой
области y = l задавалось условие непротекания (16).

В начальный момент времени пористость полагалась постоянной: φ(y, 0) = 0,3, а во-
донасыщенность задавалась равной s(x, 0) = 0,1.

При отрицательной температуре в первом численном эксперименте пористость умень-
шается (при t = 0÷ 1000 с), вода в снеге замерзает, водонасыщенность уменьшается (см.
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Рис. 1. Распределения пористости в слое снега, полученные в численных экс-
перименте 1 (а) и эксперименте 2 (б)

рис. 2,а), но при увеличении температуры на поверхности снега верхний слой начинает
таять, образующаяся при этом вода фильтруется в нижние слои и продолжает замерзать
(см. рис. 1,а).

Во втором численном эксперименте растворенная в фильтрующейся воде соль оказы-
вает влияние на фазовый переход и пористость. В верхнем слое толщиной 2 см пористость
не уменьшалась, вода не замерзала. В нижних слоях снега пористость перестала изменять-
ся, когда соленая вода распределилась по всему слою снега. Заметим, что концентрация
соли в воде увеличивалась, так как в нижних слоях вода замерзала при меньшей темпе-
ратуре (см. рис. 3). Температура на поверхности слоя линейно увеличивалась, и снег на-
чинал таять. Концентрация соли в воде начала уменьшаться (талая вода увеличивает
водонасыщенность), а на дне сформировался слой с меньшей пористостью (см. рис. 1,б).
Распределения водонасыщенности в двух численных экспериментах также различаются.
Соленая вода в нижних слоях полностью не замерзала, при t > 1500 с водонасыщенность
возрастала во всем слое снега (см. рис. 2,б).
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Рис. 2. Распределения водонасыщенности, полученные в численных экспери-
менте 1 (а) и эксперименте 2 (б)

Таким образом, результаты численных расчетов хорошо согласуются с результатами
экспериментов. Предложенная математическая модель позволяет учитывать концентра-
ционное переохлаждение воды. Следует отметить, что в численных экспериментах, опи-
санных в работах [8, 10, 11], получены близкие результаты, но движение консервативной
примеси (соли) в тающем снеге не учитывалось.

Устойчивость и порядок сходимости вычислительного алгоритма проверялись в вы-
числительных экспериментах с использованием известного правила Рунге [19. С. 75]: до-
статочно провести три расчета на сетках c шагами h1 = h, h2 = h/2, h3 = h/4, τi = λhi,
i = 1, 2, 3, h = 0,000 01, λ = 100. В численном эксперименте определялись водонасыщен-
ность s, пористость, температура, давление и концентрация соли. В рассматриваемой за-
даче порядок сходимости R ≈ 1, приближенно определяемая относительная погрешность
ε ≈ 0,1 %, что вполне приемлемо при решении практических задач.

Заключение. Предложена математическая модель движения примеси, растворенной
в тающем снеге. В рамках полученной модели построен конечно-разностный алгоритм и
выполнены численные эксперименты для одномерной задачи о фильтрации воды и воздуха
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Рис. 3. Распределение концентрации соли, полученное в численном эксперимен-
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Рис. 4. Распределение температуры, полученное в численном эксперименте 2

в тающем снеге, исследовано изменение концентрации соли в тающем снеге. Численные
расчеты позволили оценить влияние растворенной соли на фазовый переход. Результаты
этих расчетов согласуются c экспериментальными данными. С использованием известных
экспериментальных данных проведена верификация теплопроводности снега и эмпириче-
ской зависимости температуры замерзания от солености воды.
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