УДК 553.061.2:546.65:550.42:553.064/065(571.55)

РЕЛКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ КАК ИНЛИКАТОРЫ ИСТОЧНИКОВ РУЛНОГО ВЕЩЕСТВА, СТЕПЕНИ ДИФФЕРЕНЦИАЦИИ И РУДОНОСНОСТИ ИНТРУЗИЙ РЕДКОМЕТАЛЛЬНЫХ ГРАНИТОВ (Восточное Забайкалье)

В.Л. Козлов

Институт геохимии СО РАН, 664033, Иркутск, ул. Фаворского, 1а, Россия

На основе анализа нормированных по метеоритному веществу диаграмм спектров редкоземельных элементов (РЗЭ) рассмотрены особенности распределения РЗЭ в разновидностях гранитов редкометалльных интрузий рудоносного кукульбейского комплекса (J₂—J₃) Восточного Забайкалья. Показано, что обогащенность интрузий комплекса гранитофильными летучими и редкими элементами (редкометалльность интрузий) являлась их изначальной особенностью и с дифференциацией исходных магматических очагов не связана. В процессе дифференциации редкометалльных интрузий кукульбейского комплекса устанавливается четкое снижение концентраций РЗЭ от гранитов главной интрузивной фазы (ГФ) к поздним лейкогранитным дифференциатам интрузий, представленным разновидностями мусковитовых и амазонитовых гранитов, при одновременном усилении обогащения названных дифференциатов гранитофильными элементами и резком возрастании уровня их редкометалльности по сравнению с гранитами ГФ. При этом реально рудоносные тела мусковитовых и амазонитовых гранитов выделяются резко пониженными концентрациями РЗЭ и самыми высокими концентрациями гранитофильных, включая рудогенные, элементов.

Вместе с тем показано, что установленные для дифференциатов интрузий кукульбейского комплекса закономерности в распределении РЗЭ среди редкометалльных интрузий неуниверсальны. На примере редкометалльных высокорудоносных гранитных интрузий Рудных Гор Центральной Европы по литературным источникам устанавливается, что их поздние глубинные дифференциаты, представленные ультраредкометалльными литионит-циннвальдитовыми Li-F гранитами и сопровождающиеся высокопродуктивным Sn-W оруденением, характеризуются одновременным концентрированием как гранитофильных, так и РЗЭ, особенно тяжелых. Среди изученных забайкальских редкометалльных интрузий кукульбейского комплекса к подобному типу относятся только дифференциаты наиболее рудоносной Шерловогорской интрузивной системы. Проведенный анализ распределения РЗЭ в разновидностях гранитов кукульбейского комплекса Забайкалья подтвердил сделанный ранее вывод о сравнительно невысокой продуктивности связанного с комплексом редкометалльного оруденения.

Редкоземельные элементы, магматическая дифференциация, редкометалльные граниты, гранитофильные редкие элементы, редкометалльная минерализация, рудоносность.

RARE-EARTH ELEMENTS AS INDICATORS OF ORE SOURCES AND THE DEGREE OF DIFFERENTIATION AND ORE POTENTIAL OF RARE-METAL GRANITE INTRUSIONS (eastern Transbaikalia)

V.D. Kozlov

The meteoritic-material-normalized REE patterns of rare-metal granite intrusions of the ore-bearing Kukul'bei complex (J,-J,), eastern Transbaikalia, were studied. It is shown that the intrusions were initially enriched in granitophile volatiles and trace elements (rare metals), i.e., this phenomenon is not related to the differentiation of their parental magma chambers. On the differentiation of the Kukul'bei rare-metal intrusions, the REE contents decrease in passing from granites of the main intrusive phase (MP) to late leucocratic differentiates (muscovite and amazonite granites), the differentiates become more enriched in granitophile elements, and their rare-metal contents drastically increase as compared with the MP granites. The ore-bearing bodies of muscovite and amazonite granites have extremely low REE contents and the highest contents of granitophile (including ore-forming) elements.

The REE patterns of the Kukul'bei intrusive differentiates are not universal among rare-metal intrusions. By the example of highly ore-bearing rare-metal granite intrusions of the Erzgebirge, Central Europe, it has been established that their late deep-seated differentiates (ultrarare-metal lithionite-zinnwaldite Li-F-granites) accompanied by highly productive Sn-W mineralization concentrate both granitophile elements and REE (particularly HREE). Among the studied Transbaikalian rare-metal intrusions of the Kukul'bei complex, only the differentiates of the most ore-bearing Sherlova Gora intrusive system belong to the above type. The analysis of the REE patterns of the Kukul'bei granites confirmed the earlier conclusions on the low ore potential of the rare-metal mineralization of the studied intrusive complex.

Rare-earth elements, magmatic differentiation, rare-metal granites, granitophile trace elements, rare-metal mineralization, ore potential

введение

Работа посвящена выявлению особенностей распределения РЗЭ в разновидностях гранитов — дифференциатах гипабиссальных рудоносных интрузий Агинской зоны Восточного Забайкалья представляющих наиболее продуктивную часть оловянно-вольфрамового металлогенического пояса региона [Смирнов, 1936]. Интрузии прорывают с ороговикованием разновозрастные (T—PR₃) песчано-сланцевые породы, традиционно объединяются в гранит-лейкогранитный рудоносный кукульбейский комплекс среднепозднеюрского возраста, представленный, как ранее установлено, разновидностями редкометалльных гранитов, обогащенных так называемыми некогерентными (гранитофильными) редкими элементами (рис. 1) [Козлов, Свадковская, 1977; Козлов, 1985; Костицын и др., 2000]. Интрузии комплекса сопровождаются оловянно-вольфрамовым, а также редкометалльным (Li, Be, Ta) оруденением разной интенсивности — магматогенным в литий-фтористых (альбит-литионитовых амазонитовых) гранитах, грейзеновым, кварцево-жильным, а также пегматитовым эндо- и экзоконтактовым [Этыкинское..., 1963; Месторождения..., 1995]. На схеме (см. рис. 1) названы массивы комплекса, в разновидностях гранитов которых было изучено распределение РЗЭ. Систематического изучения распределения в разновидностях гранитов комплекса редкоземельных элементов ранее не проводилось.

Целью настоящей работы являлся анализ как степени генетического единства гранитоидов кукульбейского комплекса по данным их редкоземельных спектров, так и корреляции этих результатов с охарактеризованными в предыдущих работах автора уровнями редкометалльности и степенью рудоносности разновидностей гранитов [Козлов, 2005а].

Спектры РЗЭ в гранитах комплекса изучены по данным анализа сборных проб, объединяющих обычно не более десятка единичных геохимических проб, принадлежащих одной разновидности гранитов

Рис. 1. Массивы (многофазные интрузии) кукульбейского редкометалльного рудоносного гранитного комплекса (J₂—J₃) на территории Агинской структурно-формационной зоны Восточного Забайкалья.

I — массивы кукульбейского комплекса (приведены названия массивов, в разновидностях гранитов которых изучено распределение РЗЭ, см. табл. 1); 1—3, 6, 7 — массивы Кулиндинской интрузии; 2 — массивы шахтаминского габбро-диорит-гранодиоритового комплекса (J_2 — J_3); 3 — массивы борщовочного гнейсогранит-гранитного комплекса (J_2 — J_3); 4 — массивы батолитовых гранодиорит-гранитных комплексов: кыринского (T— J_2) на западе и ундинского (P_2 —T) на востоке. Вмещающие породы: песчаносланцевые (T_1) в западной половине территории рис. 1, песчано-сланцевые и эффузивные метаморфизованные (PR_3), а также песчано-сланцевые с эффузивами (C_1 — P_2) в восточной половине. конкретного объекта (массива, фации и т.п.). Представительность объединенных проб была неоднократно апробирована [Козлов, 2005а], благодаря их использованию редкоземельные спектры изучены для подавляющего большинства разновидностей редкометалльных гранитов кукульбейского комплекса региона. Полученные с помощью ICP-MS результаты аналитических исследований, дополненные сведениями по петрохимии гранитов и концентрациям в них типоморфных гранитофильных редких элементов [Козлов, 2005б] по данным прежних исследований, приведены в сводной табл. 1, расчет кларков концентраций лантаноидов (КК) проведен по средним концентрациям (кларкам) лантаноидов в гранитах, по [Овчинников, 1990].

ОСОБЕННОСТИ РЕДКОЗЕМЕЛЬНЫХ СПЕКТРОВ В ГРАНИТОИДАХ КУКУЛЬБЕЙСКОГО КОМПЛЕКСА

Проведенный анализ спектров РЗЭ в гранитах Забайкалья базировался на установленных основных положениях распределения редкоземельных элементов в гранитоидах [Балашов, 1976, 1985; Солодов и др., 1987]:

1) связь легких лантаноидов (цериевая группа, La—Nd [Солодов и др., 1987]) главным образом с полевыми шпатами, а тяжелых (иттриевая группа, Sm—Lu) — со слюдами и акцессорными минералами, главными концентраторами всех РЗЭ являются апатит и флюорит;

2) рассеяние основной массы РЗЭ гранитов в Са-содержащих минералах, благодаря которому в последовательных дифференциатах гранитных интрузий наблюдается снижение суммы РЗЭ по мере снижения концентраций кальция, и в особенности, плагиоклазовой составляющей в кислых дифференциатах;

 появление в нормированных по метеоритному веществу спектрах РЗЭ недостатка Еu-минимума и однонаправленное усиление его в последовательных дифференциатах гранитных интрузий благодаря особенно тесным связям двухвалентного европия с Ca, Sr, Ba, концентрации последних в процессе дифференциации резко снижаются;

4) активная роль летучих компонентов расплавов (PO_4^{3-} , CO_3^{2-} , B, Cl⁻, F⁻, H₂O) в перераспределении редкоземельных элементов, которые могут концентрироваться в микровыделениях многочисленных P3Э-содержащих минералов, парагенных со всеми породообразующими элементами [Солодов и др., 1987].

Сказанное иллюстрируется редкоземельными спектрами редкометалльных гранитов Рудных Гор Центральной Европы — эталонного региона в отношении связанного с гранитами Sn-W, а также U оруденения [Козлов, 2000а,б]. Согласно данным Г. Тишендорфа с коллегами [Silicic..., 1989], разновидности гранитов Рудных Гор — дифференциаты раннего горского (OIC) комплекса и позднего рудоносного рудогорского (YIC) — представляют классический пример снижения в последовательных дифференциатах концентраций редких земель при одновременном усилении Еu-минимума (рис. 2). На диаграмме дифференциаты горского и рудогорского комплексов представлены спектрами РЗЭ в гранитах их

Рис. 2. Распределение нормированных концентраций редкоземельных элементов (спектры РЗЭ) в редкометалльных рудоносных гранитах Рудных Гор Центральной Европы.

Нормирование концентраций РЗЭ в рассматриваемых гранитоидах проведено по составу хондрита *C*1 [Тейлор, Мак-Леннан, 1988].

OIC — древний комплекс (косая штриховка), YIC — молодой комплекс (вертикальная штриховка); OIC₁ и YIC₁— граниты и лейкограниты главных фаз, OIC₃ и YIC₃ — лейкограниты фазы дополнительных интрузий соответственно, YIC_m — ультраредкометалльные граниты штоков и куполов заключительной фазы молодого комплекса; YIC_{1/1}— купол Викманов; GR — грейзены молодого комплекса; D — монцосиениты (дурбахиты) Среднечешского массива.

1 — гранитоиды ранней фазы (РФ), 2 — граниты главной фазы (ГФ), 3 — лейкограниты фазы дополнительных интрузий (ФДИ) и заключительной фазы (ЗФ), 4 — двуслюдяные граниты ФДИ и ЗФ, 5 — мусковитовые пегматитоносные лейкограниты ФДИ и ЗФ, 6 — мусковитовые лейкограниты куполов ГФ (купольные), 7 — мусковитовые граниты грейзенизированные и грейзены, 8 — ультраредкометалльные субвулканические тела и дайки, включая онгониты, 10 — ультраредкометалльные амазонитовые граниты ЗФ, 11 — монцосиениты (дурбахиты).

	Хангилайская интрузия										
			Хангил	айский массив	Спокойнинский купол Орловский ку						
	Грани	т ГФ	Ð					Гран	1771 1	Граниты амазо-	
Компонент	т рани биоти	гы г Ф говые	3 Φ(?)	Да	йки ЗФ(?)		экзокон-	грейзенизированные		нитовые литий-	
	_				_		такта	- p	P	фторі	истые
	Пери-	Массив	Граниты мус-	Гранит-порфи-	Трахирио-	Риолиты ¹	Граниты	умеренно	интен-	Пo ²	Пo ³
	ферия	2	2	ры периферии	дациты	6	мусков. 7	0	О	10	11
SiO waa %	72.62	2 74.01	75.07	7/ 2/	67.24	74.10	75.52	76.00	9	71.20	71.99
SIO ₂ , мас. 70 ТіО	0.26	0.22	0.06	0.66	0.24	0.21	< 0.01	0.05	0.03	0.01	0.01
Al ₂ O ₂	14 31	14 10	14 32	14 68	16 73	14 29	14 69	14 10	11.88	16 31	15.97
Fe ₂ O ₂	0.66	0.74	0.42	0.35	1.78	0.70	0.45	0.17	0.53	0.48	0.46
FeO	1.60	0.72	0.25	0.30			0.21	0.46	0.27	0.65	0.52
MnO	0.40	0.02	0.01	0.04	0.13	0.03	0.10	0.12	0.15	0.25	0.24
MgO	0.50	0.33	0.12	0.12	1.15	0.82	0.05	0.20	0.09	0.20	0.14
CaO	1.70	0.53	0.18	0.72	0.08	0.02	0.23	0.28	0.26	0.42	0.27
Na ₂ O	3.20	3.61	3.70	4.16	0.61	1.01	4.68	3.62	0.34	5.24	5.65
K ₂ O	4.50	4.72	4.28	3.66	10.32	7.62	2.92	3.38	3.58	3.88	2.98
P_2O_5	0.60	0.04	0.01	0.02	0.06	0.05	0.02	0.08	0.03	0.02	_
П.п.п.	0.75	0.83	0.80	1.4/	0.94	0.90	0.71	1.32	1.45	0.29	08 12
Z N	27.55	20	2	29.92	99.20	1	55.55	22.07	33.13	77.14	70.12
IV B r/r	3 20	20	38	3 240	2	1	0 56	2	4 320		/
Б, 1/1 F	530	880	800	300	1750	1800	840	1800	2850	6900	12 000
Li	18	126	90	15	~500	180	45	120	120		1175
Rb	120	330	380	120	1620	~600	460	470	470	1000	1225
Cs	5	16	20	5	53	25	18	70	37.5	18	31
Be	3.7	6.7	4.4	2.0	19.3	4.6	39	27	43		5
Sr	330	140	40	125	57	63	60	100	60	20	6
Ba	550	320	100	430	1200	950	70	100	30	32	55
Sn	3.2	9.6	12.5	2.4	~70	30	45	54	65	_	11
W	~0.1	4.8	~9		17	2.8	>60	>80	>80		11
Мо	1.1	0.9	0.5	0.3	_	_	1.9	0.6	0.4	_	_
Pb	39	47	50	48	—	—	15	37	24	_	_
Nb	14	21	28.1	16	24	18	81	84	80	81	84
Та	1.1	3.3	7.7		3.9	4.1	10	—	18	55	75
Th	14.3	37	18	5.7	17.6	15.1	5.9	—	7.2	14	_
U	3.8	8.5	10.5	2.6	5.1	4.0	1.8		2.6	2	—
Y Lo	11	20.6	17.4	11.2	35.2 45.2	39.5 22.4	4.2	9	5.2 2.0	5.0	_
La	37.5	55.0 68.9	27.3	3.0	43.2	53.4 58.8	65.3	20	5.9 4.2	3.9	_
Pr	13	7.0	3.8	1.0	13.3	9.6	8.4	~20	1.0	17	
Nd	ч. <i>3</i> 14 7	26.5	13.8	43	46.2	31.6	30	9	3.8	69	
Sm	3.0	5.3	3.8	1.6	11.0	7.9	5.2	_	1.4	2	
Eu	0.66	0.5	0.15	0.5	0.95	0.77	1.48	—	0.07	0.07	
Gd	2.4	4	2.9	1.9	8.4	7.0	4.2	—	1.2	1.4	_
Tb	0.35	0.7	0.6	0.32	1.3	1.1	0.6	—	0.22		—
Dy	1.9	3.5	3.1	1.9	14.5	7.5	3.1	—	1.0		—
Но	0.37	0.6	0.6	0.37	1.5	1.6	0.6	—	0.14		
Er	1.0	1.8	1.8	0.9	4.0	4.8	1.6	_	0.33		_
1 m Vh	0.19	0.3	0.3	1.18	0.62	0.68	0.25	0.7	0.07	0.75	_
10	0.19	0.24	0.27	0.14	4.2	4.5	0.21	~0.7	0.5	0.75	
Lu	0.18	20	0.27	0.14	0.02	0.08	6	2	0.07	0.5	103
n Eu/Eu*	0.75	0.33	0 14	0.88	0 29	0 33	0.97		016	0.13	105
ΣTR	85.55	155.74	73.22	20.61	253.39	169.93	158.24		17.9		_
KK,	0.45	0.82	0.39	0.11	1.34	0.90	0.83		0.09		
ΣTR_{c}	74.5	137.1	57.8	11.8	188.3	133.4	139.6		12.9		
KK ₂	0.47	0.87	0.36	0.07	1.19	0.84	0.88		0.08		_
$\Sigma T \dot{R}_{v}$	11.05	18.64	15.4	8.81	47.09	36.53	18.64		5		
KK3	0.35	0.59	0.49	0.28	1.5	1.16	0.59		0.16		—

Таблица	1.	Петрохимическая, редкоэлементная гранитофильная и редкоземельная характеристики гранитов
	ŀ	интрузий рудоносного средневерхнеюрского кукульбейского комплекса Восточного Забайкалья

		Caxa	анайская интр	узия	Дурулгуевская интрузия				
	Саханайся	кий массив	Зун-Ундурский массив Дурулгуевский купол						Восточная часть
Компонент	Граниты Гф биоти	Граниты	Граниты ФШИ тру	Грани мусков	ты ЗФ итовые	Граниты	Граниты ФДИ мусковитовые		
	товые	слюдяные	слюдяные	апикальн.	внутренние	биотитовые	двуслю- дяные	мусковитов. купольные	пегматито- носные
	12	13	14	15	16	17	18	19	20
SiO ₂ , мас.%	73.43	75.05	74.86	74.33	74.24	73.12	73.13	74.05	74.30
TiO ₂	0.23	0.17	0.04	0.03	0.03	0.29	0.23	0.05	0.06
Al ₂ O ₃	13.95	12.54	14.03	13.38	13.40	14.11	15.30	15.33	15.00
Fe_2O_3	0.34	0.60	0.45	0.37	0.50	0.22	0.36	0.24	0.41
MnO	2.08	0.06	0.04	0.08	0.08	0.04	0.07	0.14	0.52
MgO	0.21	0.27	0.20	0.11	0.11	0.45	0.33	н.о.	н.о.
CaO	0.83	0.77	0.42	0.32	0.45	0.95	0.83	0.35	0.52
Na ₂ O	3.52	3.65	3.88	3.69	3.98	3.40	3.50	3.67	4.11
K ₂ O	4.83	4.42	4.49	4.12	4.09	5.07	4.26	4.15	3.80
P_2O_5	0.07	0.06	Н.Д. 0.04	н.д.	н.д. 1.02	0.16	0.11	0.27	0.02
П.п.п.	0.65	0.47	0.84	0.86	1.02	0.55	0.85	0.83	0.67
2 N	6	2	3	39.90	2	100.20	5	3	99.52
В г/т	0 54	96	100	45	37	20	30	29	22
Б, 171 F	1300	1800	2250	2850	3700	750	~1100	1800	350
Li	110	200	170	270	300	120	200	260	45
Rb	270	300	330	450	445	270	300	560	275
Cs	18	30	32	40	36	17	27	53	8
Be	5.9	13	13	20	23	6.6	11.5	25.3	14
Sr	130	120	90 150	80	45	200	100	50	30
Ba	300	270	150	130	120	320	150	45	60 16
SII W	15	25	20 7.8	~40	14	15	~23	42 >200	10
w Mo	5.5	4.4	7.0	0.7	14	~1.3	~/	-200	4.7
Ph	25	1.5	21	20	1.0	24	21	~5	21
Nb	19	20	21	32	28	24	19	38	30
Та	3.6	4.1	7.6	14	13	3.5	3.5	17	11
Th	32	31	19	10	13	29	18	5.4	8.4
U	13.4	20	19	9.6	15.4	11.9	12.2	15	4.6
Y	31.3	21	13.7	14.1	10.3	22.8	12	7.8	20.8
La	38.6	35	13.4	11.6	8.1	38.2	18.6	5.5	4.7
Ce Pr	86.7 10.7	/8.2	28	25	15.6	81.8	37.3	12.3	11.1
Nd	40.2	36.2	15.5	97	10.6	31.5	14 7	5.0	49
Sm	8.7	7.1	3.7	2.5	2.7	5.9	2.6	1.1	1.7
Eu	0.74	0.77	0.33	0.15	0.21	0.54	0.37	0.1	0.07
Gd	6.8	6	3.6	2.4	2.6	5.0	2.1	1.1	1.6
Tb	1.1	0.94	0.6	0.3	0.45	0.63	0.31	0.22	0.3
Dy Ho	1 22	5.2	3.8	2.4	2.8	4.1	2.2	1.4	2.7
Fr	3.9	27	1.7	1 1	1.40	2.1	1.2	0.23	1.9
Tm	0.6	0.4	0.24	0.14	0.22	0.32	0.26	0.1	0.31
Yb	3.8	2.7	1.5	1.14	1.5	2.2	0.8	0.9	2.4
Lu	0.58	0.39	0.19	0.11	0.19	0.35	0.17	0.12	0.35
n	13	3	10	6	5	9	10	6	11
Eu/Eu*	0.29	0.36	0.28	0.18	0.24	0.31	0.47	0.28	0.13
ΣTR	210.65	185.9	/6.98	59.75	61.63	182.63	85.22	30.13	33.99
КК ₁ БТР	1.11	0.99	0.41	0.31	0.32	0.96	0.45	0.16	0.18
ΣIR_{Ce}	1/0.2	138.8	00.7	49.1	49.1	10/./	/4.8	24.2	22.1
кк ₂ std	1.11	1.00	0.38	0.31	0.31	21.01	0.47 10.42	0.15	0.14
21Ky KK	ט יו.יו ט 1 1	0.96	0.52	0.03	0.40	21.73 0.70	0.22	0.10	0.29
1X1X3	1.1	0.00	0.32	0.34	0.40	0.70	0.33	0.19	0.30

Продолжение табл. 1

Кулинд	инская интр	узия, масо	сивы (№ мас	сива соотв. р	ис. 1)	Кангинская интрузия					
1	2	3		6	7	Седлов-	Малокан	THIORIN			Белухин-
		Гроници ГФ		Граниты	3Ф	ский	массив. пра	пинскии авобережье	Завитински	не массивы,	ский
	Граниты	т ран биот	иты I Ф титовые	мусковит	овые	массив	p. O	нон	левобережье р. Онон		массив
Монцо-	ГФ био-	0.1101		пегматитон	юсные		1				;
диориты	титовые,		внутрен-	Xapa-	-	Граниты	Граниты	Граниты	Граниты	Граниты	Граниты
PΨ	периферия	внешняя	ние ультра-	Шибир-	Богов	ГФ био-	ГФ био-	3Ф мус-	ГФ ПМ-	3Ф мус-	ГФ био-
	интрузии	зона	редкоме-	ская группа	Утес	титовые	титовые	ковитовые	3316 ⁴	ковитовые	титовые
21	22	22	алльные	25	26	27	20	20	20	21	22
21	22	23	24	25	26	27	28	29	30	31	32
63.19	72.50	71.46	71.02	74.78	75.17	73.23	72.33	75.38	73.41	75.96	73.11
1.00	0.38	0.44	0.50	0.01	0.02	0.31	0.36	0.06	0.14	0.01	0.31
10.55	14.32	14.85	14.70	14.81	14.44	14.01	14.40	14.15	14.84	13.80	14.1/
0.33	0.03	0.30	0.58	0.22	0.38	0.75	0.75	0.49	1.15	0.68	0.85
5.97	0.70	1.51	1.41	0.43	0.74	1.30	1.03	0.21	0.04	H.O. 0.04	0.04
0.07	H.O. 0.45	0.01	0.01	0.18	0.08	0.03	0.03	0.04	0.04	0.04	0.02
3.10	1.01	1.12	1.38	0.07	н.о. 0.37	1.00	1.40	0.11	0.20	0.15	1.20
4 18	3.76	3.84	3.54	5.28	4 90	3.40	4 11	4 14	3.80	4 54	3.81
3.61	5.06	5.04	3.34 4 74	3.05	4.90	4.81	4.11	4.14	2.60 4.69	3.92	4 70
0.42	0.04	0.10	0.12	0.14	0.06	0.04	0.09	0.02	0.15	H 0	0.03
0.87	0.87	0.10	0.57	0.67	0.57	0.48	0.65	0.62	0.78	0.56	0.54
99 34	99 78	99 97	99.29	99.96	100 32	99.83	99.83	99.84	99 99	100 11	99.30
6	4	9	5	6	6	10	7	8	1	1	9
22	21	22	30	46	20	24	17	55	_	_	20
2500	850	1150	1780	550	900	850	1050	400	600	200	1050
650	32	65	290	100	90	55	165	90	240	114	140
290	230	215	235	290	500	205	235	345	415	330	310
135	9	21	60	18	12	6.6	14	19	39	10	33
7	3.8	4.7	11	16.5	8.6	4.7	7.3	8.3	12	—	8.3
1050	300	340	390	45	20	170	230	80	90	22	240
1960	940	710	860	125	~40	335	270	80	180	49	460
42	3.7	9.6	28	15	48	6.2	13.7	19	22	14.4	6.2
17	5.0	1.4	2	7	2.3	1.1	0.9	2.4	1.0	1.6	~14
0.7	_	<1	<1	1.0	1.1	2	3.2	1.1	_	_	1.5
24	35	32	32	15	24	30	34	39	22	30	44
21	8	10	10	24	59	17.4	12	34	33	—	13
1.6	0.9	1.4	1	7.3	24	1.4	2.7	5.9	7.4	—	1.3
15	42	35	35	6.5	3.5	31	23	12	—	—	28
4.7	5.5	4.2	5.3	7.2	3.0	4.1	4.5	5.4	—	—	9.3
16.1	8.0	9.3	8.4	5.4	8.8	23.2	5.9	22	7.7	6.9	8.4
68.6	55.0	48.9	47.7	5.1	2.0	46.5	19.6	10	21.5	2.3	28.7
140.9	112.3	195.4	108.3	7.6	4.9	111.8	45.6	22.1	42.2	5.3	54.5
15.9	11.6	10.4	10.3	1.1	0.6	9.9	4.2	2.7	4.1	0.56	5.6
58	41.1	40.1	39.2	4	2.0	38.4	14.6	9.4	16.2	2.15	17.9
9.6	0.5	6.2 1.12	6.4 1.05	0.66	0.78	5.5	2.1	28	2.8	0.73	3.1
2.10	1.08	1.12	1.05	0.13	0.05	0.08	0.47	0.24	0.24	0.09	0.32
0.7	5.9	4.2	4.5	0.04	0.10	0.61	0.21	5.0	2.13	0.38	2.5
3.8	2.0	2.2	23	0.12	1.1	43	1.5	3.0	1.8	0.12	1.2
0.66	0.30	0.38	0.34	0.11	0.27	0.79	0.27	0.66	0.27	0.72	0.28
1.8	0.50	1.0	1.0	0.58	0.74	2.3	0.57	19	0.62	0.45	0.73
0.32	0.11	0.11	0.11	0.11	0.13	0.39	0.11	0.5	0.11	0.03	0.09
1.3	0.72	0.77	0.76	0.77	1.0	1.7	0.38	2.9	0.36	0.31	0.48
0.32	0.10	0.11	0.11	0.11	0.14	0.38	0.12	0.52	0.09	0.06	0.13
6	8	14	7	7	6	18	12	11	1	1	12
0.82	0.66	0.67	0.61	0.61	0.17	0.4	0.76	0.26	0.30	0.40	0.60
310.86	235.9	221.35	222.27	21.91	14.9	228.05	91.43	60.12	92.67	13.77	115.81
1.68	1.24	1.17	1.17	0.12	0.08	1.20	0.48	0.32	0.49	0.07	0.61
283.4	220	204.8	205.5	17.8	9.5	206.6	84	44.2	84	10.31	106.7
1.70	1.39	1.29	1.30	0.11	0.06	1.3	0.53	0.28	0.53	0.065	0.68
27.46	15.91	16.59	16.77	4.11	5.4	21.45	7.43	15.92	8.67	3.46	9.11
0.87	0.51	0.53	0.53	0.13	0.17	0.4	024	0.51	0.28	0.11	0.29

Окончание табл. 1

	Олдондинский массив		Соктуйский массив	Тургинский массив		Этыкин- ский массив	Шерловогорская интрузия		Граниты ГФ биотитовые		
Компонент	Граниты ГФ био-	Граниты 3Ф дву-	Граниты 3Ф(?) муско-	Граниты ГФ биотитовые ²	Лейкогра- ниты ГФ	Граниты амазони-	Граниты амазони-	Лейкогра- ниты ку-	Кв. пор- фиры	без Еи- мини-	с Еu- мини-
	титовые	слюдяные	витовые	26	27	товые ЗФ	товые	польные	(онгониты)	мума	мумом
	33	34	35	36	37	38	39	40	41	42	43
S1O ₂ , мас.%	72.58	73.94	77.80	74.01	76.48	77.31	/1./5	76.21	73.72	72.42	73.54
110 ₂	0.28	0.21	0.08	0.18	0.10	0.02	0.01	0.05	H.O. 1454	0.35	0.23
AI_2O_3	0.76	0.61	0.47	0.66	0.83	0.67	<0.01	0.44	0.46	0.72	0.54
FeO	0.76	0.01	0.47	1.08	0.85	0.07	0.01	0.44	0.40	0.72	1.42
MnO	0.02	0.03	0.013	0.03	0.12	0.02	0.034	но	0.05	0.02	0.04
MgO	0.54	0.23	0.14	0.18	0.05	0.03	0.067	0.06	0.08	0.52	0.30
CaO	1.23	0.77	0.35	0.81	0.44	0.13	0.053	0.29	0.78	1.25	0.82
Na ₂ O	3.98	3.66	3.20	375	3.59	3.79	5.54	2.85	4.57	3.90	3.58
К ₂ Õ	4.42	4.91	4.43	4.97	4.73	4.45	3.66	4.54	4.36	4.56	4.81
P_2O_5	0.06	0.02	н.о.	0.06	Н.О.	Н.О.	0.011	Н.О.	Н.О.	0.07	0.05
П.п.п.	0.52	0.73	0.90	0.52	0.53	0.57	0.44	0.96	0.94	0.60	0.64
Σ	99.88	99.78	99.80	99.88	99.80	99.83	99.92	99.21	99.88	99.81	100.03
N	5	10	3		8	5	1	4	8	39	>50
В, г/т	20	19	17	18	11	11	9	46	230	20	28
F	~800	1050	1850	3000	250	1700	3100	5500	6000	1040	~1230
Li	95	110	55	79	20	175	290	130	228	100	120
Rb	260	370	400	470	215	700	1500	390	632	260	330
Cs	20	24	14	20	7	20	15		23	24	20
Be	5.2	8.5	7.2	6.5	4.9	5	3.3	8.0	21	6.8	6.9
Sr	280	110	65	/3	30	~15	~15	10	15	270	135
Ba	440	270	90	180	47	~50	~20	~20	~20	500	270
Sn	4.4	13.7	24	4.9	6	13.2	300	15	40	9.5	11.5
W	2	1.6	9.6	2.1	1.5	~1.3	6.7	12	7	~5	2.3
Мо	1.2	0.7	3.8		2.0	1.6	1.6	6	—	~1.7	~2
Pb	47	42	35	19	32	76	~200	33	70	40	28
Nb	12	22	32	26	35	93	100	59	94	12	23
Та	1.4	5.6	10	6	3.9	9.2	109	3.1	5.4	~1.6	4.2
Th	28	52	19		35	39	5.6	50	28	29	~32
U	9.2	14	9.2		11	13	13.8	13.9	11.5	7.0	9.5
Y	7.4	17.3	27.4	32	23.2	28	2.45	83	143	7.6	22.9
La	29.9	44.8	17.3	55	60.2	7.6	0.58	40	5.6	32.2	38.9
Ce	56.7	93.9	39.1	105	115	40.7	0.87	95.7	14.5	66.4	82.7
Pr	6.0	10.4	4.3		13	3.6	0.60	12.7	2.3	6.6	8.4
Nd Sm	20.6	35.1	14.5	53 8 2	44.4	14.2	2.0	48.3	10.6	23.3	34.3 6.1
SIII	3.3 0.55	0.3	5.7 0.11	8.3 0.48	0.8	5.5 0.04	0.03	12.8	0.0	3.7 0.66	0.1
Gd	2.1	4 5	3.6	10	5.85	43	0.05	10	9.6	2.6	5.5
Th	0.2	0.58	0.56		0.74	0.64	0.12	2.1	2.6	0.28	0.65
Dy	1.15	3.3	4.0		4.7	4.5	1.06	12.7	17.4	1.5	4.1
Но	0.18	0.72	0.78		1.0	0.89	0.2	2.6	4.2	0.27	0.74
Er	0.66	1.7	2.4		2.7	2.7	0.87	7.7	13.2	0.72	2.14
Tm	0.10	0.39	0.36		0.6	0.47	0.19	1.2	2.1	0.10	0.34
Yb	0.58	1.36	2.6	2.5	2.05	3.2	1.92	7.0	12.7	0.55	2.04
Lu	0.10	0.40	0.31	0.3	0.43	0.49	0.3	1.0	1.7	0.12	0.32
n	6	5	4		13	4	1	2	6	59	>60
Eu/Eu*	0.64	0.25	0.095	—	0.08	0.05	0.14	0.01	0.002	0.65	0.28
ΣTR	122.12	204.09	93.62	_	257.63	88.63	9.88	253.84	103.01	139.0	186.76
KK ₁	0.64	1.08	0.49	—	1.36	0.47	0.05	1.34	0.54	0.73	0.98
ΣTR_{Ce}	113.2	184.2	75.2	—	232.6	66.1	4.05	196.7	33	128.5	164.3
KK ₂	0.71	1.16	0.47	—	1.47	0.42	0.03	1.24	0.21	0.81	1.04
ΣTR_{Y}	8.92	19.89	18.42		25.03	22.53	5.83	57.14	70.01	10.5	22.46
KK ₃	0.28	0.63	0.59	I —	0.8	0.72	0.19	1.82	2.23	0.33	0.72

N — число проб силикатного анализа; n — число проб на редкие элементы; прочерк — нет данных; ΣTR — сумма РЗЭ; ΣTR_{Ce} сумма легких РЗЭ (La, Ce, Pr, Nd); ΣТR_Y — сумма тяжелых РЗЭ (в интервале Sm—Lu, по [Солодов и др., 1987]); КК₁, КК₂, КК₃ отношения соответствующих сумм РЗЭ в данной разновидности гранита к кларковым суммам (ΣТR_{KII}=189.8; ΣTR_{CeKII}=158.4; ΣTR_{УКЛ}=31.4 г/т, по [Овчинников, 1990]).

РФ, ГФ, ФДИ, 3Ф — интрузивные фазы: ранняя, главная, дополнительных интрузий, заключительная соответственно. ¹ по [Сырицо и др., 2005]; ² по [Коваленко и др., 1999]; ³ по [Сырицо и др., 2001]; ⁴ по [Загорский, Кузнецова, 1990].

главных фаз (OIC₁ и YIC₁ соответственно) и небольших телах лейкогранитов фазы дополнительных интрузий (OIC₃ и YIC₃) — дифференциатов гранитов главных фаз в месте их внедрения. Граниты горского комплекса OIC характеризуются отчетливо более высокими концентрациями кальция и лантаноидов по сравнению с лейкогранитами YIC. В лейкогранитах позднего рудогорского комплекса YIC₁—YIC₃ наблюдается последовательное снижение концентраций Са, лантаноидов и усиление Еи-минимума, особенно резко проявленного в лейкогранитах YIC₃. Еще более низкими концентрациями лантаноидов характеризуются связанные с рудогорскими лейкогранитами YIC_{1/1} кварц-топазовые грейзены (см. рис. 2, спектр GR) [Stemprok et. al., 2005], причем спектры РЗЭ гранитов YIC₁, по данным цитированных работ, хорошо согласуются (спектры YIC_1 и $\text{YIC}_{1/1}$).

Но вся стройная картина снижения концентраций лантаноидов в последовательных гранитных дифференциатах Рудных Гор полностью нарушается их распределением в ультраредкометалльных альбит-литионит-циннвальдитовых (литий-фтористых) гранитах штока Шеллерхау (см. рис. 2, спектр YIC_m) — представителя поздних локальных куполов рудогорского комплекса (YIC_m), с которыми как раз непосредственно и ассоциирует наиболее продуктивное Sn-W оруденение Рудных Гор (местонахождения — Крупка, Цинновец, Циннвальд, Садисдорф, Альтенберг и др.) [Рундквист и др., 1972; Tischendorf, 1986]. Геохимически эти граниты выделяются экстремально высокими концентрациями летучих элементов F (8000) и B (100 г/т), а также редких щелочей Li (1000), Rb (1100), Ce (80), рудогенных Sn (100), W (50 г/т) [Козлов, 2000а], и представляют, очевидно, поздние глубинные дифференциаты магматических очагов рудогорского комплекса, резко обогащенные летучими и редкими элементами. Как видно из диаграммы, наряду с гранитофильными элементами они характеризуются резким накоплением тяжелых лантаноидов при сохранении высокого уровня содержаний легких РЗЭ и глубокого Еи-минимума. Можно полагать, что эта особенность, нарушающая вышеприведенное правило обычного снижения суммы РЗЭ в последовательных дифференциатах (см. выше п. 2), обусловлена перераспределением редкоземельных элементов под воздействием летучих компонентов в случаях резкой обогащенности ими расплавов (см. выше п. 4), что и характерно для ультраредкометалльных дифференциатов [Козлов, 1985]. По существу, при дифференциации редкометалльных гранитных интрузий в распределении тяжелых лантаноидов борются две тенденции: обеднения ими последовательных лейкогранитных дифференциатов по мере снижения концентраций кальция и, напротив, обогащения тяжелыми лантаноидами поздних расплавов под воздействием летучих компонентов в случаях высоких концентраций последних.

В редкоземельных спектрах гранитоидов особое внимание обычно уделяется степени проявления Еи-минимума как индикатора интенсивности магматической дифференцированности исходных расплавов и обеднения их кальцием. Степень проявления минимума оценивается показателем Eu/Eu* [Тейлор, Мак-Леннан, 1988], его минимальные значения присущи наиболее лейкогранитным дифференциатам (см. табл. 1).

В качестве эталонной рудоносной системы Восточного Забайкалья ранее рассмотрены спектры РЗЭ в разновидностях гранитов Хангилайской интрузии [Козлов, 2005а], с мусковитовыми лейкогранитами которой связано вольфрамит-грейзеновое оруденение (месторождение Спокойнинское), а с амазонитовыми литий-фтористыми гранитами — танталовое (месторождение Орловское). Диаграмма редкоземельных спектров интрузии (рис. 3, а) дополнена данными по ультракалиевым и ультраредкометалльным, обогащенным фтором и редкими щелочами, дайкообразным, очевидно, поздним дифференциатам трахириодацит-риолитового состава, по [Сырицо и др., 2005]. Спектры РЗЭ этих пород (5, 6), повторяя конфигурацию спектра гранитов ГФ (2) с таким же неглубоким Eu-минимумом (Eu/Eu* = 0.29-0.33),

П р и м е ч а н и е. Аналитические данные получены в аналитических подразделениях Института геохимии им. А.П. Виноградова СО РАН (г. Иркутск). Петрохимия гранитоидов приводится по данным силикатного рентгеноспектрального анализа на отечественном квантометре СРМ-25. Содержания редких щелочных металлов (Li, Rb, Cs) определялись методом фотометрии пламени, концентрации Sr, Ba, Zr, Nb - количественными методами рентгеноспектрального анализа, содержания B, F, Be, Sn, W, Мо, Pb, Zn, Sc, V, Ni, Co — количественными методами эмиссионного спектрального анализа, содержания Y, редких земель (14 элементов), а также Hf, Th, U определены растворным методом на аналитическом комплексе ICP-MS.

Аналитики: Sr, Ba, Nb, Zr — T.C. Айсуева; F, Be — О.М. Чернышова; B, Cu, Zn, Mo, Sn, Pb — Н.Л. Чумакова; Sc, Cr, V, Co, Ni — С.С. Воробьева; редкие земли, Y, Nb, Hf, Th, U и уточнение концентраций ряда других элементов — аналитический комплекс ICP-MS, аналитики-методисты Е.В. Смирнова, Г.П. Сандимирова.

Рис. 3. Спектры РЗЭ разновидностей гранитов:

а — Хангилайской интрузии, *б* — Саханайского и Зун-Ундурского массивов, *в* — Дурулгуевской интрузии, *г* — Седловского, Малокангинского, Завитинских массивов, *д* — Кулиндинских массивов, *е* — Соктуйского, Белухинского, Олдондинского массивов. Номера спектров соответствуют номерам колонок анализов в табл. 1. Усл. обозн. см. на рис. 2.

выделяются среди разновидностей гранитов Хангилайской интрузии наиболее высокими концентрациями тяжелых, а также легких лантаноидов, подобно спектрам литионит-циннвальдитовых гранитов Рудных Гор.

Среди изученных интрузивных систем и массивов кукульбейского комплекса Агинской зоны, согласно спектрам РЗЭ, преобладают умеренно дифференцированные интрузии с отчетливо проявленным в гранитах ГФ и их лейкогранитных дифференциатах неглубоким Еu-минимумом (Eu/Eu* = 0.26—0.4). К таким системам относятся массивы Саханайский и Зун-Ундурский (см. рис. 3, *б*, спектры 12—16), Дурулгуевская интрузия (см. рис. 3, *в*, спектры 17—20), массивы Седловский, Малокангинский и Завитинские (см. рис. 3, *г*, спектры 27, 29—31).

Рис. 4. Спектры РЗЭ амазонитовых гранитов ЗФ Хангилайской интрузии, Тургинского и Этыкинского массивов.

Номера спектров соответствуют номерам колонок анализов в табл. 1. Усл. обозн. см. на рис. 2.

Номера спектров соответствуют номерам колонок анализов в табл. 1. Усл. обозн. см. на рис. 2.

Вместе с тем среди интрузий комплекса выделяется ряд массивов, в гранитах ГФ которых Еu-минимум практически не проявлен (Eu/Eu* = 0.6—0.8). Это означает, что исходные расплавы таких интрузий кукульбейского комплекса существенной магматической дифференциации не подвергались. К подобным массивам в Хангилайской интрузии относятся граниты Убжигойского периферийного купола (см. табл. 1, колонка 1) [Козлов, 2005а], Малокангинский массив (см. рис. 3, *г*, спектр 28), Кулиндинские массивы (см. рис. 3, *д*, спектры 21—24), Олдондинский и Белухинский массивы (см. рис. 3, *е*, спектры 32, 33).

Отдельно диаграмма редкоземельных спектров составлена для локальных массивов ультраредкометалльных амазонитовых литий-фтористых гранитов, рис. 4, спектры 10, 38, 39. Как видно из диаграммы, спектры РЗЭ всех разновидностей амазонитовых литий-фтористых гранитов характеризуются четкими Eu-минимумами (Eu/Eu* = 0.14—0.05) и пониженными в разной степени концентрациями легких лантаноидов и менее — тяжелых по отношению к гранитам ГФ и кларковому граниту (см. табл. 1, колонки 38, 39, значения KK_1 , KK_2 , KK_3).

Аналогичным образом концентрации лантаноидов, особенно легких, неравномерно понижаются в купольных мусковитовых гранитах ГФ и телах мусковитовых пегматитоносных гранитов (см. рис. 3, e, спектры 19, 20; e, 29, 31; d, 25, 26; e, 35).

На рис. 5 приведены спектры РЗЭ лейкогранитов Шерловогорского купола и их субвулканических аналогов — ультраредкометалльных кварцевых порфиров (онгонитов) [Антипин и др., 1980] Шерловогорской интрузии, по [Трошин и др., 1983]. Спектры РЗЭ этих пород выделяются исключительно глубокими Еи-минимумами (Eu/Eu* = 0.01—0.02) при существенном накоплении тяжелых лантаноидов (см. табл. 1, колонки 40, 41, значения КК₃), и по этим показателям шерловогорские лейкограниты подобны редкоземельным спектрам куполов рудоносных литионит-цинивальдитовых литий-фтористых гранитов Рудных Гор (см. рис. 2). Отличительной особенностью спектра онгонитов является существенное снижение концентраций легких лантаноидов (см. рис. 5, спектр 41), что ранее было установлено в онгонитах Балджигольского массива Хэнтэйского региона Монголии [Коваленко и др., 1983].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Формирование редкометалльных гранитов, обогащенных летучими и редкими, включая рудогенные (Sn, W, Mo, Ta, Be, Li), элементами, обычно объяснялось процессами интенсивной глубинной дифференциации гранитоидных магм [Коптев-Дворников, Руб, 1964; Коваленко, 1977; Козлов, Свадковская, 1977; Таусон, 1977; Трошин и др., 1983]. В частности, академик Л.В. Таусон связывал формирование геохимического типа редкометалльных плюмазитовых гранитов с глубинной дифференциацией очагов палингенных гранитоидных расплавов, а щелочных (агпаитовых) редкометалльных гранитов — с дифференциацией

очагов щелочно-базальтоидных магм. Поскольку степень дифференциации гранитов в их редкоземельных спектрах отражается в появлении и интенсивности Еu-минимума (степени понижения параметра Eu/Eu*), это свойство позволяет проверить гипотезу происхождения расплавов редкометалльных гранитов кукульбейского комплекса как дифференциатов глубинных очагов гранитоидных расплавов.

Исходя из степени проявления Еu-минимума в спектрах РЗЭ гранитов ГФ кукульбейского комплекса, составлены две колонки средних составов гранитов ГФ комплекса (см. табл. 1, колонки 42, 43). Первый состав объединяет интрузии, в гранитах ГФ которых Eu-минимум практически не проявлен (см. рис. 3, *г е*, табл. 1, колонки 22—24, 28, 32, 33). Второй состав представляет средние данные по гранитам ГФ с четким Eu-минимумом (см. рис. 3, *a*—*г*, *e*, табл. 1, колонки 2, 12, 17, 27, 30, 36). Для этих составов гранитов ГФ показатели ИНК суммарной избыточной по отношению к кларковому уровню редкометалльности гранитов ГФ равны соответственно 14.9 и 16.0 кларков для 13 гранитов ГФ с процессом дифференциации расплавов исходных магматических очагов не связана, а дифференциация расплавов на ранней стадии (состав гранитов ГФ второй группы интрузий с проявленным Eu-минимумом) приводит лишь к малосущественному повышению концентраций гранитофильных элементов.

Ранее было показано, что вероятным источником первоначального обогащения гранитов летучими и редкими элементами являлись обогащенные этими же элементами щелочно-базальтоидные расплавы мантийного происхождения, под их воздействием формировались локальные коровые магматические очаги гранитных расплавов редкометалльных интрузий [Козлов, Ефремов, 1999; Козлов, 2000а]. Следствием изначальной обогащенности их расплавов гранитофильными летучими и редкими элементами являлась последующая усиленная магматическая дифференциация гранитных расплавов таких очагов, в результате которой и формировались резко обогащенные летучими и редкими, включая рудогенные, элементами тела поздних, непосредственно рудоносных, лейкогранитных дифференциатов. В частности, было показано, что редкометалльные граниты Рудных Гор и Богемского массива формировались при активном участии ранних интрузий щелочно-базальтоидных расплавов, представленных массивами дурбахитов (монцосиенитов), последние, как было установлено, существенно обогащены гранитофильными редкими элементами [Таусон и др., 1979]. Из спектра дурбахитов (см. рис. 2, спектр D) следует, что по сравнению с редкометалльными гранитами Рудных Гор дурбахиты наиболее обогащены легкими лантаноидами, а концентрации тяжелых, начиная с Tb, соответствуют их содержаниям в гранитах ГФ раннего комплекса (OIC) Рудных Гор.

При сравнении спектров РЗЭ дурбахитов (рис. 6, спектр D) со спектрами ранних монцодиоритов Кулиндинской интрузии кукульбейского комплекса (спектр 21) и околокларковых гранитоидов ГФ ундинского батолитового комплекса Восточного Забайкалья (спектр У) [Козлов и др., 2003] получаем, что при практическом отсутствии в спектрах Еu-минимума, дурбахиты выделяются наиболее высокими концентрациями как легких, так и тяжелых лантаноидов, превышающими кларковые концентрации в гранитах соответственно в 1.7 и 1.5 раза (табл. 3). В кулиндинских монцодиоритах концентрациях тяжелых лантаноидов, а в распространенных в Восточном Забайкалье ундинских гранодиоритах при кларковых концентрациях легких лантаноидов, а концентрациях легких лантаноидов содержания тяжелых резко понижены (0.6 кларкового уровня).

Диаграммы спектров РЗЭ в редкометалльных гранитах информативны и в отношении их сравнительной рудоносности. Непосредственно рудоносные тела интрузий кукульбейского комплекса сложены мусковитовыми гранитами, представляющими либо купольную фацию (субфазу?) гранитов ГФ, либо пегматитоносные граниты ФДИ-ЗФ [Козлов, Свадковская, 1977]. Эталонной интрузией с купольными мусковитовыми гранитами является Хангилайская, в которой со Спокойнинским куполом (см. рис. 3, *a*, спектр 9) связано

Рис. 6. Сопоставление нормированных редкоземельных спектров гранодиоритов ГФ ундинского батолитового комплекса Восточного Забайкалья (У), монцодиоритов РФ Кулиндинской интрузии (спектр 21) и монцосиенитов (дурбахитов) РФ Среднечешского массива (D).

Усл. обозн. см. на рис. 2; суммарные уровни концентраций РЗЭ в гранитоидах см. в табл. 3.

Интрузии (много- фазные), массивы	Интрузивная фаза, разновидность гранитов. Элементная формула	ИНК (в скоб- ках — число гранитофиль- ных элементов)	№ ко- лонки в табл. 1						
	ГФ, граниты биотитовые								
Без Еu-миниму- ма, ср. по колонк- ам 22—24, 28, 32,	$\frac{Cs4.8 - W3.3 - Sn3.2 - Li2.5 - Be2.3 - Pb2 - U2 - Mo1.7 - Th1.6 - Rb1.5 - B1.3 - F1.3}{Ta0.4 - Ba0.6 - Sr0.9}$	+14.9 (13)	42						
33 (см. табл. 1)		1(0(12)	42						
С Eu- минимумом, ср.	$\frac{Cs4 - Sn3.8 - L13 - U2.7 - Be2.3 - Mo2 - B1.9 - Rb1.9 - Ih1.8 - F1.5 - W1.5 - Pb1.4 - Ia1.2}{Ba0.3 - Sr0.4}$	+16.0 (13)	43						
по колонкам 2, 12, 17, 27, 30, 36									
Хангилайская	Li3.2 - Cs3.2 - Sn3.2 - W3.2 - Pb2.4 - U2.4 - Be2.2 - Th2 - Rb1.9 - B1.7 - F1.1	+15.7 (13)	2						
	Ba0.4 - Sr0.5 - Mo0.9 - Ta0.9								
	ФДИ — ЗФ, граниты мусковитовые купольные	1							
Хангилайская	$W > \frac{53 - Sn18 - Cs14 - Be9 - Li3 - Rb2.8 - F2.2 - B2.1 - Pb1.8}{De01 - Cs22 - Max}$	>96 (10)	9						
D ¥7	Ba0.1 - Sr0.3 - Mo0.6	+(4.5.(12))	16						
Зун-ундурский	$\frac{\text{Sn25} - \text{W9.3} - \text{Be}/.7 - \text{Li}/.5 - \text{Cs}/.2 - \text{F4.6} - \text{U4.4} - \text{Ta}3.7 - \text{Rb2.6} - \text{B2.5} - \text{Mo1.6}}{\text{Sr0.1} - \text{Ba0.1} - \text{Pb0.7} - \text{Th0.7}}$	+64.5 (13)	16						
Дурулгуевская	W > 130 - Cs10.6 - Be8.4 - Sn8.4 - Li6.5 - Mo5 - Ta4.9 - U4.3 - Pb3.3 - F2.2 - B1.9	>170 (13)	19						
	Ba < 0.1 - Sr0.2 - Th0.3 - Pb0.6								
Олдондинский	<u>Sn8 - W6.4 - Mo3.8 - Ta2.9 - Cs2.8 - U2.6 - Rb2.4 - Be2.4 - F2.3 - Pb1.8 - Li1.4 - B1.1 - Th1.1</u>	+26 (13)	35						
	Ba0.1 – Sr0.2								
Π	Ψ_{μ} и — 3 Ψ , граниты мусковитовые пегматитоносные	12 8 (12)	20						
Дурулгуевская	$\frac{\text{Sn}5.3 - \text{Be}4.7 - \text{W}3.1 - \text{I}3.1 - \text{Kb}1.6 - \text{Cs}1.6 - \text{B}1.5 - \text{U}1.3 - \text{L}11.1 - \text{Pb}1}{\text{B}_2 < 0.1 - \text{Sr}0.1 - \text{F}0.4 - \text{Tb}0.5 - \text{M}_0.66}$	+12.8(13)	20						
Kymunnuckag	Ba > 0.1 - 510.1 - 10.4 - 110.5 - 10000	+20.2(13)	25						
мас. 6	$\frac{Be5.5 - 505 - W4.7 - C55.6 - B5.1 - E12.5 - 162.1 - C2.1 - K01.7 - M01}{Sr0.15 - Ba0.15 - Th0.4 - F0.7 - Ph0.8}$	120.2 (13)	25						
Кулиндинская	Sn16 - Ta69 - Rh29 - Br29 - Cs24 - Li22 - W15 - R13 - Ph12 - F11 - Mo11	+27.6(13)	26						
мас. 7	5110 - 100.9 - 100.9 - 502.9 - 502.1 - 512.2 - 0.15 - 513 - 101.2 - 1111 - 0001.1 - 512 - 1111 - 0001.1 - 512	27.0 (15)	20						
Малокангинский	Sn6.3 - Cs3.8 - B3.7 - Be2.8 - Li2.2 - Rb2 - Pb2 - Ta1.7 - W1.6 - U1.5 - Mo1.1	+17(13)	29						
	F0.5 – Ba0.1 – Sr0.3 – Th0.7								
	ЗФ, лейкограниты купольные								
Шерловогорская	W8.7 - F7.8 - Sn6.3 - Mo6 - U4 - Cs3.6 - Li3.4 - B3.4 - Rb3.3 - Th2.8 - Be2.7 - Pb1.7	+38.2 (13)	40						
	Sr < 0.1 - Ba < 0.1 - Ta0.9								
Рудные Горы,	Sn33.3 - W33.3 - Li25 - Cs16 - F10 - B6.7 - Rb6.5 - Be4.8 - Ui4.3 - Pb1.5	+131.1 (11)	*						
граниты (YIC _m)	${ m Sr} \le 0.1 - { m Ba} \le 0.1 - { m Th} 0.7$								
	ЗФ, дайки и субвулканические кислые дифференциаты, ультраредкометалльн	ње							
Хангилайская	Sn10 - Cs5 - Li4.5 - Rb3.5 - F2.2 - W1.9 - Be1.5 - Ta1.2 - U1.1 - Ba1.2	+21.7 (10)	6						
	Sr0.2 – Th0.8								
Шерловогорская	B15.3 - Sn13.3 - F7.5 - Li5.7 - Be4.8 - W4.7 - Cs4.6 - Rb3.8 - Pb3.5 - U3.3 - Th1.6 - Ta1.5	+57.6 (12)	41						
	Sr < 0.1 - Ba < 0.1								
T	ЗФ, граниты Li-F амазонитовые	102.0 (12)	20						
тургинскии	$\frac{L14.4 - Sn4.4 - R04.1 - C84 - P03.8 - U3.7 - 1a2.6 - 1n2.2 - F2.1 - Be1.7 - M01.6}{Sr < 0.1 - Ba < 0.1 - B0.7 - W0.9}$	+23.2 (13)	38						
Хангилайская	Li29.4 – Ta18.6 – F11.8 – W7.3 – Rb6.5 – Cs4.9 – Sn3.7 – Be1.7	+75.3 (10)	10.11						
	Sr < 0.1 - Ba < 0.1 - U0.6 - Th0.8		.,						
Этыкинский	Sn100 - Ta31.1 - Pb10 - Rb8.8 - Li7.2 - W4.5 - F3.9 - U3.9 - Cs3 - Mo1.6 - Be1.1	+163 (13)	39						
	$Ba \ll 0.1 - Sr < 0.1 - Th0.3 - B0.6$								

Таблица 2. Редкоэлементный состав отдельных разновидностей редкометалльных гранитов (табл. 1) в элементных формулах и индексах концентрации гранитофильных элементов (ИНК)

* по [Козлов, 2000а].

Примечание. Элементная формула — результат нормирования содержаний гранитофильных элементов в данной разновидности гранита по их кларковым концентрациям (В — 15, F — 800, Li — 40, Rb — 170, Cs — 5, Be — 3, Sr — 300, Ba — 800, Sn — 3, W — 1.5, Mo — 1, Pb — 20, Ta — 3.5, Th — 18, U — 3.5 г/т).

ИНК — индекс концентрации гранитофильных элементов, фиксирует суммарный уровень избыточности (+) или дефицита (-) гранитофильных редких элементов в данной разновидности гранита по отношению к кларковому уровню в количествах гранитных кларков элементов: ИНК = KK₁ + KK₂ + KK₃ + ... + KK_n – *n*, где *n* — число гранитофильных элементов, участвующих в расчете ИНК (негранитофильные Sr и Ba не учитываются); КК₁...КК_n — кларки концентрации соответствующих гранитофильных элементов.

Параметры распре- деления РЗЭ, суммы в г/т	Монцосиениты РФ (Среднечешский массив)	Монцодиориты РФ (Кулиндинская интрузия)	Гранодиориты ГФ (ундинский комплекс)	Кларковые концентрации в гранитах, по [Овчинников, 1990]
ΣΡ3Э	319.89	310.86	183.82	189.8
ΣΚΚ	1.68	1.64	0.97	
Σ легких РЗЭ	274.08	283.4	165	158.4
КК _{Се}	1.73	1.79	1.04	
Σ тяжелых РЗЭ	45.81	27.46	18.82	31.4
КК _Y	1.46	0.87	0.6	

Таблица 3. Сравнительное распределение РЗЭ в монцонитоидах и кларковых гранодиоритах Забайкалья

среднее по запасам Спокойнинское грейзеновое вольфрамитовое месторождение с попутным бериллом. Аналогичные купольные мусковитовые граниты выделяются также в Зун-Ундурском. Дурулгуевском и Олдондинском массивах (см. рис. 3, б, в, е соответственно). Сравнение спектров РЗЭ этих гранитов показывает, что мусковитовые граниты Хангилайской интрузии характеризуются наиболее низкими концентрациями как легких, так и тяжелых лантаноидов, при четко выраженном Еu-минимуме (см. рис. 3, a, спектр 9) и, напротив, высокими концентрациями гранитофильных элементов (>96 избыточных кларков для 13 гранитофильных элементов, см. табл. 2, колонка 9). Сходным распределением лантаноидов характеризуются купольные мусковитовые граниты Дурулгуевского массива, вмещающие отработанное кварцвольфрамитовое месторождение Дедовогорское [Барабанов, 1975]. Мусковитовые граниты купола (см. рис. 3, в, спектр 19) выделяются низкими концентрациями легких и тяжелых лантаноидов при четком Еи-минимуме, а избыточная концентрация гранитофильных элементов в этих гранитах для 13 элементов составляет >170 кларков (см. табл. 2, колонка 19). В отличие от спектров РЗЭ мусковитовых гранитов, сопровождавшихся промышленным оруденением, в спектрах купольных мусковитовых гранитов двух других интрузий — Зун-Ундурском и Олдондинском массивах (непромышленное кварц-вольфрамитовое месторождение Антоновогорское) [Барабанов, 1975] — фиксируется только очень слабое понижение концентраций лантаноидов (см. рис. 3, б, е, спектры 15, 16, 35) при существенно более низких избыточных концентрациях гранитофилов, составляющих для 13 элементов 64.5 и 26 кларков соответственно (см. табл. 2, колонки 16, 35). Из проведенного сопоставления следует, что наиболее продуктивное оруденение развивается в связи с купольными мусковитовыми гранитами при условии максимального проявления в них процессов дифференциации, которые в спектрах РЗЭ фиксируются не столько Еи-минимумом, сколько резким снижением концентраций всех лантаноидов, сочетающихся с наибольшим концентрированием гранитофильных элементов (см. табл. 1, данные по суммарным концентрациям лантаноидов и значениям КК₁).

Аналогичный вывод следует из сопоставления редкоземельных спектров пегматитоносных мусковитовых гранитов (см. рис. 3, *в*, спектр 20; *г*, 29, 31; *д*, 25, 26, табл. 1). Реально рудоносные пегматитоносные граниты представляют спектры 26 (см. рис. 3, *д*) — массив Богов утес, сопровождавшийся бедным кварц-касситеритовым месторождением, и 31 (см. рис. 3, *г*), характеризующий поздние мусковитовые лейкограниты месторождения редкометалльных пегматитов [Загорский, Кузнецова, 1990]. Оба редкоземельных спектра выделяются резко пониженными концентрациями лантаноидов. В отличие от купольных мусковитовых гранитов уровень избыточности концентраций гранитофильных элементов в пегматитоносных лейкогранитах невысок и составляет всего 13—28 кларков (см. табл. 2).

В целом характер распределения редкоземельных элементов в купольных и пегматитоносных мусковитовых гранитах в зависимости от степени их рудоносности сходен — в реально рудоносных разновидностях фиксируется резкое снижение концентраций лантаноидов, особенно цериевой группы.

Аналогичный вывод следует из анализа распределения лантаноидов в литий-фтористых амазонитовых гранитах кукульбейского комплекса. На диаграмме (см. рис. 4) приведены спектры РЗЭ амазонитовых гранитов трех массивов: Орловского Хангилайской интрузии [Коваленко и др., 1999; Сырицо и др., 2001] и двух массивов Кукульбейского района — Тургинского лейкогранитно-амазонитового и Этыкинского амазонитового (спектры 10, 38 и 39 соответственно). Кроме того, в диаграмму включены спектры РЗЭ лейкогранитов — предшественников амазонитовых гранитов в Тургинском массиве (спектр 37) — и гранитов ГФ эталонного в районе Соктуйского массива кукульбейского комплекса (спектр 36) [Коваленко и др., 1999]. Как можно судить по диаграмме, редкоземельный спектр 36 гранитов ГФ Соктуйского массива является исходным при формировании спектров конечных дифференциатов комплекса — амазонитовых гранитов. Спектры трех массивов амазонитовых гранитов резко различаются. Безрудные разновидности Тургинского массива (спектр 38) характеризуются лишь умеренным снижением содержаний легких лантаноидов. Напротив, спектр 39 этыкинских амазонитовых гранитов выделяется резким снижением содержаний всех лантаноидов, и по этому признаку Этыкинский массив должен относиться к наиболее рудоносным, что подтверждается элементной формулой его гранитов и самыми высокими концентрациями в них гранитофилов (ИНК = 163 кларка, число гранитофильных элементов 13, см. табл. 2). На диаграмме (см. рис. 4) обращает внимание глубокий Еu-минимум редкоземельного спектра лейкократовых гранитов — предшественников амазонитовых в Тургинском массиве. Это практически единственный пример нередкометалльных лейкократовых гранитов в кукульбейском комплексе, низкие концентрации гранитофильных элементов в которых предположительно объяснялись их дегазацией [Козлов, Свадковская, 1977]. Принадлежность этих гранитов к кукульбейскому комплексу подтверждается тесным подобием их редкоземельного спектра со спектром гранитов ГФ эталонного Соктуйского массива (спектры 36, 37).

Обобщение данных по спектрам РЗЭ мусковитовых и амазонитовых гранитов кукульбейского комплекса и их сравнительной редкометалльной рудоносности позволяет сделать вывод, что среди них наиболее рудоносны разновидности, характеризующиеся резко пониженными концентрациями лантаноидов при наиболее высоких содержаниях группы редких и летучих гранитофильных элементов. Можно предполагать, что резкое понижение концентраций РЗЭ отражает начало пневматолитогидротермального процесса и отделение лантаноидов с первыми порциями постмагматических флюидов. Об этом же свидетельствуют данные по кварц-топазовым грейзенам Рудных Гор [Stemprok et al., 2005].

Среди всех рассмотренных интрузивных систем кукульбейского комплекса необычностью спектров РЗЭ выделяются ультраредкометалльные граниты и кварцевые порфиры (онгониты) [Антипин и др., 1980] Шерловогорской интрузии, геохимически изученные Ю.П. Трошиным с коллегами [1983].

Район Шерловой горы относится к выдающимся рудным районам Забайкалья. С Петровских времен (1721 г.) [Барабанов, 1994] из грейзенов гранитного купола добывались ювелирные аквамарины и топазы. В 40—50-х годах прошлого столетия отрабатывались связанные с грейзенами богатые касситеритовые россыпи. В пределах купола разведывалось вольфрамитовое месторождение. В 30-х годах в кварцевых порфирах (онгонитах) академиком С.С. Смирновым открыто касситерит-сульфидное с полиметаллами месторождение, крупное по запасам, но с бедными оловянными (≈0.1 %) рудами, опытная карьерная эксплуатация которого проводилась в 70-е годы прошлого столетия.

Спектры РЗЭ шерловогорских ультраредкометалльных лейкогранитов и онгонитов (см. табл. 2, ИНК 38.2 и 57.6 кларков соответственно) резко отличаются от рассмотренных выше спектров РЗЭ кукульбейского комплекса повышением концентраций тяжелых лантаноидов при очень глубоком Еu-минимуме, наиболее проявленным в спектре онгонитов и особенно заметном по сравнению со спектром 36 (см. рис. 5) гранитов ГФ эталонного Соктуйского массива. Иными словами, спектры РЗЭ ультраредкометалльных гранитов Шерловогорского района подобны особенностям спектров ультраредкометалльных литионитциннвальдитовых гранитов наиболее рудоносных купольных выступов интрузивной системы Рудных Гор, рассмотренных выше (см. рис. 2). Из сравнения диаграмм (см. рис. 2, 5) видно, что в куполах Рудных Гор концентрирование тяжелых лантаноидов выражено еще сильнее. Таким образом, сопоставление с регионом Рудных Гор показывает, что наиболее продуктивное редкометалльное оруденение развивается в связи с куполами ультраредкометалльных гранитов и лейкогранитов, в которых интенсивное обогащение их летучими и редкими элементами сочетается с вышекларковым концентрирование лантаноидов, особенно тяжелых, проявлено в ультраредкометалльных дайковых породах Хангилайской интрузии, и эта особенность также коррелируется с ее повышенной рудоносностью.

Обобщение изложенных данных о соотношениях характера редкоземельных спектров поздних дифференциатов редкометалльных интрузий и степени их рудоносности показывает их неоднозначность. С одной стороны, реально рудоносные дифференциаты интрузий кукульбейского комплекса, представленные поздними мусковитовыми и амазонитовыми гранитами, характеризуются резким понижением концентраций всех лантаноидов по сравнению с гранитами ГФ, при наиболее высоких концентрациях в таких дифференциатах группы гранитофильных летучих и редких, включая рудогенные, элементов. С другой стороны, самой высокой продуктивностью W-Sn оруденения выделяются куполы поздних Li-F лейкогранитов (включая литионит-циннвальдитовые Рудных Гор), наиболее обогащенные по отношению к гранитам ГФ как гранитофильными, так и тяжелыми редкоземельными элементами. Подобные дифференциаты определяли высокую продуктивность интрузивной системы Рудных Гор, а в Забайкалье к ним относится Шерловогорская интрузия. Представляется, что различия мусковитовых и литионит-циннвальдитовых разновидностей ультраредкометалльных лейкогранитов определялись различиями в составе магматических флюидов. Судя по содержаниям мусковита в рудоносных мусковитовых гранитах (8-12 %) [Козлов, 2005а], в их флюидной фазе преобладала вода при умеренном концентрировании фтора в купольных мусковитовых гранитах и низких его содержаниях — в пегматитоносных (см. табл. 2). Повидимому, повышенными концентрациями воды характеризовались и расплавы амазонитовых гранитов, в Орловском куполе они ассоциируют с широко развитыми двуслюдяными и мусковитовыми гранитами [Бескин и др., 1994]. В отличие от амазонитовых гранитов Забайкалья в лейкогранитах и онгонитах Шерловогорской интрузии и литионит-циннвальдитовых гранитах поздних куполов Рудных Гор явно доминировал фтор (5000—8000 г/т) [Козлов, 2000а]. Во всяком случае, проведенное сопоставление показывает, что W-Sn редкометалльная рудоносность поздних мусковитовых дифференциатов редкометалльных интрузий значительно уступает по продуктивности сопровождающего оруденения лейкогранитным диференциатам редкометалльных интрузий, в которых мусковитовые разновидности отсутствуют или имеют резко подчиненное значение.

ОСНОВНЫЕ ВЫВОДЫ

1. Сходный уровень обогащения редкими гранитофильными элементами гранитов ГФ интрузий кукульбейского комплекса независимо от проявления или отсутствия в редкоземельных спектрах гранитов ГФ Еu-минимума (индикатора степени магматической дифференциации) показывает, что изначальная обогащенность интрузий комплекса гранитофильными элементами с процессом их магматической дифференциации не связана.

2. Дифференциация подавляющего большинства интрузий редкометалльных гранитов Забайкалья сопровождается понижением концентраций лантаноидов и умеренным усилением Еи-минимума от биотитовых гранитов ГФ к поздним дифференциатам, представленным обогащенными гранитофильными летучими и редкими элементами, купольными и пегматитоносными мусковитовыми лейкогранитами, а также ультраредкометалльными Li-F амазонитовыми гранитами. При этом спектры РЗЭ мусковитовых и амазонитовых гранитов, сопровождающихся пневматолитогидротермальным W-Sn-Ta или редкометалльным пегматитовыми снижением концентраций всех лантаноидов.

3. В отличие от большинства гранитных интрузий, последовательные лейкократовые дифференциаты которых подчиняются общему правилу снижения концентраций лантаноидов, в высокорудоносных интрузиях с редкометалльными гранитами ГФ (Рудные Горы Центральной Европы) могут формироваться локальные куполы поздних ультраредкометалльных литионит-циннвальдитовых Li-F гранитов. В них экстремальное концентрирование гранитофильных редких элементов и летучих совмещается с концентрированием тяжелых лантаноидов; куполы именно таких гранитов в Рудных Горах сопровождаются наиболее продуктивным Sn-W оруденением. В Забайкалье к такому типу дифференциатов редкометалльных интрузий относятся купольные лейкограниты и онгониты Шерловогорской Sn-W-Be-рудоносной интрузии, наиболее продуктивной в регионе.

4. Результаты проведенного анализа распределения лантаноидов в рудоносных редкометалльных гранитах кукульбейского комплекса подтверждают сделанный ранее вывод [Козлов, 1985] о невысокой в целом сравнительной продуктивности интрузий комплекса в отношении Sn-W-редкометалльного оруденения.

Работа выполнена при поддержке РФФИ (гранты 03-05-65041, 05-05-64052).

ЛИТЕРАТУРА

Антипин В.С., Гайворонский Б.А., Сапожников В.П., Писарская В.А. Онгониты Шерловогорского района (Восточное Забайкалье) // Докл. АН СССР, 1980, т. 253, № 1, с. 228—232.

Балашов Ю.А. Геохимия редкоземельных элементов. М., Наука, 1976, 267 с.

Балашов Ю.А. Изотопно-геохимическая эволюция мантии и коры Земли. М., Наука, 1985, 221 с.

Барабанов В.Ф. Минералогия вольфрамитовых месторождений Забайкалья. Т. 2. Л., Изд-во Ленингр. ун-та, 1975, 360 с.

Барабанов В.Ф. Введение в экологическую геохимию. СПб., Изд-во СПб. ун-та 1994, 144 с.

Бескин С.М., Гребенников А.М., Матиас В.В. Хангилайский гранитный плутон и связанное с ним Орловское месторождение тантала в Забайкалье // Петрология, 1994, т. 2, № 1, с. 68—87.

Загорский В.Е., Кузнецова Л.Г. Геохимия сподуменовых пегматитов и щелочно-редкометалльных метасоматитов. Новосибирск, Наука, 1990, 140 с.

Коваленко В.И. Петрология и геохимия редкометалльных гранитоидов. Новосибирск, Наука, 1977, 204 с.

Коваленко В.И., Коваль П.В., Конусова В.В., Смирнова Е.В., Балашов Ю.А. К геохимии редкоземельных элементов в интрузивных породах известково-щелочной серии // Геохимия, 1983, № 2, с. 172— 188.

Коваленко В.И., Костицин Ю.А., Ярмолюк В.В., Будников С.В., Ковач В.П., Котов А.Б., Сальникова Е.Б., Антипин В.С. Источники магм и изотопная (Sr, Nd) эволюция редкометалльных Li-F гранитоидов // Петрология, 1999, т. 7, № 4, с. 401—429.

Козлов В.Д. Геохимия и рудоносность гранитоидов редкометалльных провинций. М., Наука, 1985, 304 с.

Козлов В.Д. Отражение особенностей геохимической эволюции варисского гранитоидного магматизма в металлогении Богемского массива // Геология рудных месторождений, 2000а, т. 42, № 5, с. 459—475.

Козлов В.Д. Сравнительная геолого-геохимическая оценка потенциальной рудоносности гранитоидов и продуктивность W-Sn оруденения (Центральная Европа, Забайкалье, Чукотка) // Геология и геофизика, 2000б, т. 41 (6), с. 857—868.

Козлов В.Д. Геолого-геохимическая очаговая структура и металлогения гранитных рудно-магматических систем Восточного Забайкалья // Геология и геофизика, 2005а, т. 46 (5), с. 486—503.

Козлов В.Д. Введение в геохимию. Иркутск, Изд-во Иркут. гос. тех. ун-та, 2005б, 176 с.

Козлов В.Д., Свадковская Л.Н. Петрохимия, геохимия и рудоносность гранитоидов Центрального Забайкалья. Новосибирск, Наука, 1977, 251 с.

Козлов В.Д., Ефремов С.В. Калиевые щелочные базальтоиды и вопросы геохимической специализации сопряженных с ними редкометалльных гранитов // Геология и и геофизика, 1999, т. 40 (7), с. 989—1002.

Козлов В.Д., Ефремов С.В., Дриль С.И., Сандимирова Г.П. Геохимия, изотопная геохронология и генетические черты Верхнеундинского гранитоидного батолита (Восточное Забайкалье) // Геохимия, 2003, № 4, с. 408—424.

Коптев-Дворников В.С., Руб М.Г. О геохимической и металлогенической специализации магматических комплексов // Металлогеническая специализация магматических комплексов. М., Недра, 1964, с. 7—24.

Костицын Ю.А., Зарайский Г.М., Аксюк М.М., Чевычелов В.Ю. Геохимические и изотопные свидетельства генетической общности биотитовых и Li-F гранитов на примере месторождений Спокойнинское, Орловка и Этыка (Восточное Забайкалье) // Изотопное датирование геологических процессов: новые методы и результаты (Тез. докл. I Российской конференции по изотопной геохронологии). М., ГЕОС, 2000, с. 185—188.

Месторождения Забайкалья / Ред. С.П. Лаверов. М., Геоинформмарк, 1995, т. 1, кн. 1, 192 с.; кн. 2, 244 с. **Овчинников Л.Н.** Прикладная геохимия. М., Недра, 1990, 248 с.

Рундквист Д.В., Денисенко В.К., Павлова И.Г. Грейзеновые месторождения: онтогенез и филогенез. М., Недра, 1972, 328 с.

Смирнов С.С. Схема металлогении Восточного Забайкалья // Проблемы сов. геологии, 1936, т. 6, № 10, с. 846—864.

Солодов Н.А., Семенов Е.И., Бурков В.В. Геологический справочник по тяжелым литофильным редким металлам. М., Недра, 1987, 438 с.

Сырицо Л.Ф., Табунс Э.В., Волкова Е.В., Баданина Е.В., Высоцкий Ю.А. Геохимическая модель формирования Li-F гранитов Орловского массива, Восточное Забайкалье // Петрология, 2001, т. 9, № 3, с. 313—336.

Сырицо Л.Ф., Волкова Е.В., Баданина Е.В., Абушкевич В.С. Высокоспециализированные ультракалиевые трахириодациты в ареале Орловского массива Li-F гранитов в Восточном Забайкалье и проблемы их связи с редкометалльными гранитами // Петрология, 2005, т. 13, № 1, с. 105—109.

Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М., Наука, 1977, 279 с.

Таусон Л.В., Козлов В.Д., Паливцова М., Цимбальникова А. Геохимические особенности гранитоидов Среднечешского массива и некоторые вопросы их генезиса // Опыт корреляции магматических и метаморфических пород. М., Наука, 1979, с. 145—161.

Тейлор С.Р., Мак-Леннан С.М. Континентальная кора, ее состав и эволюция. М., Мир, 1988, 384 с. Трошин Ю.П., Гребенщикова В.И., Бойко С.М. Геохимия и петрология редкометалльных плюмазитовых гранитов. Новосибирск, Наука, 1983, 182 с.

Этыкинское оловорудное месторождение Восточного Забайкалья / Под ред. О.Д. Левицкого, В.В. Аристова, Р.М. Константинова, Е.А. Станкеева. М., Изд-во АН СССР, 1963, 122 с.

Silicic magmatism and metallogenesis of the Erzgebirge / Ed. G. Tischendorf. Berlin, Potsdam, Zentralinstitut fur Physic der Erde, 1989, 316 p.

Stemprok M., Pivec E., Langrova A. The petrogenesis of a wolframite-bearing greisen in the Vykmanov granite stock, Western Kršné hory pluton (Czech Republic) // Bull. Geosciences (Czech Geological Survey), 2005, v. 80, № 3, p. 163—184.

Tischendorf G. Variscan ensialic magmatism and metallogenesis in the Ore Mountains: modeling of the process // Chem. Erde, 1986, № 45, p. 75—104.

Рекомендована к печати 16 июня 2008 г. Г.В. Поляковым Поступила в редакцию 2 апреля 2008 г.