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ВВЕДЕНИЕ

Разработанные новые математические мо-
дели сложных течений и основанные на них

компьютерные программы могут применяться

на практике только после их эксперименталь-
ной валидации (т. е. после сопоставления ре-
зультатов расчета реальных течений с деталь-
ными экспериментальными данными), которая
позволяет оценить точность и надежность но-
вых моделей и программ, установить границы
их применимости.

В связи с этим особенно актуальной явля-
ется подготовка баз экспериментальных дан-
ных, специально предназначенных для вали-
дации математических моделей и основанных

на них компьютерных программ. Это подразу-
мевает особые требования к эксперименту —
детальное измерение разнообразных физиче-
ских параметров, позволяющее корректно по-
ставить начальные и граничные условия в рас-
чете, визуализация физической картины тече-
ния, получение полей определяющих физиче-
ских параметров в потоке, сопоставление дан-
ных измерения одних и тех же величин различ-
ными методами. Предпочтительными являют-
ся бесконтактные оптические измерения, не ис-
кажающие структуру течения.

Объем данных по горению в потоке до-
статочно ограничен. Имеется сравнительно

небольшое число классических экспериментов
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с предельно упрощенной постановкой задачи.
К сожалению, попытки моделирования этих

экспериментов обнаруживают существенные

недостатки и нехватку информации в опубли-
кованных данных [1]. Значительное число экс-
периментов было посвящено исследованию те-
чения в модельных энергетических установках.
Несмотря на высокое качество многих работ,
сложная геометрия экспериментальной моде-
ли, использование сложных устройств для ин-
жекции топлива и стабилизации горения (пи-
лоны сложной формы, ступеньки, каверны и

пр.) приводят к взаимодействию большого чис-
ла разномасштабных эффектов, затрудняющих
валидацию математических моделей горения.

В ЦАГИ были выполнены аэродинамиче-
ские эксперименты на стенде для получения

новых экспериментальных данных по течени-
ям с горением в каналах. Разработана экспери-
ментальная модель с упрощенной геометрией и

возможностью применения комплексной пано-
рамной мультиспектральной системы для ви-
зуализации горения.

Основным параметром визуализации яв-
лялось пространственное распределение све-
чения хемилюминесценции в различных спек-
тральных диапазонах — от ближнего уль-
трафиолета (УФ) до ближнего инфракрасного
(ИК). Исследование пространственного свече-
ния дает информацию о тепловыделении, пол-
ноте сгорания и температуре потока с горени-
ем.
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Цель работы — апробация разработанной

комплексной мультиспектральной панорамной

системы визуализации потоков с горением, а
также постановка валидационных эксперимен-
тальных исследований на стенде для модели-
рования горения с целью дальнейшего сравне-
ния результатов эксперимента и компьютерно-
го расчета.

Под комплексной визуализацией следует

понимать регистрацию, обработку и представ-
ление пространственных данных сложного в

плане наблюдения и восприятия физического

процесса. Комплексный подход заключается в
описании потока с горением совокупностью ос-
новных характеристик: поле тепловыделения,
поле температуры, поле локальной относитель-
ной полноты сгорания.

Панорамная визуализация физических по-
лей включает в себя двумерное представление

результатов измерения и цифрового анализа

исследуемых полей газодинамических и тепло-
физических параметров и результатов числен-
ного расчета динамических процессов.

Мультиспектральная визуализация — ме-
тод исследования в нескольких спектраль-
ных диапазонах оптического спектра (обыч-
но от УФ до дальнего ИК). Может исполь-
зоваться широкополосное излучение или, ча-
ще, комбинация из нескольких узкополосных
диапазонов. Диапазоны могут выбираться с

помощью спектрально-селективных полосно-
пропускающих фильтров. Мультиспектраль-
ная визуализация отличается от гиперспек-
тральной меньшим количеством используемых

спектральных диапазонов.
В настоящее время развитие методов пано-

рамной визуализации и цифрового анализа теп-
ловых полей определяется во многом внедрени-
ем в экспериментальную практику современ-
ных программных и электронных средств для

ввода в компьютер зарегистрированных изоб-
ражений и их цифровой обработки.

ВИЗУАЛИЗАЦИЯ ПОТОКОВ С ГОРЕНИЕМ

Пространственное распределение тепло-
выделения является непосредственным след-
ствием режима работы экспериментальной

установки. Исследование пространственно-
временных характеристик горения может

быть проведено посредством регистрации

хемилюминесценции химически активных

компонентов потока. Чаще всего исследуют из-

лучение электронно-возбужденных радикалов
OH∗ и CH∗.

Визуализация коротковолнового свечения

хемилюминесценции радикала OH∗ в ближнем
УФ-диапазоне 305 ÷ 325 нм считается относи-
тельно несложным способом определения зоны

начала тепловыделения, так как стадия теп-
ловыделения начинается при достижении вы-
сокой концентрации радикалов. Сложность ин-
терпретации интенсивности излучения заклю-
чается во влиянии дополнительных мешающих

факторов. Так, в области излучения возбуж-
денных радикалов OH∗ и CH∗ могут присут-
ствовать другие излучающие компоненты, та-
кие как CN, CO и СO2. Значительное влияние
оказывает непосредственно кислород, молеку-
лы которого ответственны за тушение люми-
несценции. Следствием является обратная за-
висимость интенсивности хемилюминесценции

от уровня турбулентных пульсаций потока.
Непрерывный тепловой спектр при уровне

температур до 2 500 К является малозначи-
мой помехой по сравнению с уровнем сигна-
ла хемилюминесценции, учитывая малую плот-
ность частиц сажи в рассматриваемой обла-
сти. Несмотря на это, было уделено внимание
ограничению интервала регистрируемых длин

волн оптического диапазона с помощью интер-
ференционных фильтров, с тем чтобы умень-
шить влияние теплового континуума, а также
исключить из поля зрения элементы конструк-
ций с высокими коэффициентами рассеивания

излучения.
Были проведены предварительные ис-

следования пропускания и поглощения УФ-
излучения материалами, используемыми в оп-
тическом тракте, на выбранных длинах волн,
так как эти параметры значительно отли-
чались от наблюдавшихся в видимом диапа-
зоне длин волн. Уделено особое внимание ти-
пам матриц. С используемых матриц удаля-
лись так называемый hotmirror-фильтр, УФ-
фильтр, интерференционные фильтры (410 ÷
690 нм) и anti-aliasing-фильтры (стекла про-
странственной фильтрации излучения). Для
компенсации рабочего отрезка применялись

высокоточные оптические пластины из плавле-
ного кварца пропускающего УФ-излучение.

ВАЛИДАЦИОННЫЕ ЭКСПЕРИМЕНТЫ

Для валидационных экспериментальных

исследований предпочтительны собственные
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Рис. 1. Геометрия экспериментальной модели с указанием мест подачи топлива и установки
датчиков:

I — 1-й пояс подачи топлива (не используется), II — 2-й пояс, III — 3-й пояс (не используется), IV —
4-й пояс, V — 5-й пояс подачи топлива

базы экспериментальных данных, когда рас-
четчик имеет полный доступ ко всем деталям

эксперимента, когда эксперимент ставится с
учетом его запросов и когда имеется возмож-
ность обсуждать возникающие проблемы рас-
четов с авторами эксперимента.

Поэтому в ЦАГИ были проведены аэроди-
намические эксперименты на стенде, специаль-
но подготовленные для получения новых экс-
периментальных данных по высокоскоростным

течениям с горением в каналах, ориентирован-
ных на валидацию физических моделей и про-
граммного обеспечения.

Для упрощения численного моделирования

и исключения посторонних физических эффек-
тов выбрана и изготовлена модель простейшей

геометрии — расширяющийся канал постоян-
ной ширины с подачей газообразного топлива

(этилен) со стенок, без специальных устройств
для стабилизации горения (рис. 1).

Симметричный канал включает в себя два

отсека постоянной высоты — отсеки 1 и 4 на
рис. 1, между которыми расположен участок с
непрерывным расширением канала, разделен-
ный на два коротких отсека 2 и 3. Хвостовая
часть модели выполнена в виде расширяюще-
гося отсека 5.

Эксперименты проводились в режиме при-
соединенного воздуховода, поступающий воз-

дух нагревался огневым подогревателем. Для
проведения испытаний выбран следующий диа-
пазон режимов течения на входе в канал экс-
периментальной модели: число Маха M = 2.5,
температура торможения T0 = 1 650 ÷ 2 150 К,
давление торможения p0 = 15 атм. Топли-
во впрыскивалось в начале экспериментально-
го канала через две пары отверстий в верхней

и нижней стенках, перпендикулярно потоку. В
модели предусмотрено пять мест подачи топ-
лива — три в первом отсеке и два во втором

(пояса подачи топлива I–V, см. рис. 1). Изме-
нение режима течения достигалось за счет ва-
рьирования температуры торможения и массо-
вого расхода топлива. В конце канала, на верх-
ней стенке последнего отсека постоянной вы-
соты, установлен пневмодроссель. Он обеспе-
чивал возможность временной генерации струи

сжатого воздуха с целью инициирования горе-
ния [2].

Модель изготовлена из нержавеющей жа-
ростойкой стали. Активное охлаждение стенок
отсутствует. На боковых стенках канала уста-
новлены четыре пары оптических окон из квар-
цевого стекла толщиной 50 мм (см. рис. 1).

С целью визуализации структуры течения

предусмотрен широкий спектр измерений: вы-
сокоскоростная шлирен-видеосъемка; визуали-
зация излучения радикалов OH∗ и CH∗ (хеми-
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Рис. 2. Распределения давления по стенкам канала в трех наиболее типичных режимах (а–в),
спектр пульсаций давления (г), соответствующий режиму б

люминесценция) для обнаружения области теп-
ловыделения; измерение температуры стенки

термопарами, установленными внутри стенок
канала и на его внешней поверхности; реги-
страция осредненных по времени распределе-
ний статического давления вдоль стенок. Схе-
ма измерений показана на рис. 1.

Модель присоединена к соплу М = 2.5, ко-
торое располагалось ниже по потоку от огнево-
го подогревателя. Модель фиксировалась спе-
циальной штангой и входила хвостовой частью

в отверстие в торцевой стенке вакуумной каме-
ры. Такой способ крепления модели допускает
продольные деформации модели вследствие на-
грева.

Вакуумная камера обеспечивала низкое

давление (0.15 атм) на выходе модели, предот-
вращая влияние внешнего потока при выхо-
де на структуру течения внутри канала. Ин-
жекторы для подачи топлива были соедине-
ны в единую систему с общим резервуаром,
что создавало одинаковое полное давление во

всех инжекторах. Прибор Теплера, располо-
женный перпендикулярно оптическим окнам

модели, позволял проводить визуализацию те-
чения внутри канала. Прибор можно было пе-
ремещать вдоль модели для получения изобра-

жений течения через разные оптические окна.
Анализ результатов проведенных измере-

ний включал в себя спектральный анализ пуль-
саций давления (рис. 2,г), сопоставление ви-
деоизображений в видимом, ультрафиолетовом
(хемилюминесценция OH∗), видимом и инфра-
красном (хемилюминесценция СH∗) диапазо-
нах и теневой картины течения, а также ре-
зультаты квазиодномерных расчетов, основан-
ных на полученных в экспериментах распре-
делениях давления. Обнаружено пять различ-
ных режимов стабилизации горения в канале. В
трех из них (T0 ≈ 1 700 К, коэффициент избыт-
ка окислителя α = 1.5 ÷ 3) реализован режим
горения с запиранием канала и формировани-
ем псевдоскачка с двумя (рис. 2,а) или одним
(рис. 2,б) максимумами в распределениях дав-
ления. В двух других (T0 = 1 950 ÷ 2 150 К,
α = 3) реализован высокоскоростной режим го-
рения без запирания канала. Тип стабилизации
горения в режимах, показанных на рис. 2,а–в,
подтверждался теневой картиной течения, а в
режимах, показанных на рис. 2,б,в, — также и

данными квазиодномерных расчетов. Наиболее
развитые низкочастотные пульсации наблюда-
лись в области тепловыделения (рис. 2,г).
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МУЛЬТИСПЕКТРАЛЬНАЯ ПАНОРАМНАЯ
СИСТЕМА ВИЗУАЛИЗАЦИИ

Аэрофизический эксперимент, проводи-
мый для исследования реагирующих потоков,
требует в целях изучения поведения потока

и взаимодействия гетерогенных сред примене-
ния средств контроля, управления и измерения
энергетических параметров.

Была разработана многоканальная систе-
ма мультиспектральной панорамной визуали-
зации. Мультиспектральность данной системы
обеспечивается задействованием в ней различ-
ных типов датчиков (матричных камер), чув-
ствительных к излучению различных участ-
ков оптического спектра в широком диапазоне

длин волн. Панорамность системы реализуется
путем применения датчиков, каждый из кото-
рых представляет собой чувствительную мат-
рицу. На рис. 3 представлены элементы, входя-
щие в систему мультиспектральной визуализа-
ции.

Система состоит из девяти панорамных

каналов — чувствительных матричных камер

с соответствующей оптической системой,

Рис. 3. Элементы многоканальной системы мультиспектральной визуализации

включающей в себя необходимое количество

интерференционных полосно-пропускающих
фильтров, формирующих соответствующие

профили спектральной чувствительности

камер. Дополнительно к панорамным кана-
лам, проводилась регистрация информации с
двух спектральных каналов с целью анализа

эмиссионных спектров излучения потока.
Каналы 5–9 предназначены для визуали-

зации и диагностики физических и химиче-
ских явлений, протекающих в процессе вы-
сокоскоростного горения. Схема расположения
средств визуализации во время испытаний экс-
периментальной модели на стенде представле-
на на рис. 4.

Канал 5 отвечает за регистрацию в обла-
сти ближнего ИК-излучения (810 ÷ 1 040 нм)
хемилюминесценции CH∗ и теплового кон-
тинуума. Канал 6 работает на длинах волн

ближнего УФ (310 ÷ 370 нм) и фиксирует

хемилюминесценцию OH∗. Канал 7 работает

на монохроматической длине волны излучения

в области ближнего ИК-диапазона длин волн
808 нм и регистрирует теневую картину

течения. Канал 8 осуществляет визуализацию
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Рис. 4. Схема расположения диагностических каналов 5–9 панорамной спектральной визуали-
зации на аэродинамическом стенде для моделирования горения при испытаниях модели канала

излучения в видимом RGB-диапазоне 410 ÷
680 нм и фиксирует излучение компонентов

CH∗, С∗
2. Канал 9 представляет собой тепло-

визионную камеру с матричным болометром

неохлаждаемого типа с чувствительностью в

диапазоне 8 ÷ 14 мкм, которая регистрирует
поле температур внешней стенки модели.

Как известно, исследование спектра излу-
чения в ближнем УФ-диапазоне оптического
спектра дает возможность воспользоваться из-
лучением хемилюминесценции радикала OH∗

для определения положения областей тепловы-
деления. Развитие горения в эксперименталь-
ной модели сопровождается появлением люми-
несцентного излучения радикалов OH∗, воз-
буждаемых за счет переноса энергии к ним от

продуктов химических реакций процесса горе-
ния. Яркость такого излучения сильно зависит
от концентраций компонентов реакций, при ко-
торых образуется радикал OH∗ [3]. Исследова-
ние пространственного распределения интен-
сивности хемилюминесценции позволяет, учи-
тывая вид экзотермических реакций окисления

горючего, уточнять химическую кинетику про-
цесса.

При регистрации излучения использова-
лась полоса в диапазоне длин волн λ = 280 ÷
350 нм (начало полосы 306 нм) с максимумом

в области 307 ÷ 315 нм. Как известно, осо-
бенностью коротковолновых фильтров являет-
ся пропускание ими ближнего ИК-излучения,
что вместе с высокой чувствительностью мат-
риц в этой области и сильным сигналом теп-
лового излучения создает сильные помехи, во
много раз превышающие полезный сигнал. Ре-
шением явилось применение многослойных ин-
терференционных фильтров с широкой полосой

пропускания и резкими зонами подавления сиг-
нала, в том числе в ближнем ИК-диапазоне.

Формирование изображений на чувстви-
тельных матрицах проводилось с помощью

ультрафиолетовых кварцевых объективов —
UV lens 77.5mm, QuartsHGS и Goyo 25mm/0.5
на полосу пропускания 230 ÷ 1 100 нм.

Сигнал регистрировался с помощью двух

типов камер: высокого разрешения с потоковой
передачей видео — модифицированных камер

Sony 6300; камерой с глобальным затвором JAI
Pulnix CM140-2 SUV. Камеры высокого разре-
шения были внедрены в общую сеть промыш-
ленного наблюдения стенда посредством специ-
ализированного видеосервера. Для настройки
систем видеорегистрации применялись обыч-
ные бытовые ртутные УФ-облучатели, для

чего использовался бытовой излучатель уль-
трафиолетовый ОУФК-09-01 и система спек-
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тральных оптических неорганических свето-
фильтров.

Отдельно стоит отметить разработанный

компактный блок LED-синхронизаторов. Блок
жестко фиксируется на внешней стенке экс-
периментальной модели таким образом, что-
бы попадать в кадр съемки камер мультиспек-
тральной системы визуализации, и состоит из
трех светодиодов: светодиод для УФ-области
365 нм, светодиод для видимой области 650 нм
и светодиод для ИК-области 850 нм. Блок све-
тодиодов синхронизирован с подачей топлива в

экспериментальную модель.
В исследованиях проводилась обработ-

ка изображений излучения обоих компонентов

OH∗ и CH∗, но основное внимание уделялось
излучению OH∗, так как оно реализуется в

области λ = 305 ÷ 325 нм ближнего УФ-
диапазона, который регистрировался отдель-
ной камерой и меньше подвергался влиянию

мешающих компонентов.
Исследование эмиссионных спектров излу-

чения потока с горением, полученных после
первой серии испытаний, показало наличие из-
лучающих «мешающих» компонентов — желе-
за (Fe), меди (Cu), магния (Mg), циана (CN),
диуглерода (C2), натрия (Na I, 589 нм) и калия
(K I, 766 нм) и тепловое излучение содержа-
щейся в потоке сажи (рис. 5).

Для последующих серий испытаний си-
стема мультиспектральной визуализации бы-
ла модифицирована посредством разделения

каналов RGB-камеры оптического диапазона

(рис. 6). Это сделано по причине того, что
на изображении синего канала регистрирова-

Рис. 5. Пример зарегистрированного эмиссион-
ного спектра

Рис. 6. Модифицированная система мульти-
спектральной визуализации:

УФ — ультрафиолетовая камера, ВИД — камера

видимого диапазона, ТЕП — тепловизионная ка-
мера дальнего инфракрасного диапазона, СПЕК —
линейный спектрограф, СТРОБ — стробируемая

камера на длину волны излучения импульсного ла-
зера, 1 — вывод распределения излучения хеми-
люминесценции ОН∗ (сигнал с УФ-камеры), 2 —
вывод цветного изображения видимого диапазона,
3 — вывод хемилюминесценции СН∗ (сигнал с ка-
меры видимого диапазона, канал синего), 4 — вы-
вод излучения колебательных полос молекулы уг-
лерода С2 (полосы Свана) атомарного натрия (сиг-
нал с камеры видимого диапазона, канал зеленого),
5 — вывод излучения атомарного натрия и тепло-
вого излучения сажи (сигнал с камеры видимого

диапазона, канал красного), 6 — вывод поля рас-
пределения температуры поверхности эксперимен-
тальной модели и иллюминаторов (сигнал с камеры
дальнего ИК-диапазона), 7 — вывод эмиссионного

спектра излучения потока (регистрация через ос-
новной иллюминатор системы мультиспектральной

визуализации), 8 — вывод теневой картины потока.

лось всего несколько спектральных излучаю-
щих компонентов потока — линии хемилюми-
несценции возбужденного радикала CH∗, мо-
лекулярные полосы Свана С2, а также корот-
коволновый хвост теплового континуума излу-
чения сажи. Исследование эмиссионных спек-
тров показало, что основной вклад в излуче-
ние в данном спектральном диапазоне вносит

именно хемилюминесценция CH∗. Интеграл от
теплового континуума также имеет достаточно

высокую интенсивность, но он присутствовал
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на всех панорамных каналах и его можно было

оценить и вычесть.
Исследование спектров излучения потока

позволило разработать методику количествен-
ного учета вклада указанных компонентов и

провести коррекцию распределения излучения

возбужденного радикала OH∗ для максималь-
ного соответствия распределению относитель-
ной скорости тепловыделения в потоке с горе-
нием.

Необходимо отметить, что интенсивная

турбулентность потока может привести к ак-
тивному взаимодействию возбужденного ради-
кала OH∗ с молекулами кислорода, что вы-
зывает безызлучательную релаксацию и мо-
жет способствовать тушению люминесцен-
ции. Предполагалось определение интенсивно-
сти турбулентности и ее пространственного

спектрального состава для учета степени ту-
шения хемилюминесценции. В качестве им-
пульсного источника зондирующего излучения

был применен полупроводниковый импульсный

лазер. Монохроматическое излучение лазера
способствовало спектральной дискриминации

собственного свечения потока для исключения

снижения контраста теневой картины течения.
После процедуры коррекции данных, по-

лученных от разработанной системы визуали-
зации, было проведено сопоставление данных.
Пример такого сопоставления представлен на

рис. 7. На рис. 7,а запечатлен момент горения
в канале экспериментальной модели. Согласно
рис. 7,б есть возможность локализовать зону
горения, а следовательно, энерговыделения, ис-
ходя из общей длины экспериментальной моде-
ли. Разработанная система визуализации поз-
воляет наглядно показать процессы, происхо-
дящие в канале экспериментальной модели в

заданный момент, и, соответственно, визуали-
зировать зону энерговыделения.

В итоге успешная реализация системы па-
норамной визуализации обеспечила регистра-
цию сигнала хемилюминесценции возбужден-
ного радикала OH∗ с возможностью нивелиро-
вания «мешающих» спектральных компонен-
тов. Основные элементы системы: механиче-
ская система сопряжения с исследуемой моде-
лью на экспериментальном стенде; оптическая
система; регистрирующее устройство с аппа-
ратным устройством записи данных, включа-
ющее в себя специализированные УФ-камеру и
регистратор; компоненты для настройки; зву-
ковой канал синхронизации; видеосервер для

Рис. 7. Пример сопоставления данных, полу-
ченных от системы визуализации, с экспери-
ментальными данными со стенда:

штриховые линии — режимы горения без запира-
ния, сплошные линии— с запиранием; 1–4 — ряды

датчиков среднего давления (см. рис. 1)

сопряжения с системой промышленного наблю-
дения; компьютерная система управления и за-
писи данных; дисплей мониторинга процесса
в реальном времени; система обработки пото-
ковых данных. Применялся унифицированный
подход по типу используемых составных ком-
понентов и интерфейсам передачи данных, что
позволило обеспечить совместимость и взаимо-
заменяемость компонентов и при необходимо-
сти возможность оперативного перехода с од-
ной схемы регистрации на другую.

СРАВНЕНИЕ ЭКСПЕРИМЕНТА
С ЧИСЛЕННЫМ РАСЧЕТОМ

Полученные экспериментальные данные

использовались для валидации программы

zFlare [4], разработанной в лаборатории физи-
ческого и численного моделирования течений с

турбулентностью и горением ЦАГИ.
Рассмотрим в качестве примера расчет

режима с высокоскоростным горением без за-
пирания канала на базе осредненных по вре-
мени нестационарных уравнений Рейнольдса
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(URANS), замкнутых моделью турбулентности
SST. Взаимодействие турбулентности с горени-
ем не учитывалось. Для описания горения эти-
лена в воздухе применялся скелетный кинети-
ческий механизм С2Н4-red, состоящий из 23 ве-
ществ и 49 реакций. Этот механизм разработан
специалистами ООО «КИНТЕХ Лаб» [5] в рам-
ках сотрудничества с ЦАГИ. Механизм опти-
мизирован для описания течения в эксперимен-
тальной модели ЦАГИ. Информация об измене-
нии параметров течения вдоль линий тока взя-
та из предварительных расчетов течения, вы-
полненных с использованием квазиглобально-
го кинетического механизма [6]. В расчетах ис-
пользовался конечно-объемный численный ме-
тод второго порядка аппроксимации по всем пе-
ременным [7].

Рассматривался режим течения с па-
раметрами в подогревателе T0 = 2 150 К,
p0 ≈ 1.4 · 106 Па и расходом воздуха (загряз-
ненного продуктами сгорания в подогревателе)
Gвх ≈ 1.268 кг/с. Расход топлива определял-
ся из условия α = Gвх/(14.8GC2H4

) ≈ 2.7.

Рис. 9. Результаты RANS-расчетов с использованием скелетного механизма С2Н4-red: поле тем-
пературы (а) и поле чисел Маха (б)

Рис. 8. Результаты численного моделирования
эксперимента ЦАГИ:

точки — эксперимент (от разных датчиков в од-
ном сечении), кривая — результат RANS-расчета
с кинетикой С2Н4-red

Топливо подавалось в поясе II (см. рис. 1)
с верхней и нижней стенок канала, пер-
пендикулярно стенкам, через отверстия

диаметром 2 мм со звуковой скоростью.
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Рис. 10. Сопоставление данных эксперимента с расчетом для режима T0 = 2 150 К, α = 2.8,
окно 2, 2-й пояс подачи топлива

Рис. 11. Сопоставление данных эксперимента с расчетом для режима T0 = 2 150 К, α = 2.65 ÷
2.7, окно 2, 2-й пояс подачи топлива

Если в предварительных расчетах с ис-
пользованием квазиглобального кинетического

механизма [6] приходилось принимать искус-
ственные действия для поджига этилена, то
при использовании механизма С2Н4-red этилен
самовоспламеняется, как это было и в экспе-
рименте. После полного установления поля те-
чения получается кривая, достаточно близкая
к экспериментальным данным (рис. 8). Прав-
да, главный пик давления завышен; это мо-
жет быть связано с неточным заданием усло-
вий теплообмена на стенках и другими второ-

степенными причинами. На рис. 9 представле-
ны поля температуры и числа Маха, получен-
ные в установившемся решении.

После проведения экспериментальных ис-
следований, сортировки, анализа и обработки
данных, полученных с панорамной системы ви-
зуализации, а также проведения компьютер-
ного расчета была предпринята попытка со-
поставления полученных картин течений. Для
сравнения с расчетом взяты два разных экс-
периментальных пуска с близкими параметра-
ми режима течения (рис. 10 и 11), и в каждом
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пуске выбраны три момента времени на этапе

установившегося течения с горением. Для со-
поставления с полученными в экспериментах

изображениями хемилюминесценции ОН* бы-
ли выполнены дополнительные расчеты (T0 =
2 150 K, p0 = 1.4 · 106 Па, Gвх = 1.268 кг/с,
α = 2.7), которые позволяют по уже имею-
щемуся установившемуся полю течения, полу-
ченному в расчете, определить массовую долю
возбужденных радикалов ОН*. Для этого ис-
пользовалась модель [8]. Поскольку в расчетах
не определялась массовая доля CH, для сопо-
ставления с экспериментальными изображени-
ями хемилюминесценции CH* использовались
полученные в расчете поля CH3, имевшие по-
добную структуру.

Анализ рис. 10 и 11 показал следую-
щее. Во-первых, в картинах течения, получен-
ных экспериментально и численно, наблюда-
ется определенное сходство форм структур го-
рения, несмотря на наличие колебаний пламе-
ни в процессе пуска экспериментального стен-
да. Во-вторых, структуры горения, получен-
ные экспериментально и численно, развивают-
ся примерно в одинаковых местах канала экс-
периментальной модели — на стыке первого

и второго отсеков экспериментальной модели,
при переходе с постоянного сечения канала на

расширяющийся, в зоне второго (по потоку) оп-
тического окна.

ЗАКЛЮЧЕНИЕ

Разработана и реализована комплексная

панорамная мультиспектральная система визу-
ализации потоков с горением. Проведена апро-
бация на экспериментальном стенде, резуль-
таты сопоставлены с модельными расчетами.
Представленная система обладает значитель-
ной гибкостью в применении.

Большинство известных устройств для

визуализации пламени настроены на один спек-
тральный компонент и визуализируют не ком-
плексные характеристики, а интенсивность

излучения отдельного спектрального компо-
нента. Получение комплексных характеристик
пламени связано с повышением количества

разнородных измерительных каналов в систе-
ме визуализации и с применением интенсив-
ной обработки зарегистрированных данных,
т. е. применением многоканальных мульти-
спектральных систем.

Разработанная система панорамной муль-
тиспектральной визуализации для исследова-

ния процессов горения позволит при соответ-
ствующей обработке комплексных данных од-
новременно получать поля спектральных тем-
ператур, относительных скоростей тепловыде-
ления и значений полноты сгорания, что мак-
симально полно характеризует процессы горе-
ния.
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