УДК 621.314.222

ТРАНСФОРМАТОРНЫЙ ГЕНЕРАТОР МОЩНЫХ ИМПУЛЬСОВ ТОКА

Г. В. Носов, С. В. Пустынников, Е. О. Кулешова, М. Г. Носова*

Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия

* Томский университет систем управления и радиоэлектроники, 634050 Томск, Россия

E-mails: nosov@tpu.ru, pustynnikov@tpu.ru, kuleshova@tpu.ru, nosovamgm@gmail.com

Предложена конструкция генератора с энергией импульса более 1 МДж при его подключении к внешнему источнику постоянного напряжения с ограниченными силой тока и мощностью. Численно и аналитически рассчитывается электропитание активно-индуктивного потребителя. Определяются параметры генератора для реализации частотно-импульсного режима работы. Приводятся результаты экспериментального исследования малогабаритного трансформаторного генератора, которые подтверждают эффективность работы рассматриваемого генератора и достоверность методики расчета его характеристик.

Ключевые слова: генератор, индуктивный накопитель, трансформатор, коммутатор, импульс тока, активный потребитель.

DOI: 10.15372/PMTF20200217

Введение. Для электропитания ряда активно-индуктивных потребителей, таких как рельсотроны и установки импульсной электросварки, электрогидравлической и магнитно-импульсной обработки металлов, импульсные плазмотроны, необходимы мощные импульсы тока. При этом для работы крупных электрофизических установок, применяемых при проведении фундаментальных и прикладных исследований, требуется энергия импульса более 1 МДж с амплитудой тока, достигающей нескольких сотен килоампер. При разработке генераторов мощных импульсов электрического тока необходимо исследовать характеристики источника энергии, коммутаторов, электрической изоляции и др. [1–4].

При наличии источника электромагнитной энергии с постоянным напряжением и ограниченными силой тока и мощностью (электромашинный генератор или электрическая сеть с выпрямителем) импульсы тока, мощность которых существенно больше мощности источника, могут быть получены с использованием промежуточных емкостных и индуктивных накопителей электромагнитной энергии. Емкостные накопители с импульсными конденсаторами и накопленной энергией, составляющей более 1 МДж, имеют значительные габариты. Плотность энергии, запасаемой энергоемкими конденсаторами (ионисторами), более чем в 10 раз превышает плотность энергии, запасаемой импульсными конденсаторами, что позволяет значительно уменьшить массу и размеры накопителя. Однако

недостаточные для многих потребителей напряжение и сила тока, а также большая длительность импульсов тока ограничивают применение энергоемких конденсаторов. Более приемлемыми по массогабаритным параметрам являются криопроводниковые индуктивные накопители, которые способны генерировать импульсы тока малой длительности с использованием мощных высоковольтных коммутаторов при охлаждении обмоток накопителя до криогенных температур для достижения плотности тока более $100~{\rm A/mm}^2$ и удельной запасаемой энергии до $5~{\rm kДж/kr}$. Однако во многих случаях необходимо увеличивать силу тока источника до требуемой величины [2–7].

Таким образом, разработка конструкции и методики расчета характеристик генератора мощных импульсов тока при его подключении к источнику постоянного напряжения с ограниченными силой тока и мощностью при энергии импульса более 1 МДж является актуальной задачей.

Конструкция и работа генератора. В данной работе предлагается конструкция трансформаторного генератора импульсов тока, который подключается к внешнему источнику постоянного напряжения и предназначен для электропитания потребителя как в режиме одиночных импульсов тока, так и в частотно-импульсном режиме, в случае когда источник постоянного напряжения содержит трехфазный источник энергии (электромашинный генератор или электрическую сеть), трехфазный трансформатор и выпрямитель (рис. 1).

Будем считать, что внешний генератор постоянного напряжения представляет собой источник постоянной ЭДС E и последовательно соединенные внутреннее сопротивление R_e и внутреннюю индуктивность L_e , а потребитель импульсов тока — активно-индуктивную нагрузку, также состоящую из последовательно соединенных активного сопротивления R_H и индуктивности L_H .

Ограничимся исследованием работы генератора при мгновенном срабатывании идеальных коммутаторов. Будем полагать, что паразитные емкости обмоток трансформатора и других элементов генератора незначительны, поэтому при расчетах их можно не учитывать. Также будем считать, что индуктивности конденсаторов несущественны и не оказывают значительного влияния на импульсы напряжений и токов генератора с миллисекундной длительностью, при этом учитываются внутренние сопротивления энергоемких конденсаторов (ионисторов) [6]. Сопротивления и индуктивности соединительных проводов малы и добавляются к сопротивлениям и индуктивностям внешнего источника, обмоток трансформатора и потребителя импульсов тока.

Электрическая схема трансформаторного генератора представлена на рис. 2 (K_0 — ключ запуска электропитания генератора, K_1 — управляемый коммутатор, K_2 , K_3 , K_4 — неуправляемые коммутаторы в виде групп полупроводниковых диодов, C_1 , C_2 — емкости групп конденсаторов, R_{C_1} — эквивалентное сопротивление группы энергоемких конденсаторов C_1 , R_k — сопротивление коммутационного резистора, L_1 , L_2 , $M = K_{cv}\sqrt{L_1L_2}$

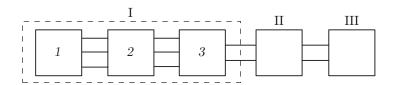


Рис. 1. Блок-схема электропитания потребителя импульсов тока: I — внешний источник постоянного напряжения, II — трансформаторный генератор

1 — внешний источник постоянного напряжения, 11 — трансформаторный генератор импульсов тока, 11 — потребитель; 1 — трехфазный источник энергии, 2 — трехфазный трансформатор, 3 — выпрямитель

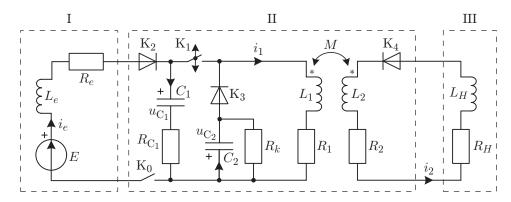


Рис. 2. Электрическая схема трансформаторного генератора: I — источник, II — генератор, III — потребитель импульсов тока

и R_1 , R_2 — индуктивности и сопротивления согласно включенных обмоток трансформатора генератора при коэффициенте связи $K_{cv} < 1$; "*" — одноименно заряженные зажимы обмоток трансформатора; i_e , i_1 , i_2 и u_{C_1} , u_{C_2} — соответственно силы тока и напряжения на конденсаторах, являющиеся функциями времени).

Энергоемкие C_1 и импульсные C_2 конденсаторы необходимы для уменьшения напряжений на элементах источника, трансформатора и коммутатора K_1 при размыкании его контактов. Конденсаторы C_1 , C_2 представляют собой группы выбранных конденсаторов определенного типа, которые соединяются между собой последовательно и параллельно для получения необходимых величин суммарных емкостей, напряжений и токов. Коммутационный резистор R_k используется для разрядки конденсаторов C_2 .

В зависимости от величин сил тока i_e , i_1 , i_2 и напряжений выбираются соответствующие полупроводниковые диоды, которые в группах K_2 , K_3 , K_4 соединяются между собой последовательно и параллельно. Диоды K_2 необходимы для формирования импульсов тока источника i_e и создания максимального напряжения на группе конденсаторов C_1 . Диоды K_3 , K_4 предназначены для накопления энергии в магнитном поле первичной обмотки (с индуктивностью L_1 и сопротивлением R_1) трансформатора и формирования импульсов тока i_2 при размыкании коммутатора K_1 . В качестве коммутатора K_1 необходимо использовать специальный быстродействующий выключатель постоянного тока [8].

Двухобмоточный трансформатор генератора служит для накопления энергии в магнитном поле первичной обмотки, а также для согласования сил тока внешнего источника и потребителя. При величине накапливаемой энергии более 1 МДж необходимо использовать трансформатор без магнитопровода (воздушный трансформатор) с двумя многослойными цилиндрическими обмотками, слои которых чередуются друг с другом. Можно изготовить такой трансформатор с высоким коэффициентом связи между обмотками, которые для увеличения плотности тока и накопленной энергии следует охладить до криогенных температур. Так, при изготовлении обмоток трансформатора из особо чистой меди (99,999 %) и охлаждении их до температуры жидкого водорода (20 K) сопротивление обмоток уменьшается в 1430 раз по сравнению с сопротивлением при температуре, равной 20 °C, что позволяет существенно снизить потери энергии, повысить плотность тока в обмотках и увеличить накапливаемую энергию. При этом для охлаждения обмоток между проводниками необходимо наличие каналов для пропускания жидкого водорода [3, 5, 7].

При замыкании ключа K_0 , когда контакты коммутатора K_1 разомкнуты, группа конденсаторов C_1 заряжается током i_e до некоторого напряжения u_{C_1} , которое в большинстве случаев больше или равно ЭДС E источника, диоды K_2 запираются. После замыкания в определенный момент времени (t=0) контактов коммутатора K_1 сила тока i_1 увеличива-

ется от нулевого значения. Происходит накопление энергии в магнитном поле первичной обмотки трансформатора. В определенный момент времени $(t=t_{m1})$ контакты коммутатора K_1 размыкаются, ток первичной обмотки i_1 начинает протекать через группу конденсаторов C_2 , резистор R_k и диоды K_3 , уменьшаясь до нулевого значения. Практически одновременно в результате подачи напряжения взаимной индукции во вторичной обмотке трансформатора диоды K_4 отпираются, и генерируется импульс тока i_2 , который передает большую часть накопленной энергии магнитного поля трансформатора потребителю.

При частоте f срабатываний коммутатора K_1 в момент времени $t=t_{m1}+t_p=T=1/f$ (t_p — интервал времени, в течение которого используется накопленная энергия), когда $i_1=i_2=i_e=0$ и $u_{\rm C_2}=0$, рассматриваемый цикл работы генератора заканчивается. После нескольких циклов устанавливаются максимальные значения сил токов и напряжений:

$$u_{\rm C_1}(0)=U_{m{\rm C_1}}, \quad i_1(t_{m1})=I_{m1}, \quad i_2(t_{m2})=I_{m2}, \quad u_{\rm C_2}(t_{m2})=U_{m{\rm C_2}}, \quad i_e(t_{me})=I_{me}. \quad (1)$$
 Здесь $t=0$ и $t=t_{m1}$ — моменты замыкания и размыкания коммутатора ${\rm K_1}; \ t_{m2}=t_{m1}+t_k$ — момент запирания диодов ${\rm K_3}$ и достижения максимальной силы тока $i_2; t_k$ — время коммутации, за которое сила тока i_1 уменьшается от максимального значения I_{m1} до нуля, а сила тока i_2 достигает максимального значения $I_{m2}; \ t=t_{me}$ — момент времени, в который достигается максимальное значение силы тока i_e при скважности q работы коммутатора ${\rm K_1}$ ($t_{me} < T = qt_{m1}$).

Таким образом, для генерирования серии импульсов тока i_2 необходимо управление лишь коммутатором K_1 , что позволяет упростить и автоматизировать работу генератора.

Методика расчета. Для определения сил тока и напряжений генератора (см. рис. 2) использовались следующие уравнения:

$$E = L_{e} \frac{di_{e}}{dt} + (R_{e} + R_{K_{2}})i_{e} + u_{C_{1}} + R_{C_{1}}(i_{e} - i_{1}), \qquad i_{e} = i_{1} + C_{1} \frac{du_{C_{1}}}{dt},$$

$$u_{C_{1}} + R_{C_{1}}(i_{e} - i_{1}) = L_{1} \frac{di_{1}}{dt} + (R_{1} + R_{K_{1}})i_{1}, \qquad i_{1} = \frac{u_{C_{2}}}{R_{k}} + C_{2} \frac{du_{C_{2}}}{dt},$$

$$L_{1} \frac{di_{1}}{dt} + M \frac{di_{2}}{dt} + (R_{1} + R_{K_{3}})i_{1} + u_{C_{2}} = 0,$$

$$(L_{2} + L_{H}) \frac{di_{2}}{dt} + M \frac{di_{1}}{dt} + (R_{2} + R_{K_{4}} + R_{H})i_{2} = 0.$$

$$(2)$$

Здесь $R_{\rm K_1},\,R_{\rm K_2},\,R_{\rm K_3},\,R_{\rm K_4}$ — сопротивления коммутаторов, которые были соответственно равными нулю при замкнутом коммутаторе $\rm K_1$ и незапертых диодах $\rm K_2,\,K_3,\,K_4$ и полагались достаточно большими при разомкнутом коммутаторе $\rm K_1$ и запертых диодах $\rm K_2,\,K_3,\,K_4.$

Уравнения (2) решались численно и аналитически. С использованием аналитического решения получены следующие результаты.

1. На интервале времени $t_{m1} < t < t_{m2} = t_{m1} + t_k$ при начальных условиях

$$i_1(t_{m1}) = I_{m1}, i_2(t_{m1}) = 0, u_{C_2}(t_{m1}) = 0,$$

когда при размыкании коммутатора K_1 диоды K_3 и K_4 отпираются, имеем

$$i_{1} \approx I_{m1} \left(1 - \frac{t - t_{m1}}{t_{k}} \right), \quad i_{2} \approx I_{m2} \frac{t - t_{m1}}{t_{k}}, \quad u_{C_{2}} \approx I_{m1} \frac{t - t_{m1}}{C_{2}} - I_{m1} \frac{(t - t_{m1})^{2}}{2C_{2}t_{k}},$$

$$I_{m2} \approx \frac{MI_{m1}}{L_{2} + L_{H} + 0.5(R_{2} + R_{H})t_{k}}, \quad U_{mC_{2}} \approx \frac{t_{k}I_{m1}}{2C_{2}}, \quad t_{k}^{3} + r_{2}t_{k}^{2} + r_{1}t_{k} + r_{0} \approx 0,$$

$$r_{2} = \frac{2(L_{2} + L_{H})}{R_{2} + R_{H}}, \quad r_{1} = -3L_{1}C_{2}, \quad r_{0} = -\frac{6[L_{1}(L_{2} + L_{H}) - M^{2}]C_{2}}{R_{2} + R_{H}}.$$

$$(3)$$

2. На интервале времени $t_{m2} < t < T$ при начальных условиях

$$i_1(t_{m2}) = 0,$$
 $i_2(t_{m2}) = I_{m2},$ $u_{C_2}(t_{m2}) = U_{mC_2},$

когда при размыкании коммутатора K_1 диоды K_3 запираются, а диоды K_4 не заперты, имеем

$$i_1 = 0$$
, $i_2 = I_{m2} \exp\left(-\frac{(R_2 + R_H)(t - t_{m2})}{L_2 + L_H}\right)$, $u_{C_2} = U_{mC_2} \exp\left(-\frac{t - t_{m2}}{R_k C_2}\right)$. (4)

При генерировании одного импульса тока i_2 на основе численного и аналитического расчета уравнений (2)–(4) с учетом начальных условий (1) определены параметры генератора и получены формулы для их расчета. К числу этих параметров относятся переданная источником ЭДС энергия W_E ; накопленная в магнитном поле трансформатора энергия W_{L1} ; максимальная активная мощность потребителя P_{mH} ; длительность импульса максимальной активной мощности t_u ; выделившаяся энергия W_H в активном сопротивлении потребителя R_H ; эффективность накопления энергии η_1 , эффективность передачи накопленной энергии потребителю η_2 и полная эффективность работы генератора η ; длительность t_i импульса тока i_2 на половине его амплитуды:

$$W_{E} = E \int_{0}^{T} i_{e} dt, \qquad W_{L1} = \frac{L_{1}I_{m1}^{2}}{2}, \qquad t_{u} \approx \frac{t_{k}}{3} + \frac{L_{2} + L_{H}}{2(R_{2} + R_{H})},$$

$$P_{mH} = I_{m2}^{2}R_{H}, \qquad W_{H} \approx P_{mH}t_{u},$$

$$\eta_{1} = \frac{W_{L1}}{W_{E}}, \quad \eta_{2} = \frac{W_{H}}{W_{L1}}, \qquad \eta = \eta_{1}\eta_{2} = \frac{W_{H}}{W_{E}}, \qquad t_{i} \approx \frac{t_{k}}{2} + \frac{(L_{2} + L_{H})\ln 2}{R_{2} + R_{H}}.$$

$$(5)$$

На основе анализа результатов вычислений сформулированы требования к параметрам генератора, обеспечивающим частотно-импульсный режим его работы. Так, в течение периода T следования импульсов тока i_2 группа конденсаторов C_1 должна периодически заряжаться до максимального напряжения U_{mC_1} , а диоды K_2 — открываться и запираться. Напряжение u_{C_2} и сила тока i_2 должны уменьшаться до нуля, причем на интервале времени $t_{m2} < t < T$ диоды K_3 должны быть заперты. Для уменьшения потерь энергии сопротивление R_k должно быть максимальным, а емкость C_2 — минимальной. Этим требованиям удовлетворяют следующие соотношения для параметров генератора:

$$t_{k} \ll R_{k}C_{2}, t_{k} \ll T - t_{m1}, q = T/t_{m1} > 1,$$

$$I_{y1} = \frac{E}{R_{e} + R_{1}} > I_{m1}, \tau = \frac{L_{e} + L_{1}}{R_{e} + R_{1}}, f \approx \left[q\tau \ln\left(\frac{I_{y1}}{I_{y1} - I_{m1}}\right)\right]^{-1}, \frac{5R_{k}C_{2}}{T - t_{m1}} < 1,$$

$$\frac{5(L_{2} + L_{H})}{(R_{2} + R_{H})(T - t_{m1})} < 1, L_{e1} = \frac{L_{e}L_{1}}{L_{e} + L_{1}}, C_{1} \geqslant \frac{q^{2}t_{m1}^{2}}{8\pi^{2}L_{e1}[1 + q^{2}t_{m1}^{2}R_{C_{1}}^{2}/(16\pi^{2}L_{e1}^{2})]},$$

$$C_{2} > \frac{L_{2} + L_{H}}{R_{k}(R_{2} + R_{H})}, C_{2} > \frac{2M^{2}}{R_{k}^{2}(R_{2} + R_{H})t_{k}}, f < \frac{(q - 1)(R_{2} + R_{H})}{5q(L_{2} + L_{H})}.$$

При этом величина ЭДС E определяется требуемыми значениями сил тока, а величины C_2 , R_k — допустимыми максимальными напряжениями на коммутаторе K_1 и другом оборудовании генератора. Если принято значение емкости C_1 , существенно большее правой части неравенства для C_1 в (6), то сила тока i_e не будет обращаться в нуль и диоды K_2 можно не использовать.

Приближенные значения параметров генератора при различных значениях энергии импульса												
W_H , МДж	L_1 , Гн	L_2 , мк Γ н	L_H , мк Γ н	t_u , MC	t_i , MC	f_m , Гц	P_{mE} , MB _T					
5	0,4	40	0,4	13	18	3,96						
10	0,8	80	0,8	25	35	1,98	19,8					
20	1.6	160	1.6	50	70	0.00						

 ${
m Taf\piuta} \ 1$

По заданным значениям W_{L1} , I_{m1} , I_{m2} , R_H , $\lambda_H = L_H/L_2 \ll 1$, q с использованием формул (5) получены соотношения для приближенного расчета параметров генератора без учета потерь энергии:

$$n_{i} = \frac{I_{m2}}{I_{m1}} \approx \frac{w_{1}}{w_{2}}, \quad L_{1} = \frac{2W_{L1}}{I_{m1}^{2}}, \quad L_{2} \approx \frac{L_{1}}{n_{i}^{2}}, \quad L_{H} \approx \lambda_{H} L_{2},$$

$$U_{mH} = R_{H} I_{m2}, \quad U_{m2} \approx 1,2U_{mH}, \quad U_{m1} \approx n_{i} U_{m2}, \quad f_{m} \approx \frac{(q-1)R_{H}}{5q(L_{2} + L_{H})}, \quad t_{u} \approx \frac{L_{2}}{2R_{H}}, \quad (7)$$

$$t_{i} \approx \frac{(1 + \lambda_{H})L_{2} \ln 2}{R_{H}}, \quad P_{mH} = I_{m2}^{2} R_{H}, \quad W_{E} \approx W_{L1} \approx W_{H} = P_{mH} t_{u}, \quad P_{E} = f W_{E}.$$

Здесь n_i — коэффициент трансформации тока; w_1 , w_2 — количество витков первичной и вторичной обмоток трансформатора соответственно; U_{mH} , U_{m1} , U_{m2} — максимальные значения напряжений на активном сопротивлении потребителя, первичной и вторичной обмотках трансформатора соответственно; f_m — максимально возможная частота следования импульсов тока i_2 ; $P_{mE} = P_E$ — максимальная средняя мощность внешнего источника при частоте $f = f_m$ и энергии $W_E \approx W_H$.

Результаты расчета и эксперимента. В табл. 1 приведены приближенные значения параметров генератора, рассчитанные по формулам (7) при $I_{m1} = 5$ кA, $I_{m2} = 500$ кA, $n_i = 100, R_H = 1,6$ мОм, $\lambda_H = 0,01, q = 2, U_{mH} = 800$ В, $U_{m2} = 960$ В, $U_{m1} = 96$ кВ, $P_{mH} = 400 \; \mathrm{MBr}$ и различных значениях энергии импульса. Уточненные расчетные параметры генератора с накапливаемой энергией 10 МДж при электропитании от электрической сети, трехфазного трансформатора $TC3-1600/10~(M_{m1}=6500~{\rm kr})$ и выпрямителя имели следующие значения: $W_{L1}=10$ МДж, $R_H=1,6$ мОм, $L_H=0,8$ мк Γ н, $L_e=0,75$ м Γ н, $R_e=10$ мОм, $C_1=0,45$ Ф, $R_{\rm C_1}=0,233$ Ом, $C_2=102$ мк Φ , $R_k=1$ кОм, $L_1=0,8$ Γ н, $R_1 = 1,914$ мОм, $L_2 = 74,20$ мкГн, $R_2 = 0,206$ мкОм, M = 7,636 мГн, E = 831 В, $I_{me} = 5 \text{ кA}, I_{m1} = 5 \text{ кA}, I_{m2} = 490,5 \text{ кA}, U_{m\mathbf{C}_1} = 831 \text{ B}, U_{m\mathbf{C}_2} = 98,28 \text{ кB}, U_{m1} = 98,28 \text{ кB}, U_{m2} = 98,28 \text{ кB}, U_{m1} = 98,28 \text{ кB}, U_{m2} = 98,28 \text{ кB}, U_{m3} = 98,28 \text{ kB}, U_{m3} = 98,28 \text{ kB$ $U_{m2} = 841 \text{ B}, P_{mH} = 411.6 \text{ MBT}, W_H = 9.57 \text{ МДж}, \eta = 0.91, \tilde{f} = 0.1 \text{ Гц}, T = 10 \text{ c}, t_{m1} = 5 \text{ c},$ $t_k = 4.1$ мс, $t_u = 25$ мс, $t_i = 35$ мс, $P_E = 1.05$ МВт, $W_E = 10.52$ МДж, $M_{\rm C_1} = 432$ кг, $M_{\rm C_2} = 1860$ кг, $M_y = 18$ т. Для генерирования серии импульсов тока i_2 с частотой 0,1 Γ ц в качестве коммутатора K_1 может использоваться специальный быстродействующий выключатель постоянного тока, рассчитанный на отключение тока 5 кА при напряжении между отключающими контактами до 100 кВ. Например, при использовании масляного выключателя типа ВМТ-110Б-20/1000 выключатель постоянного тока может иметь массу $M_{\rm K_1} \leqslant 2260~{\rm kr}$ [8]. При этом воздушный трансформатор имеет две охлаждаемые до температуры, равной 20 К, пятислойные обмотки из особо чистой меди с коэффициентом связи $K_{cv} \approx 0{,}991{,}$ масса трансформатора равна $M_{m2} \approx 5000$ кг. Общая масса оборудования с учетом массы трансформаторов M_{m1} , M_{m2} , диодов, выключателя M_{K_1} и конденсаторов $M_{\rm C_1}, M_{\rm C_2}$ составляет $M_y \approx 18$ т.

Согласно результатам расчетов максимальная активная мощность потребителя P_{mH} значительно превышает амплитудную мощность внешнего источника (ЭДС) $P_{Ae} =$

 ${\rm T\, a\, 6\, \pi\, n\, n\, n\, a} \ 2$ Расчетные и экспериментальные максимальные значения сил тока и напряжений при f=400 Гц, q=2

Метод исследования	E, B	U_{mC_1} , B	U_{mC_2} , B	U_{mK_1} , B	I_{me} , A	I_{m1} , A	I_{m2} , A
Расчет	30	41,16	202,6	181,5	0,393	0,383	0,744
Эксперимент	30	42,00	170,0	190,0	0,380	0,390	0,680

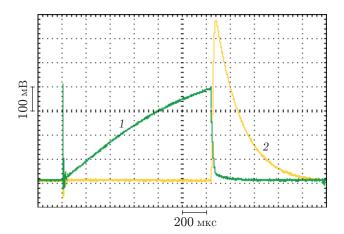


Рис. 3. Осциллограммы напряжений на сопротивлениях 1 Ом малогабаритного генератора, соответствующие силам тока i_1 (1) и i_2 (2)

 $EI_{me} \approx 4,16$ МВт при достаточно высокой эффективности работы генератора η и следующих значениях удельных энергетических параметров импульса в частотно-импульсном режиме: $P_{mH}/M_y \approx 23$ кВт/кг, $W_H/M_y \approx 0,53$ кДж/кг. Максимальные значения энергии в конденсаторах C_1 , C_2 равны соответственно 158 и 493 кДж при потере энергии в резисторе R_k , составляющей 382 кДж. Данные значения энергии существенно меньше переданной потребителю энергии W_H . При этом только масса конденсаторов емкостного генератора импульсных токов, состоящего из 5000 конденсаторов типа ИК-100-0,4 с суммарной энергоемкостью 10 МДж, составляет 160 т, что значительно больше массы оборудования M_y рассматриваемого генератора [4, 8].

Для малогабаритного генератора на рис. 3 приведены характерные осциллограммы напряжений на измерительных сопротивлениях 1 Ом, которые соответствуют силам тока i_1 и i_2 . Расчетные и экспериментальные максимальные значения напряжений и сил тока, приведенные в табл. 2, осциллограммы напряжений, представленные на рис. 3, и соответствующие им расчетные зависимости сил тока i_1 , i_2 от времени практически совпадают.

Заключение. Предложена конструкция и разработана методика расчета характеристик трансформаторного генератора с энергией импульса силы тока более 1 МДж. Полученные результаты свидетельствуют о возможности и перспективности применения данного генератора для электропитания активно-индуктивных потребителей мощными импульсами тока при подключении его к внешнему источнику постоянного напряжения с ограниченной мощностью. Генератор способен работать как в режиме одиночных импульсов, так и в частотно-импульсном режиме. Достоверность методики расчета и эффективность работы исследуемого генератора подтверждаются результатами экспериментальных исследований с использованием малогабаритного трансформаторного генератора.

ЛИТЕРАТУРА

- 1. Fair H. D. The past, present and future of electromagnetics launch technology and the IEEE International EML symposia // IEEE Trans. Plasma Sci. 2013. V. 41, N 5. P. 1024–1027.
- 2. McNab I. R. Large-scale pulsed power opportunities and challenges // IEEE Trans. Plasma Sci. 2014. V. 42, N 5. P. 1118–1127.
- 3. **Асиновский Э. И.** Взрывные генераторы мощных импульсов электрического тока / Э. И. Асиновский, Е. Ф. Лебедев, А. А. Леонтьев и др. М.: Наука, 2002.
- 4. **Носов Г. В., Носова М. Г., Васильева Ю. З., Кулешова Е. О.** Расчет и анализ электропитания рельсотрона от магнитогидродинамического генератора и трансформатора // ПМФТ. 2018. Т. 59, № 2. С. 74–81.
- 5. **Бут Д. А.** Накопители энергии / Д. А. Бут, Б. Л. Алиевский, С. Р. Мизюрин, П. В. Васюкевич. М.: Энергоатомиздат, 1991.
- 6. **Беляков А. И.** Электрохимические суперконденсаторы: текущее состояние и проблемы развития // Электрохим. энергетика. 2006. Т. 6, № 3. С. 146–149.
- 7. **Электротехнический** справочник: В 3 т. Т. 1. Общие вопросы. Электротехнические материалы / Под ред. В. Г. Герасимова и др. М.: Энергоатомиздат, 1985.
- 8. **Электротехнический** справочник: В 3 т. Т. 2. Электротехнические изделия и устройства / Под ред. В. Г. Герасимова и др. М.: Энергоатомиздат, 1986.

Поступила в редакцию 24/VI 2019 г., после доработки — 7/X 2019 г. Принята к публикации 28/X 2019 г.