УДК 534.222.2

ПЕРЕДАЧА ДЕТОНАЦИИ НА РАССТОЯНИЕ В ПОСЛЕДОВАТЕЛЬНОСТИ ВЗРЫВАТЕЛЕЙ

L.-Y. Dong¹, Z.-J. Wang¹, Y.-C. Xiao^{1,2}, X.-Z. Tang¹, X.-J. Zhang¹, C.-Y. Fan²

¹Колледж машиностроения и электротехники Северного университета Китая, Тайюань 030051, Китай xiaoyoucai@nuc.edu.cn

²Научно-техническая электромеханическая лаборатория динамического контроля, Сиань 710000, Китай

Для экспертизы нечувствительных боеприпасов требуется проведение экспериментов по передаче детонации на расстояние, в которых детонация одного заряда взрывчатого вещества (BB) вызывает детонацию другого заряда, а затем запускается цепная реакция. В статье разработан метод численного моделирования для прогнозирования передачи детонации на расстояние вдоль цепочки взрывателей, который включает в себя модель воспламенения и роста, уравнения состояния Джонса — Уилкинса — Ли и определяющие соотношения. Характеристики взрывателя по передаче детонации изучаются на примере цепочки, состоящей из двух взрывателей донора и акцептора. Проанализированы факторы, влияющие на передачу детонации в последовательности взрывателей при воздействии осколками и ударной волной. Установлен критерий передачи детонации в различных режимах, который позволяет теоретической модели предсказывать результат активирования детонации в зависимости от расстояния между взрывателями. Полученные в работе результаты могут служить справочным материалом для изучения условий передачи детонации на расстояние между взрывателями.

Ключевые слова: последовательность взрывателей, передача детонации на расстояние, детонационная волна, модель воспламенения и роста, предустановленный фрагмент.

DOI 10.15372/FGV20210510

ВВЕДЕНИЕ

Детонация через влияние, или, иначе, передача детонации на расстояние, реализуется главным образом в зарядах взрывчатых веществ (BB), заключенных в индивидуальные оболочки. Высокоскоростные осколки и ударные волны, которые сопровождают расширение оболочки, являются первопричиной возникновения цепной детонации. Поэтому необходимо учитывать расстояние между боеприпасами и складом боеприпасов при хранении и транспортировке. Случайный взрыв отдельной системы боеприпасов может вызвать взрыв других систем и складов боеприпасов и привести к непоправимым последствиям [1]. Исследования передачи детонации на расстояние в основном сосредоточены на анализе свойств ВВ, а также на более полном описании механизмов передачи

детонации. Численное моделирование взрывателя, процессов передачи детонации и распространения детонационной волны для бустерной безоболочечной шашки из поли-9С (JO-9С) проведено в [2]. Для анализа факторов, влияющих на передачу детонации от взрывчатого вещества PBXN-9 по схеме «от одного ко многим», использовалась гидродинамическая модель [3]. Профиль нагружения, расходимость потока и температура образца были проанализированы в [4], там же указывалось на возможность проявления фронтальной неустойчивости при слабом инициировании. В [5] разработана двумерная гидродинамическая эйлерова программа для расчета различных явлений взрыва, в которой использовался метод комплексной обработки информации для уменьшения числовой диффузии, вызванной вычислением адвективного члена в уравнениях Эйлера. В этой работе также проанализировано влияние массы заряда и величины зазора на передачу детонации. Детонация смесевого топлива в ракетном двигателе, примыкающем к смежной боеголовке, была протестирована в [6].

[©] Dong L.-Y.¹, Wang Z.-J.¹, Xiao Y.-C.^{1,2}, Tang X.-Z.¹, Zhang X.-J.¹, Fan C.-Y.², 2021.

¹North University of China College of Mechanical and Electrical Engineering, Taiyuan 030051, China. ²Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an 710000, China.

Авторы предположили, что наблюдаемая реакция связана с выбросом вдоль оси из звездообразной выемки. В [7] проведен расчет передачи детонации на расстояние для безоболочечных ВВ с содержанием зачерненного алюминия и проанализирован процесс развития детонационных волн в этих BB. В [8] разработанный авторами легкий жесткий пенополиуретан был протестирован на предмет развития детонационных волн при передаче детонации безоболочечным ВВ. В [9] исследовалась чувствительность подводного кумулятивного заряда к ударной волне, проведены измерения критического расстояния в схеме передачи детонации и проанализированы факторы, влияющие на чувствительность к ударной волне заряда гексогена. В [10] изучалось влияние давления в волне расширения на скорость разложения ВВ. Авторы пришли к выводу, что нестационарное горение гетерогенных взрывчатых зерен необходимо учитывать не только при выводе критических условий детонации, но и при выводе кинетики разложения в условиях газодинамического потока. В [11] с помощью высокоскоростной камеры изучался подводный взрыв. Визуализация процесса позволила проанализировать основные характеристики передачи детонации на расстояние. В [12] рассматривались основные характеристики высокоэнергетических ВВ при подводной детонации посредством теоретических расчетов, численного моделирования и экспериментов. В [13] экспериментально и методом численного моделирования исследовалось влияние осколков на порог детонации ВВ на основе зачерненного алюминия, заключенного в оболочку. В [14] на основании результатов численного моделирования эксперимента по передаче детонации составу РВХ-109 представлена кривая чувствительности этого ВВ к ударной волне. В [15] передача детонации исследовалась на пяти зарядах ВВ следующего состава: 92 % октогена, 6 % DOA (диоктиладипат) и 2 % порошка полибутадиена с концевыми карбоксильными группами; описаны деформация и расширение оболочки, которые привели к фрагментации и последующему инициированию акцептора. Влияние высокоплотных инертных добавок вольфрама и свинца на детонационные свойства ВВ экспериментально и теоретически проанализировано в [16], были рассмотрены механизмы формирования профилей аномального давления и массовой скорости, объясняющие их корреляцию с давлением Чепмена — Жуге для смесей BB как с вольфрамом, так и со свинцом, приведены данные по скорости свободной поверхности дюралюминиевой мишени и по глубине вмятины на стальной контрольной пластине.

В данной статье разработан метод численного моделирования для описания передачи детонации на расстояние в типичной последовательности взрывателей. Установлены основные законы кинетики реакций и уравнений состояния как непрореагировавших, так и прореагировавших материалов бустерного заряда. Для описания процесса формирования осколочных поражающих элементов используется схема передачи детонации на расстояние для случая предустановленных фрагментов. Приведены методики расчетного прогнозирования в различных режимах передачи детонации.

АЛГОРИТМ И МАТЕМАТИЧЕСКИЕ СООТНОШЕНИЯ

Параметры, связанные с давлением, плотностью и энергией, могут быть описаны с помощью уравнений состояния Джонса — Уилкинса — Ли (JWL) для прореагировавшего и непрореагировавшего вещества [17]. Уравнения для непрореагировавшего ВВ и газообразных продуктов детонации можно описать соответственно формулами

$$= A_e \exp\left(-R_{1e}V_e\right) + B_e \exp\left(-R_{2e}V_e\right) + \frac{\omega_e c_{V_e}T_e}{V_e},$$

 p_e

 $p_g = A_g \exp\left(-R_{1g}V_g\right) + B_g \exp\left(-R_{2g}V_g\right) + \frac{\omega_g c_{V_g}T_g}{V_g}, \qquad (2)$

(1)

где p — давление, V — относительный удельный объем, T — температура, A, B, R_1 , R_2 , ω (коэффициент Грюнайзена) и c_V (теплоемкость) — константы, индекс e относится к непрореагировавшему BB, а g — к продуктам реакции.

Использовалась трехстадийная модель воспламенения и роста [18]. Процесс инициирования гетерогенных взрывчатых веществ ударом можно моделировать в три этапа. Первый этап — образование горячих точек и зон их нагрева, второй — зажигание с медленным ростом изолированных горячих точек при горении внутрь или наружу, третий этап быстрое завершение реакции. Модель требует уравнений состояния непрореагировавшего ВВ (1) и продуктов реакции (2), а также уравнения скорости реакции

$$\frac{d\lambda}{dt} = I(1-\lambda)^b \left(\frac{\rho}{\rho_0} - 1 - a\right)^x + G_1(1-\lambda)^c \lambda^d p^y + G_2(1-\lambda)^e \lambda^g p^z, \quad (3)$$

где λ — реакционная способность BB; t — время; ρ — плотность; p — давление; I, G_1 , G_2 , a, b, x, c, d, y, e, g, z — двенадцать регулируемых коэффициентов подгонки; a — критическая степень сжатия; параметры I, x управляют количеством точек возгорания и горячих точек соответственно; b, c, e относятся к координате максимальной скорости реакции; G_1 , G_2 — отношение площади поверхности к объему; параметры d, g связаны с геометрией роста горячей точки; y, z — неламинарные характеристики потока реакции горения.

Уравнение состояния Грюнайзена [19] использует кривую Гюгонио в качестве эталона, который представляет собой кубический полином и подгоняется к кривой Гюгонио с использованием параметров S_1, S_2, S_3 . Уравнение состояния определяет давление сжатого материала в виде

$$p = \rho_0 C^2 \mu \left[1 + \left(1 - \frac{\gamma_0}{2} \right) \mu - \frac{\alpha}{2} \mu^2 \right] \Big/ \left[1 - (S_1 - 1) \mu - S_2 \frac{\mu^2}{\mu + 1} - S_3 \frac{\mu^3}{(\mu + 1)^2} \right] + (\gamma_0 + \alpha \mu) E_0, \quad (4)$$

где E_0 — начальная внутренняя энергия; C — точка пересечения зависимости $v_s - v_p$ с осью ординат; S_1 , S_2 , S_3 — коэффициенты наклона кривой $v_s - v_p$; γ_0 — коэффициент Грюнайзена; α — поправка первого порядка к объему.

Степень сжатия определяется относительным объемом:

$$\mu = \frac{\rho}{\rho_0} - 1. \tag{5}$$

Выражение для давления растянутого материала имеет вид

$$p = \rho_0 C^2 \mu + (\gamma_0 + \alpha \mu) E. \tag{6}$$

Для задач с большой деформацией, высокой скоростью деформации и эффектом термического разупрочнения материалов обычно используется модель Джонсона — Кука [20]. Эта модель может идеально описывать механическое поведение металлов. Определяющее уравнение:

$$\sigma_y = (A + B\bar{\varepsilon}_p^n)(1 + k\ln\dot{\varepsilon}^*)(1 - T^{*m}), \quad (7)$$

где σ_y — предел текучести материала, A — предел текучести материала при эталонной скорости деформации и эталонной температуре, B — коэффициент деформационного упрочнения, $\bar{\varepsilon}_p$ — эквивалентная пластическая деформация, n — индекс деформационного упрочнения, k — коэффициент чувствительности к скорости деформации, $\dot{\varepsilon}^*$ — коэффициент эквивалентной пластической деформации при бесконечном закаливании, $T^* = (T - T_{room})/(T_{melt} - T_{room})$ — безразмерная эталонная температура, T_{melt} — температура плавления материала, m — температурный коэффициент размягчения.

ПАРАМЕТРЫ МАТЕРИАЛА И СОЗДАНИЕ МОДЕЛИ

При численном моделировании передачи детонации на расстояние в качестве материала детонатора использовался состав В (60 % гексогена, 40 % тротила) [21], а для плиты прерывателя — алюминий 2024 [22]. Детонатор вызывал взрыв донорного заряда или посадочного места детонатора. Предохранительный механизм изготовлен из меди [23], оболочка — из стали 4340 [23], наполнитель — из полиуретана [24]. В качестве детонирующего ВВ использовался состав RDX-8701 (95 % гексогена, 3 % DNT (динитротолуол) и 2 % вулканита) [25], бустерный заряд изготовлялся из состава ЈН-14С (96.5 % гексогена, 3 % FPM (фторкаучук) и 0.5 % графита) [26]. Воздух описывался областью Эйлера [20]. Модели материалов, использованных для численного моделирования, представлены в табл. 1.

Параметры модели для алюминия 2024, меди и стали 4340 приведены в табл. 2, для полиуретана — в табл. 3, для взрывчатого состава В — в табл. 4. Параметры трехстадийной модели воспламенения и роста после надлежащей точной настройки для состава JH-14C представлены в табл. 5. Параметры воздуха показаны в табл. 6.

патериалы и медели, используемые для числепного моделирования					
Вещество	Определяющая модель	Уравнение состояния			
Алюминий 2024	Джонсон — Кук	Грюнайзен			
Медь	Джонсон — Кук	Грюнайзен			
Сталь 4340	Джонсон — Кук	Грюнайзен			
Состав В	Горение ВВ	JWL			
RDX-8701	Гидродинамическая	До и после реакции — JWL, во время реакции — воспламенение и рост			
JH-14C	Гидродинамическая	До и после реакции — JWL, во время реакции — воспламенение и рост			
Полиуретан	Гидродинамическая с отслоением	Грюнайзен			
Воздух	Нулевая	Линейный полином			

Таблица 1

Материалы и модели, используемые для численного моделирования

Таблица 2

Параметры определяющей модели Джонсона — Кука и уравнения состояния Грюнайзена для меди, алюминия 2024 и стали 4340

Материал	Модель Джонсона — Кука						у с ГІ	равнени остояни оюнайзе	ие ія ена				
	$ ho,$ г/см 3	<i>G</i> , ГПа	$A,$ $\Gamma \Pi a$	B,ГПа	n	C	m	$T_m, \\ \mathbf{K}$	T_r, K	$c_p,$ Дж/(кг · K)	<i>с</i> , м/с	S_1	γ_0
Медь	8.96	47.7	0.09	0.292	0.31	0.025	1.09	1 360	293	383	3 940	1.49	1.99
Алюминий 2024	2.78	28.6	0.369	0.684	0.73	0.0083	1.70	445	300	875	5328	1.338	2
Сталь 4340	7.83	77	0.792	0.51	0.26	0.014	1.03	1793	294	477	4569	1.49	2.17

Таблица 3

Параметры определяющей гидродинамической модели с отслоением и уравнения состояния Грюнайзена для полиуретана

Гидродинамическая модель с отслоением					
с, м/с	G, ГПа	$\sigma_Y, \Gamma \Pi a$			
12650	0.005	0.0345			
Уравнение состояния Грюнайзена					
<i>с</i> , м/с	S_1	γ_0			
2 540	1.57	14			

В данной работе для моделирования передачи детонации на расстояние использовалось программное обеспечение LS-DYNA3D, включающее в себя расчет методом нелинейных конечных элементов. На рис. 1 представлена геометрия расчетной модели. Размеры устройства следующие: взрыватель — $\varnothing_{\rm max} 64.34 \times$

140.5 мм, первичное $BB - \varnothing7 \times 5.5$ мм, инициирующее BB, содержащее свинец, — $\varnothing7 \times$ 3.4 мм, бустер — $\emptyset 38 \times 15.5$ мм, пластина прерывателя — $\emptyset 38 \times 4$ мм, предохранительный механизм — $\emptyset 38 \times 12.5$ мм, посадочное место детонатора — 38 × 7.7 мм. Толщина днища корпуса составляет 3.5 мм, толщина пластинысвидетеля — 15 мм. На рис. 2 показана фотография экспериментального устройства и сетка конечно-элементной модели для последовательности из двух взрывателей. Для элемента сетки выбраны восьмиузловые шестигранники. Размер единичной ячейки $1 \times 1 \times 1$ мм. Общее количество элементов и узлов модели в последовательности взрывателей равно 826 292 и 912205 соответственно. В целях обеспечения максимально возможной однородности сетки были улучшены эффективность и точность вычислений, а переходная сетка дополнительно оптимизирована. В расчетах используется алгоритм сопряжения жидкость — твердое тело,

для состава В									
Гидродин	амичесь	кая модель		Уравнен	ие сос	тояни	ıя JWL		
/ 3	a		4 55		D	D		L	

Параметры определяющей модели горения и уравнения состояния JWL

т идродин	amnueur	ая модель		5 равнен	ne coc	ТОЯНИ	изиц	
$ρ$, $γ/cm^3$	S_1	γ_0	A, ΓΠα	B, ΓΠα	R_1	R_2	ω	$E_0, \Gamma \Pi a$
1.717	0.798	0.33	524.23	7.678	4.2	1.1	0.34	8.5

Таблица 5

Таблица 4

Непрореагировавшее BB (JWL)	Продукты реакции (JWL)	Скорость реакции
A=77810ГПа	A=592.7ГПа	a = 0.022 $x = 7.0$
B=-5.31ГПа	$B=10.51\ \Gamma \Pi {\rm a}$	b = 0.667 $y = 2.0$
$R_1 = 11.3$	$R_1 = 4.4$	c = 0.667 $z = 3.0$
$R_2 = 1.13$	$R_2 = 1.2$	$d = 0.350$ $F_{ig,\max} = 0.022$
$\omega = 0.8938$	$\omega = 0.33$	$e = 0.667$ $F_{G_1, \max} = 1$
$G=3.5~\Gamma\Pi {\rm a}$	$E_0 = 11.56 \ \Gamma \Pi a$	$g = 0.667$ $F_{G_2,\min} = 0$
σ = 0.2 ΓΠa	D = 8190 м/с	$I = 4 \cdot 10^6$ $G_1 = 14000\ \Gamma \Pi a/мкс$
ho = 1.66г/с ³	p = 27.67ГПа	$G_2 = 700000\ \Gamma \Pi { m a}/{ m mkc}$

Параметры модели воспламенения и роста для состава ЈН-14С

Таблица б

Параметры воздуха

$ρ$, $γ/cm^3$	C_4	C_5	$E_0, \Gamma \Pi a$	V_0
$1.22 \cdot 10^{-3}$	0.4	0.4	$2.53 \cdot 10^{-6}$	1.77

Рис. 1. Схема последовательности взрывателей:

1 — корпус, 2 — полиуретан, 3 — предохранительный механизм, 4 — первичное ВВ, 5 — бустерный заряд, 6 — посадочное место детонатора, 7 — инициирующее ВВ, содержащее свинец, 8 пластина прерывателя, 9 — пластина-свидетель который лучше моделирует жидкость с большими деформациями, а также создана группа из нескольких веществ для отслеживания обмена и переноса материала между ячейками Эйлера в рамках лагранжево-эйлерова подхода (ALE). Инициирование установлено в центральной точке верхнего торца первичного BB.

МОДЕЛИРОВАНИЕ ПЕРЕДАЧИ ДЕТОНАЦИИ ПРИ УДАРНО-ВОЛНОВОМ НАГРУЖЕНИИ

Численное моделирование передачи детонации при различных промежутках между донором и акцептором выполнялось для взрывателя без оболочки. Промежуток представляет собой кратчайшее расстояние между нижними частями донора и акцептора. Результаты представлены в табл. 7. При промежутке r < 9.5 мм акцептор полностью взрывается. В интервале $r = 10.0 \div 10.5$ мм на акцепторе наблюдается небольшое вздутие. При r > 11.0 мм акцептор не взрывается.

На рис. 3 показаны контуры смещения при передаче детонации в различные моменты времени, рассчитанные для случаев, когда донор и акцептор разделены промежутками 9.5 и 11.0 мм.

Для того чтобы лучше наблюдать детонацию бустерного заряда акцептора, на рис. 4 по-

Рис. 2. Фотография экспериментального взрывателя (a) и сетка конечно-элементной модели для последовательности взрывателей (δ)

Таблица 7

Взрыв акцептора в зависимости от величины промежутка между взрывателями

Промежуток, мм	Результаты численного моделирования
7.5	Взрыв
8.5	—//—
9.0	—//—
9.5	—//—
10.0	Небольшое вздутие
10.5	Незначительное вздутие
11.0	Отказ
11.5	—//—
12.0	—//—

казано направление распространения детонационной волны: детонация генерируется в верхнем левом углу акцептора и распространяется в нижний правый угол.

На рис. 5 приведены поля давления акцептора во время взрыва при промежутке между взрывателями r = 9.5 мм. Контуры давления показывают, что через 23 мкс повышение давления в акцепторе приводит к формированию устойчивой детонационной волны, вызывающей взрыв акцептора. Примерно через 30 мкс энергия бустера истрачивается и дав-

Рис. 3. Передача детонации на расстояние 9.5 (*a*, *б*) и 11.0 мм (*b*, *c*)

ление начинает уменьшаться.

Эволюция профилей давления рассчитывается в гауссовых координатах, для которых выбираются постоянные значения. Выбор гаус-

Рис. 4. Развитие детонационной волны в разные моменты времени при промежутке между взрывателями 9.5 мм

Рис. 5. Эволюция поля давления акцептора при промежутке между взрывателями 9.5 мм

совых координат и эволюцию профилей давления в бустере акцепторного взрывателя иллюстрируют рис. 6 и 7.

Из рис. 7 следует, что бустер акцептора взрывается при t = 23 мкс, а начальное пиковое давление в гауссовой координате T_1 составляет примерно 7.2 ГПа. По мере развития реакции давление на фронте волны увеличивается. При 26.1 мкс значение давления в гауссовой координате T_6 достигает 26.5 ГПа и затем постепенно перерастает в устойчивую детонационную волну, пока не достигнет давления в скачке 27.67 ГПа. На поздней стадии реакции давление в скачке стабилизируется на уровне, характерном для состава JH-14C. При достижении стабильной детонации акцептор полностью взрывается.

Эволюция профилей давления при промежутке между взрывателями r = 11.5 мм показана на рис. 8. Видно, что при t = 26 мкс в

Рис. 6. Выбор гауссовых координат

Рис. 7. Эволюция профиля давления в бустерном заряде акцептора при промежутке между взрывателями 9.5 мм

Рис. 8. Эволюция профиля давления в бустерном заряде акцептора при промежутке между взрывателями 11.5 мм

бустере акцептора происходит реакция и волна детонации распространяется от нижнего левого к верхнему правому углу заряда. Однако давление низкое; так, например, начальное пиковое давление в гауссовой координате T_1 составляет всего 3.26 ГПа. Детонационная волна продолжает распространяться к верхнему правому углу заряда, но давление внутри ВВ не увеличивается, а вместо этого наблюдается тенденция к спаду. Следовательно, реакция не образует устойчивой детонации и акцептор не взрывается.

На рис. 9 показана зависимость пиково-

Рис. 9. Зависимость пикового давления от величины промежутка между взрывателями:

точки — численное моделирование, линия — аппроксимация точек по уравнению (8)

гаолица	ð	
---------	---	--

Зависимость пикового давления от величины промежутка между взрывателями

r MM	$p_{\max}, \Gamma \Pi a$				
7, 101101	моделирование	критерий (8)			
7.5	27.67	27.67			
8.5	27.67	27.67			
9.0	27.67	27.67			
9.5	27.67	27.67			
10.0	6.85	6.884			
10.5	4.3	3.702			
11.0	3.8	3.619			
11.5	3.4	3.615			
12.0	3.1	3.592			

го давления от величины промежутка между взрывателями. Прогнозируемые пиковые давления и результаты численного моделирования приведены также в табл. 8.

В результате численного моделирования установлена взаимосвязь между размером промежутка и пиковым давлением детонационной волны. Эту зависимость можно обобщить в виде следующего критерия инициирования взрывателя:

$$p_{\max} = \begin{cases} 27.67 & (0 < r \le 9.5), \\ \exp(a + br + cr^2) & (9.5 < r \le 12), \end{cases}$$
(8)

где $a = 103.925 \pm 17.036$, $b = -18.347 \pm 3.263$, $c = 0.816 \pm 0.155$; $p - [\Gamma\Pi a]$, r - [MM]. Из рис. 9 и табл. 8 видно, что уравнение (8) имеет хорошую степень соответствия результатам моделирования. Исключение составляют лишь критические расстояния передачи детонации. В случае, когда взрыватели находятся на критическом расстоянии, наблюдается затухание типа резкого обрыва пикового давления, в этой зоне невозможно путем численного моделирования эффективно определить пиковое давление.

МОДЕЛИРОВАНИЕ ПЕРЕДАЧИ ДЕТОНАЦИИ ПРИ РАЗЛЕТЕ ОСКОЛКОВ

При взрыве донора происходит фрагментация корпуса с разлетом осколков во все стороны. Процесс естественной фрагментации оболочки во времени показан на рис. 10. Радиус оболочки $a_f = 2.50845$ см и скорость ее расширения $v_0 = 1400$ м/с в момент разрыва определялись с помощью профессионального программного обеспечения для постобработки LS-PrePost.

Вследствие неконтролируемости естественных осколков, генерируемых оболочкой, трудно проследить их воздействие на акцептор, поэтому вместо моделирования воздействия естественных осколков в расчете использовались заранее подготовленные, так называемые предустановленные фрагменты с высокой степенью контролируемости [27]. Ширину предустановленного фрагмента определяли по соотношению

$$l_2 = \left[\frac{114a_f^2 W}{\rho_0 v_0^2}\right]^{1/3},\tag{9}$$

где W — энергия на единицу площади оболочки в момент образования отдельной трещины в оболочке, равная $\approx 14.7 \div 168 \ \text{Дж/см}^2$. Отношение длины (l_1) к ширине (l_2) предустановленного фрагмента постоянно и для стальных оболочек составляет примерно 3.5:1 [28]. Толщина предустановленного фрагмента для стальной цилиндрической оболочки $\delta = \delta_0/\varepsilon$, где δ_0 — толщина оболочки до расширения, $\varepsilon = 1.5 \div 2.0$.

Используя формулу (9), можно получить размеры предустановленного фрагмента: $l_2 \approx$ 0.0882 см, $l_1 \approx 0.3088$ см, $\delta \approx 0.23$ см. Передача детонации предустановленным фрагментам может быть смоделирована при разных расстояниях между взрывателями в соответствии с рис. 10. Видно, что естественные фрагменты образуются только в нижней половине оболочки. Таким образом, предустановленный фрагмент заменяет только нижнюю половину корпуса. Для того чтобы ударная волна не влияла на результаты, воздушная область не включает в себя акцептор. Результаты расчета при разных промежутках приведены в табл. 9. Как видно из таблицы, при промежутке r < 83.5 мм акцептор полностью взрывается, а при r =85.5 мм наблюдается небольшое вздутие. При r > 86.5 мм взрыватель не детонирует.

После взрыва донора осколки при разлете имеют тенденцию к движению вверх (рис. 11),

Рис. 10. Схема оболочки и формирование осколков

Таблица 9 Взрыв акцептора в зависимости от величины промежутка между взрывателями

<i>r</i> , мм	Результаты численного моделирования
76.0	Взрыв
81.5	—//—
83.5	//
85.5	Незначительное вздутие
87.0	Отказ
89.5	——//—
91.5	
96.0	

Рис. 11. Дробление оболочки при промежутке между взрывателями 83.5 (*a*, *б*) и 87.0 мм (*e*, *г*)

Рис. 12. Глубина прогиба в центре пластинысвидетеля при разных промежутках между взрывателями:

моделирование: линии 1–3 — прогиб пластинысвидетеля под акцептором, линия 4 — под донором; эксперимент: точки 1–3 — прогиб пластинысвидетеля под акцептором, точки 4 — под донором

что в основном вызвано силой реакции, создаваемой при ударе нижних осколков о контрольную пластину-свидетель.

При взрыве акцептора глубина прогиба пластины-свидетеля как под акцептором, так и под донором составляла $H \approx 5.2$ мм, в то время как при отсутствии взрыва акцептора пластина-свидетель почти не провисала (рис. 12). Процесс прогиба пластины-свидетеля хорошо воспроизводится, а значения глубины прогиба при моделировании и в эксперименте

Рис. 13. Выбор гауссовой координаты

Рис. 14. Компонента скорости осколка в направлении *x*

хорошо совпадают.

Для получения зависимости скорости от времени в оболочке устанавливались гауссовы координаты. Выбор гауссовой координаты иллюстрирует рис. 13.

Из рис. 14 видно, что взрыв бустерного заряда донора создает ударную волну, которая воздействует на осколок, что приводит к экспоненциальному увеличению скорости осколка примерно до $v_x = 1400$ м/с. На 64-й микросекунде скорость стабильна. При столкновении осколка с акцептором его скорость уменьшается примерно до нуля. Некоторая часть осколков отскакивает назад после столкновения с акцептором. Отрицательный знак означает, что

Рис. 15. Зависимость пикового давления от величины промежутка между взрывателями: точки — численное моделирование, линия — аппроксимация точек по уравнению (10)

Таблица 10

Зависимость пикового давления от величины промежутка между взрывателями

r MM	$p_{\max}, \Gamma \Pi a$				
<i>,</i> , mm	моделирование	критерий (10)			
76.0	27.67	27.67			
81.5	27.67	27.67			
83.5	27.67	27.67			
85.5	5.039	5.128			
86.5	2.921	2.506			
89.5	2.155	2.142			
91.5	2.0	2.140			
96.0	1.947	2.139			

фрагмент движется в направлении, противоположном первоначальному направлению движения.

На рис. 15 и в табл. 10 приведены результаты численного моделирования и их аппроксимация по следующему уравнению:

 $p_{\rm max} =$

$$= \begin{cases} 27.67 & (0 < r \le 83.5), \\ \exp(a + br + cr^2) & (83.5 < r \le 96), \end{cases}$$
(10)

где a = 472.442, b = -10.328, c = 0.056; p — [ГПа], r — [мм]. Сравнение пикового давления, полученного в численной модели и из аналитического уравнения (10) с использованием метода подгонки, показывает их хорошее согласие.

МОДЕЛИРОВАНИЕ ПЕРЕДАЧИ ДЕТОНАЦИИ НА РАССТОЯНИЕ ПРИ СОВМЕСТНОМ ВОЗДЕЙСТВИИ ОСКОЛКА И УДАРНОЙ ВОЛНЫ

В работе рассматривалось совместное воздействие ударной волны и осколков, генерируемых донором, для передачи детонации акцептору при разных размерах разделяющих промежутков. Соответствующие результаты численного моделирования представлены в табл. 11. Как видно из таблицы, при промежутке r < 93.5 мм акцептор полностью детонирует, а при r > 95.0 мм акцептор не взрывается.

Из табл. 7, 9, 11 видно, что осколок является основным фактором, вызывающим взрыв акцептора, в то время как ударную волну следует рассматривать как второстепенный фактор. Величина разделяющего промежутка для передачи детонации максимальна при совместном воздействии ударной волны и осколка. Это происходит вследствие того, что ударная волна вначале воздействует на акцептор, что влияет на механические свойства, чувствительность, характеристики горения и детонации бустерного заряда, вызывая снижение прочности и жесткости конструкции. Далее количество дефектов накапливается и закрепляется под действием нагрузки и температуры. В конечном итоге это может привести к структурному по-

Таблица 11

Взрыв акцептора в зависимости от величины промежутка между взрывателями

r, mm	Результаты численного моделирования	
86.5	Взрыв	
91.5	—//—	
93.5	<i>——//—</i>	
95.0	Отказ	
96.0	<i>——//—</i>	
97.0	<i>——//—</i>	
98.0	<i>——//—</i>	
100.0	—//—	

Рис. 16. Зависимость внутренней энергии взрывателя от времени

Рис. 17. Зависимость пикового давления от величины промежутка между взрывателями: точки — численное моделирование, линия — аппроксимация точек по уравнению (11)

вреждению и, как следствие, к увеличению расстояния передачи детонации и безопасного расстояния, при котором детонация не передается акцептору.

Ниже рассматривается изменение внутренней энергии бустерного заряда акцептора E_i во время и после взрыва.

Из рис. 16 видно, что в случае детонации акцептора внутренняя энергия быстро уменьшается до нуля. Напротив, в случае отказа внутренняя энергия существенно не изменяет-

	Таблица 12			
Зависимость пикового давления				
от величины промежутка межд	у взрывателями			

r, MM	$p_{\max}, \Gamma \Pi a$	
	моделирование	критерий (10)
86.5	27.67	27.67
91.5	27.67	27.67
93.5	27.67	27.67
95.0	4.446	4.547
96.0	3.926	2.921
97.0	2.919	2.858
98.0	2.5	2.857
100.0	2.23	2.856

ся и стабильна на уровне ≈90 кДж.

На рис. 17 и в табл. 12 приведены результаты численного моделирования пикового давления и прогноз согласно следующему уравнению:

 $p_{\rm max} =$

$$= \begin{cases} 27.67 & (0 < r \le 93.5), \\ \exp(a + br + cr^2) & (93.5 < r \le 100), \end{cases}$$
(11)

где a = 1296.586, b = -26.429, c = 0.134; $p - [\Gamma\Pi a]$, r - [MM]. Наблюдается хорошее согласие между результатами численного моделирования и расчета по уравнению (11).

ЗАКЛЮЧЕНИЕ

С помощью численного моделирования проанализирована передача детонации на расстояние для последовательности из двух взрывателей. Сделаны следующие выводы.

1. Когда такие параметры, как материал и толщина взрывателя, остаются неизменными, критическое и безопасное расстояния при передаче детонации посредством ударной волны составляют 9.5 и 11.0 мм, посредством осколков — 83.5 и 87.0 мм, при совместном воздействии ударной волны и осколков — 93.5 и 95.0 мм соответственно. Для перечисленных режимов получен критерий передачи детонации.

 Ударное воздействие направлялось от донора к акцептору. Детонационная волна генерировалась в верхнем левом углу бустерного заряда акцептора и распространялась в нижний правый угол. Затем в обратном направлении распространялась волна завершения реакции, которая охватывала весь заряд.

3. Для получения скорости предустановленного фрагмента оболочки и мгновенной скорости оболочки при ее разрыве были введены гауссовы координаты. Зависимости скорости от времени качественно соответствовали процессу разгона и торможения осколков. Это свидетельствует о корректном выборе размера предустановленного фрагмента.

4. Сделан вывод о том, что в промежутке времени 100÷120 мкс повреждение пластинысвидетеля происходит с наибольшей скоростью, а внутренняя энергия бустерного заряда акцептора при этом быстро уменьшается с 90 до примерно 20 кДж, что отражает степень химического превращения ВВ в этот промежуток времени и дает основание для оценки результата передачи детонации акцептору.

Авторы выражают благодарность Научнотехнической лаборатории электромеханического динамического контроля (Сиань, Китай) и Колледжу мехатронной инженерии (Северный университет Китая, Тайюань).

Настоящая работа выполнена при поддержке Национального фонда естественных наук Китая (NSFC 11802273) и открытого проекта Научно-технической лаборатории электромеханического динамического контроля (6142601180404).

ЛИТЕРАТУРА

- Li G. W., Zhao J. W., Du C. L., Zuo H. X., Huo F., Zhou D., Chen M. Safety assessment and technology of conventional missile ammunition. — Beijing: China Aerospace Press, 2015.
- Yuan J. M., Li S., Liu Y. C., Tang X., Yu Y. W., Yan L. W. The blasting of the smashing tube of poly-9C charge // Explos. Shock Waves. — 2018. — V. 38. — P. 632–638.
- Kim B., Kim M., Sun T., Yoh J. J. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations // J. Mech. Sci. Technol. 2016. V. 30, N 12. P. 5491–5502.
- 4. Соловьев В. С. Некоторые особенности ударно-волнового инициирования взрывчатых веществ // Физика горения и взрыва. 2000. Т. 36, № 6. С. 65–76.
- Kubota S., Liu Z., Saburi T., Ogata Y., Yoshida M. Simulation of sympathetic detonation by a CIP Eulerian code // 22nd Int.

Conf. on Comput. Ballistics. — 2005. — DOI: 10.2495/CBAL050111.

- König P. J., Simon A. On detonation-like burning, or IM test evaluation // 29th Int. Symp. on Ballistics. — 2016. — P. 1512–1519.
- Chen L., Wang Ch., Feng Ch.-G., Lu F., Lu J.-Y., Wang X.-F., Guo X. Study on random initiation phenomenon for sympathetic detonation of explosive // Def. Technol. — 2013. — V. 9, N 4. — P. 224–228. — DOI: 10.1016/j.dt.2013.12.002.
- Mostafa H. E., Mekky W. F., El-Dakhakhni W. W. Sympathetic detonation wave attenuation using polyurethane foam // J. Mater. Civ. Eng. — 2014. — V. 26, N 8. — P. 401–409.
- 9. Ko Y. H., Kim S. J., Yang H. S. Assessment for the sympathetic detonation characteristics of underwater shaped charge // Geosystem Eng. 2017. V. 20, N 5. P. 286–293. DOI: 10.1080/12269328.2017.1323679.
- Соловьев В. С., Исаев А. Н., Кобылкин И. Ф. Разложение ВВ в условиях газодинамического течения // Физика горения и взрыва. — 1984. — Т. 20, № 3. — 98–101.
- Itoh S., Hamada T., Murata K., Kato Y. Visualization of underwater sympathetic detonation of high explosives // J. Mech. Sci. Technol. — 2001. — V. 15, N 12. — P. 1822–1828.
- Nakamura Y., Hamada T., Murata K., Kato Y., Itoh S. An investigation on under water sympathetic detonation for high explosives // Sci. Technol. Energ. Mater. — 2003. — V. 64, N 1. — P. 46–51.
- Wang Ch., Wu J. Y., Chen L., Lu J. Y., Guo X., Wang X.-F. Experiments and numerical simulations of sympathetic detonation of explosives in shell // Explos. Shock Waves. — 2010. — V. 30, N 2. — P. 152–158. — DOI: 10.11883/1001-1455(2010)02-0152-07.
- Lu J. P., Lochert I. J., Daniel M. A., Franson M. D. Shock sensitivity studies for PBXN-109 // Propell., Explos., Pyrotech. — 2016. — V. 41, N 3. — P. 562–571. — DOI: 10.1002/prep.201500336.
- DeFisher S., Baker E. L., Wells L., Quigley G., Lew A. XM982 Excalibur sympathetic detonation modeling and experimentation // Armament Research, Development and Engineering Center, IMEMG, Bristol. — 2006. — P. 1–11.
- 16. Imkhovik N. A. Influence of dense inert additives (W and Pb) on detonation condition and regime of condensed explosives // J. Energ. Mater. — 2010. — V. 28, N 1. — P. 216–230. — DOI: 10.1080/07370652.2010.502921.
- 17. Li X., Sun Y., Zhao H. D., Xiao Y. C., Cai X. M., Zhang Q. H., Zhang W. A systematic method to determine and test the ignition and growth reactive flow model parameters of a newly designed polymer-bonded explosive // Propell., Explos., Pyrotech. — 2018. — V. 43, N 9. — P. 948–954. — DOI: 10.1002/prep.201800104.

- Lee E. L., Tarver C. M. Phenomenological model of shock initiation in heterogeneous explosives // Phys. Fluids. — 1980. — V. 23, N 12. — P. 2362–2372. — DOI: 10.1063/1.862940.
- Wang X. J., Wu Y. Q., Huang F. L. Thermalmechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading // J. Hazard. Mater. — 2017. — V. 321. — P. 256–267. — DOI: 10.1016/j.jhazmat.2016.08.061.
- 20. Varas D., Zaera R., López-Puente J. Numerical modelling of the hydrodynamic ram phenomenon // Int. J. Impact Eng. — 2009. — V. 36, N 3. — P. 363–374. — DOI: 10.1016/j.ijimpeng.2008.07.020.
- Tarver C. M., McGuire E. M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials // Proc. 12th Int. Detonation Symp. — 2002.
- 22. Buyuk M., Kurtaran H., Marzougui D., Kan C. D. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology // Int. J. Impact Eng. — 2008. — V. 35, N 12. — P. 1449– 1458. — DOI: 10.1016/j.ijimpeng.2008.07.057.

- Shi D. Y., Li Y. C. Explicit dynamics based on Ansys/LS-DYNA 8.1 Force Analysis. — Beijing: Tsinghua Univ. Press, 2009.
- 24. Holmquist T. J., Templeton D. W., Bishnoi K. D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications // Int. J. Impact Eng. — 2001. — V. 25, N 3. — P. 211–231. — DOI: 10.1016/S0734-743X(00)00046-4.
- Tao W. J., Huan S. Study on state of the twodimensional shock initiation of RDX-8701 // The 8th Mechanics of Explosion Academic Meeting. — 2007. — P. 58–63.
- 26. Li S., Yuan J. M., Liu Y. C., Qin W. Z., Xing Z. R., Tang X. Experiment and numerical simulation of shock initiation of JH-14C detonation device // Chin. J. Explos. Propell. — 2016. — V. 39, N 6. — P. 63–68, 79. — DOI: 10.14077/j.issn.1007-7812.2016.06.011.
- Wang S. S. Terminal Effects. Beijing: Science Press, 2019.
- Mott N. F., Linfoot E. H. A theory of fragmentation. — British Ministry of Supply Rep. AC 3348. — London, 1943.

Поступила в редакцию 14.04.2020. После доработки 19.07.2020. Принята к публикации 20.07.2020.