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На испытательном стенде в лабораторных условиях исследована динамика работы скорост-

ного скважинного сейсмоисточника дебалансного типа. Внутренняя камера виброисточника 

заполнялась жидкостью и находящийся в ней дебаланс раскручивался электроприводом с  

частотой вращения от 10 до 50 Гц и шагом 5 Гц. Приведено сравнение амплитуд колебаний 

генерируемых виброисточником при сухой и заполненной жидкостью внутренней камере. 

Источник дебалансного типа, вращение в жидкости, нефть 
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The operating dynamics of a high-speed borehole seismic source of unbalanced type was studied on 

a test bench in laboratory conditions. The inner chamber of a vibration source was filled with liquid 

and the unbalance in it was spun by an electric drive with a rotation frequency from 10 to 50 Hz and 

a step of 5 Hz. A comparison of vibration amplitudes generated by a vibration source with a dry and 

a liquid-filled inner chamber is made. 
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В России большинство крупных месторождений вступило в позднюю стадию разработки, 

обводненность скважин у них превышает 80 %. Вновь вводимые месторождения со сложным 

геологическим строением, низкой проницаемостью, повышенной вязкостью нефти относятся к 

категории трудноизвлекаемых и их доля в общих разрабатываемых запасах страны составляет 

более 60 % [1, 2]. 

Одним из методов увеличения нефтеотдачи продуктивных пластов является виброволновой. 

Он основан на воздействии упругими колебаниями на нефтенасыщенный скелет породы, 

способствуя его отчистке и стимулируя приток нефти к скважине [3 – 11]. Метод экологически 

чистый. Его основным достоинством является щадящее воздействие на пласт. В отличие от 

гидроразрыва или кислотной обработки пласта установка виброисточников в скважине не 

повреждает ее. Вибровоздействие на продуктивный пласт ускоряет процессы растворения, акти-

визирует дегазацию нефти, способствуя ее разжижению и поэтому должно применятся в соче-

тании с другими методами увеличения нефтеотдачи: химическими, тепловыми, гидродинами-

ческими и микробиологическими [12 – 17]. Разрабатываемые в Институте горного дела СО РАН 
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погружные виброисточники дебалансного типа могут работать в скважинах как с вязкими, так и 

с высоковязкими нефтями, эксплуатироваться в агрессивных средах с содержанием меха-

нических примесей. В зависимости от конструкции виброисточника его внутренняя камера, в 

которой вращается дебаланс, может быть герметичной или заполненной жидкостью и даже име-

ется возможность осуществить прокачку через нее добываемого флюида [18 – 22]. Для неглу-

боких скважин, где гидростатическое давление столба жидкости на забой невелико — порядка 

нескольких мегапаскаль, виброисточник может эксплуатироваться с герметичной внутренней 

рабочей камерой, тем самым расширяется частотный диапазон генерируемых им колебаний, 

амплитуда которых будет возрастать с увеличением частоты. При достаточном потоке отка-

чиваемого флюида, охлаждающего внешний корпус виброисточника вопрос о отводе тепла из 

подшипниковых узлов снимается. Такой виброисточник может работать совместно с винтовым 

или центробежным погружным насосом. Для больших глубин и соответственно больших гид-

ростатических давлений герметизация внутренней рабочей камеры становится невозможной и 

тогда ее можно заполнить маслом или организовать прокачку флюида сквозь нее. Жидкость, 

находящаяся во внутренней камере, будет одновременно отводить тепло и смазывать трущиеся 

детали конструкции генератора [21, 22].  

Цель работы — определить влияние жидкости, заполняющей рабочую камеру гернератора 

колебаний, на работу виброисточника и нагрузку на привод. Для этого необходимо определить 

амплитудно-частотные характеристики виброскорости для герметичной и заполненной жид-

костью внутренней камерой и по ним дать оценку эффективности работы виброисточника в низ-

кочастотном диапазоне от 10 до 50 Гц. 

Описание стенда и методики проведения эксперимента. Исследование динамики работы 

скважинного виброисточника дебалансного типа проводилось на испытательном стенде, который 

состоит из металлического каркаса с закрепленным на нем асинхронным электродвигателем, 

приводящим в работу виброисточник. Стенд оснащен также системами подачи и слива 

жидкости, датчиками для регистрации температуры и сейсмических колебаний (рис. 1). 

 

Рис. 1. Схема размещения дебалансного виброисточника на испытательном стенде: 1 — сейсмодат-

чик; 2 — внешний корпус источника; 3 — асинхронный электродвигатель; 4 — подшипниковые 

узлы; 5 — металлический каркас стенда 

Виброисточник закреплен за каркас стенда и находится в вертикальном положении соосно с 

электроприводом, тем самым моделируется его расположение в скважине. К нему при помощи 

вала и упругой муфты с асинхронного электродвигателя передается вращательный момент. 

Частота магнитного поля статора электродвигателя задается преобразователем частоты ABB 
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IP20 / UL Open type. Генерируемые виброисточником сейсмические колебания регистрируются 

сейсмодатчиком GMT-12.5, закрепленным на уровне подшипниковых узлов согласно ГОСТ 

ИСО 10816-1-97 [23]. На измерительный преобразователь HANDYSCOPE HS4 DIFF  

с сейсмодатчика в аналоговой форме поступает сигнал и далее с него уже в оцифрованном виде 

он записывается на персональный компьютер. Нагрев электродвигателя и подшипниковых узлов 

контролируется системой мониторинга, состоящей из цифровых датчиков температуры, 

микроконтроллера и персонального компьютера. Перед началом эксперимента внутренняя 

камера виброисточника заполнялась жидкостью. Проводилась серия измерений с частотами 

магнитного поля статора электродвигателя, меняющимися в диапазоне от 10 до 50 Гц с шагом 5 

Гц, а затем измерения повторялись, но уже с сухой камерой. 

Методика обработки экспериментальных данных сигналов виброскорости. После оциф-

ровки сигнала виброскорости и записи его на персональный компьютер, он подвергался 

первичному анализу, который включал построение амплитудных спектров и выделение несущей 

частоты, генерируемой виброисточником. К сожалению, выделить главную гармонику с 

соответствующей несущей частотой, на которой работает виброисточник свыше 15 Гц, не уда-

лось. Поэтому, учитывая 5 %-е скольжение асинхронного электродвигателя, для всех частот, 

задаваемых преобразователем частоты, проектировался узкополосный фильтр Чебышева с 

конечной импульсной характеристикой [24 – 26]. После его применения на сигнале виброско-

рости оставшиеся импульсные помехи были отсечены фильтром Тьюки с трехотсчетным окном. 

На рис. 2 показаны амплитудно-частотные спектры исходного и фильтрованного сигналов для 

несущей частоты 15 Гц. 

 

Рис. 2. Амплитудно-частотные спектры исходного сигнала виброскорости (сплошная линия без за-

ливки) и после применения узкополосного фильтра (сплошная линия с заливкой) 

В таблице представлены данные по частотным диапазонам с учетом 5 %-го скольжения 

асинхронного электродвигателя, задаваемым преобразователем частоты. 

Частотные диапазоны фильтрованных сигналов 

Номер 
Частота, задаваемая 

преобразователем, Гц 

Частотный диапазон с учетом 5 %-го 

скольжения асинхронного двигателя, Гц 

1 10 9.50 – 10 

2 15 14.25 – 15 

3 20 19.00 – 20 

4 25 23.75 – 25 

5 30 28.50 – 30 

6 35 33.25 – 35 

7 40 38.00 – 40 

8 45 42.75 – 45 

9 50 47.50 – 50 
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По волновой форме фильтрованных сигналов оценивалась средняя из максимальных амп-

литуд виброскорости на заданном диапазоне частот (рис. 3).  

 

Рис. 3. Выделение максимальных амплитуд фильтрованных сигналов виброскорости в диапазоне 

частот 19 – 20 Гц с заполненной жидкостью внутренней камерой 

Для каждой частоты, задаваемой преобразователем, проводилось по три эксперимента. В каж-

дом измеренном сигнале после фильтрации выделялась максимальная амплитуда. После выпол-

нения процедуры осреднения максимальных амплитуд сигналов виброскорости для каждого 

частотного диапазона, представленного в таблице, были получены результирующие амплитудно-

частотные характеристики дебалансного виброисточника с сухой и заполненной жидкостью 

внутренней камерой.. На рис. 4 показаны результаты обработки сигналов виброскорости.  

 
Рис. 4. Амплитудно-частотные характеристики скоростного дебалансного виброисточника в низ-

кочастотном диапазоне с сухой и заполненной жидкостью внутренней камерой  

Для амплитуд, генерируемых источником с незаполненной внутренней камерой, построена 

аппроксимация степенной кривой вида bA k f , где A  — амплитуда колебаний виброскорости, 

мм/с;  f — частота, Гц; k  = 6.3710–7, b  = 3.59. 

ВЫВОДЫ 

С увеличением частоты вращения привода, приводящим в работу дебалансный виброисточ-

ник, по степенному закону растет амплитуда виброскорости. При наличии жидкости во внут-

ренней камере виброисточника, в которой вращается дебаланс, начиная с частоты 30 Гц прирост 

амплитуды виброскорости резко снижается и не подчиняется степенной зависимости, уве-

личивается скольжение привода. До частоты 30 Гц жидкость не оказывает заметного влияния на 

работу привода, максимальная разность амплитуд виброскорости с сухой и заполненной жид-

костью внутренней камерой приходится на 25 Гц и составляет 0.04 мм/с. Поскольку резонансные 

частоты нефтяных пластов ниже 30 Гц, то на нефтепромыслах предпочтительно эксплуатировать 

дебалансные виброисточники с заполненной жидкостью внутренней рабочей камерой. 
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