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Путем математического моделирования исследуется вращательная седиментация ней-
трально плавучих частиц в суспензиях в случае двумерных круговых течений между
двумя цилиндрами. В отсутствие гравитации сепарация частиц вызывается вращени-
ем внутреннего цилиндра. Установлено, что седиментация зависит от вращения ча-
стиц. В рамках континуума Коссера суспензия рассматривается как микрополярная
жидкость. Исследовано влияние эксцентриситета несоосных цилиндров на фронт седи-
ментации.
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Введение. Для выделения частиц из суспензий часто применяются центрифуги. Как
показали исследования, проведенные в работе [1], вращательная седиментация позволяет
более детально изучить взаимодействие макромолекул коллоидных систем. В соответствии
с этим методом высокодисперсный коллоидный раствор заключен в ячейку клиновидной

формы, вращающуюся вокруг оси, на которой находится вершина клина. Образцы центри-
фугируются при скоростях, достаточных для получения седиментации и узких зон гради-
ентов концентрации. При изучении такого течения важные результаты были получены с
использованием уравнения диффузии Ламма, основанного на эмпирическом коэффициенте
седиментации [2].

В данной работе предлагается новая математическая модель вращательной седимен-
тации с учетом вращения частиц. Существует несколько подходов для описания суспензий.
Отметим особенности предлагаемого метода. С целью учета вращения частиц применя-
ется теория микрополярных жидкостей, в которой важную роль играет микроинерция

частиц [3]. Согласно этой теории любой бесконечно малый объем содержит достаточно
большое количество частиц. Поэтому такой подход применим для суспензий с высокой
концентрацией частиц. В [4] в рамках теории микрополярной жидкости доказано, что
именно вследствие вращения частиц возникает эффект Сегре — Зильберберга — пере-
мещение частиц к концентрической кольцевой области в ламинарном потоке нейтрально

плавучей разбавленной суспензии жестких сфер в круглой трубе [5].
Теория микрополярной жидкости учитывает внутренние моменты количества движе-

ния и микроинерцию в соответствии с концепцией континуума Коссера, согласно которой
каждая материальная точка рассматривается как твердое тело [6].
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В теории микрополярной жидкости с учетом внутренних спинов тензор напряжений

является несимметричным, поэтому используется тензор пар напряжений и уравнение уг-
лового момента включается в законы сохранения. В данной работе формулировка реологи-
ческих уравнений включает введение новых вязкостей как для тензора напряжений Коши,
так и для тензора пар напряжений. Помимо обычной сдвиговой вязкости (симметричная
вязкость) применяется антисимметричная вязкость. В работах [7, 8] изложена теория и
приведены результаты экспериментов по определению антисимметричной вязкости.

В данной работе рассматривается плоское течение суспензии в области между двумя

окружностями, которое соответствует движению между двумя вертикальными цилиндра-
ми без учета гравитации, когда в каждом горизонтальном сечении картина течения одна
и та же. Течение вызвано вращением внутреннего цилиндра. Исследован также случай
несоосных цилиндров. При этом седиментация также имеет место. Применительно к ней-
трально плавучим частицам установлено поперечное перемещение частиц и показано, что
причиной возникновения центробежной седиментации является вращение частиц. Следует
отметить, что вращение круглых частиц вызывает появление поперечной силы Магнуса
в несущем сдвиговом потоке, который описывается уравнениями Навье — Стокса [9].

1. Описание математической модели. Напомним, что в рамках континуума Кос-
сера частица рассматривается как твердое тело, поэтому помимо вектора скорости v ча-
стица имеет вектор угловой скорости ω [3]. Скорость деформации описывается двумя тен-
зорами

A = ∇ω, B = ∇v − ε : ω,

где ε — тензор Леви-Чивиты третьего ранга; ε : ω — антисимметричная матрица:

(ε : ω)ij = ωkεikj , εikj = ei · (ek × ej),

ei (i = 1, 2, 3) — ортонормированный базис.
Рассматривается случай, когда частицы являются сферическими, плотности и скоро-

сти частиц и несущей жидкости одинаковы, поэтому важной характеристикой суспензии
является концентрация твердых частиц c — термодинамическая переменная, входящая в
тождество Гиббса для внутренней энергии E0(ρ, η, c) [4]

dE0 = θ dη + µ dρ + z d(ρc), (1)

где ρ — плотность; η — энтропия единицы объема; µ, z — химические потенциалы. Сле-
довательно,

θ =
∂E0

∂η
, µ =

∂E0

∂ρ
, z =

∂E0

∂ (ρc)
,

где θ — абсолютная температура. Поскольку в термодинамике давление есть производная
энергии по объему, оно определяется равенством [10]

p = −E0 + θη + µρ + zρc. (2)

Для построения законов сохранения применяется метод Халатникова — Ландау [11].
Сначала рассматриваются процессы в отсутствие диссипации и формулируются законы

сохранения с неизвестными потоками

ρt + div j = 0, jt + div Π = 0, ηt + div (ηv) = 0; (3)

J(ρcω)t + div M = 0, (ρc)t + div (cj) = 0, (4)

где j — поток массы; Π — тензор потока импульса; M — тензор потока момента импуль-
са; J — момент инерции сферической частицы. Уравнения (3) представляют собой законы
сохранения полной массы, импульса и энтропии. Уравнения (4) имеют смысл законов со-
хранения внутренних угловых моментов и массы частиц.
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Введем полную энергию

E = E0 +
ρ|v|2

2
+

Jcρ|ω|2

2
. (5)

Из закона сохранения энергии

Et + div Q = 0 (6)

с неизвестным потоком Q следует, что переопределенная система уравнений (3)–(6) при-
водит к следующим соотношениям [4]:

j = ρv, Π = pI + j ⊗ v, M = Jcω ⊗ j, Q = j
|v|2

2
+ jJc

|w|2

2
+ ηθv + µj + zcj.

С учетом диссипации законы сохранения принимают вид

ρt + div j = 0, jt + div (Π + Π1) = 0, ηt + div
(
ηv +

q

θ

)
=

R

θ
,

(7)
J(ρcω)t + div (M + M1) = fω, (ρc)t + div (cj + l) = 0;

Et + div (Q + Q1) = 0

с неизвестными Π1, M1, l, q, fw, Q1, R. Здесь R — производство энтропии; q — вектор

потока тепла; l — диффузионный поток концентрации частиц; fω — плотность диссипа-
тивных моментов сил.

Дополнительные диссипативные члены определяются следующим образом. Вычислим
производную энергии по времени:

Et = ρt
|v|2

2
+ j · vt + J(ρc)t

|ω|2

2
+ Jρcw ·wt + θηt + µρt + z(ρc)t.

Подставляя в это выражение частные производные по времени из законов сохранения (7),
получаем формулу [4]

Et + div (Q + Q1) = Π1 : B + M1 : A− ω · (Π1 : ε− fω) +

+
q · ∇θ

θ
+ l · ∇z − J∇ω : (ω ⊗ l) + R, (8)

где

Q1 = Π∗
1v + M∗

1ω + q + l(z − J |ω|2/2),

Π1 : B = (Π1)ijBij , (Π1 : ε)i = εijk(Π1)jk, (ω ⊗ l)ij = ωilj .

Выберем R с учетом условия, что правая часть уравнения (8) равна нулю, и положим
M1 = M2 + M3. Выберем также величины fω, M3, l по формулам

fω = ε : Π1, M3 = Jω ⊗ l− α3ε : l + α4ε : (l× ωr);

∇z = −l/α1 − α2l× ωr + α3 rot ω + α4 rot ω × rot ωr, (9)

где ωr = ω−rot v/2. При указанном выборе справедливо следующее представление для R:

R = −Π1 : B −M2 : A− q · ∇θ/θ + l2/α1. (10)

Сформулируем определяющие уравнения:

S = −Π1 = 2ηsBs + 2ηaBa, N1 = −M2 = 2ηωA, q = −κ∇θ. (11)

Здесь S — вязкая часть тензора напряжений; N1 — вязкая часть тензора пар напряже-
ний; ηs, ηa — вязкости; ηω — угловая вязкость. При этом единицей измерения отношения
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ηω/ηs является сантиметр квадратный. Нетрудно показать, что для уравнений (11) выпол-
няется неравенство R > 0. Отметим необходимое условие неотрицательности вязкостей и
теплопроводности κ. Симметричная и антисимметричная части матрицы B определяются

формулами

Bs = (B + B∗)/2, Ba = (B −B∗)/2, B = Bs + Ba.

Вязкость ηs есть классическая сдвиговая вязкость. В работе [8] установлено, что антисим-
метричная вязкость ηa характеризует напряженное состояние, которое возникает за счет
наличия микро- и макровращений. Там же приведена зависимость ηa от концентрации

частиц.
Введем матрицу

Sb = α−1
1 I − α2ε : ωr,

тогда уравнение (9) можно записать в виде

l = S−1
b (−∇z + α3 rot w + α4 rot ω × ωr). (12)

В случае α2 = α3 = α4 = 0 равенство (12) представляет собой известный закон Фика [11].
Из (1), (2) следует

∇p = η∇θ + ρ∇µ + ρc∇z.

Далее предполагается, что химический потенциал µ есть известная функция переменных
p, θ, c и

∇µ = µp∇p + µθ ∇θ + µc∇c.

Поэтому вместо (12) можно использовать уравнение

l = −S−1
b (γ3∇c + γ1∇p + γ2∇θ − α3 rot ω − α4 rot ω × b), (13)

где

∇z = γ1∇p + γ2∇θ + γ3∇c,

γ1 =
1− ρµp

ρc
, γ2 = −η + ρµθ

ρc
, γ3 = −µc

c
.

В классической гидродинамике α2 = α3 = α4 = 0, поэтому уравнение (13) обычно записы-
вается в виде

l = −ρD(∇c + kθ ∇θ + kp∇p),

где D — коэффициент диффузии [11]. Следовательно, выражения для коэффициентов γi

можно представить в виде

γ1 = ρDkp/α1, γ2 = ρDkθ/α1, γ3 = ρD/α1.

Таким образом, получаем следующую математическую модель суспензии нейтрально
плавучих частиц:

ρt + div (ρv) = 0; (14)

(ρv)t + div (ρv ⊗ v) = −∇p + div S,

J{(ρcω)t + div [ω ⊗ (ρcv + l)]} = div N − ε : S, (15)

(ρc)t + div (ρcv + l) = 0;

ηt + div (ηv + q/θ) = R/θ. (16)
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К этим уравнениям добавляются определяющие уравнения

S = 2ηsBs + 2ηaBa, N = 2ηωA + α3 ε : l− α4 ε : (l× ωr); (17)

l = −S−1
b (γ3∇c + γ1∇p + γ2∇θ − α3 rot ω − α4 rot ω × ωr). (18)

Для замыкания модели (14)–(18) необходимо также добавить термодинамические со-
отношения. При заданной внутренней энергии E0(ρ, η, c) тождество Гиббса имеет вид

dE0 = θ dη + µ dρ + z d(ρc), θ =
∂E0

∂η
, µ =

∂E0

∂ρ
, z =

∂E0

∂(ρc)
.

Давление определено уравнением (2). Поток тепла q и производство энтропии R удовле-
творяют закону Фурье q = −κ∇θ и уравнению (10).

Свойство микрополярности исчезает, если частицы отсутствуют, т. е. c = 0. Поэтому
ηa|c=0 = 0. Поток концентрации l равен нулю при c = 0 или c = 1. Поэтому коэффициенты
α3, α4, kp равны нулю при c = 0 и c = 1.

2. Безразмерные уравнения. Будем пренебрегать тепловыми потоками и рассмат-
ривать несжимаемую жидкость, т. е. примем условие ρ = const. В уравнении (18) ко-
эффициент γ2 полагается равным нулю. Известно, что в случае несжимаемой жидкости
давление не является термодинамической переменной, поэтому модель сводится к законам
сохранения (15) для определения скорости, угловой скорости, концентрации и давления:

ρ[vt + div (v ⊗ v)] = −∇p + div S, div v = 0,

ρJ [(cω)t + div (ω ⊗ (cv + ρ−1l))] = div N − ε : S,

ct + (v · ∇)c = −ρ−1 div l.

В предположении α2 = α3 = 0 и в пренебрежении бародиффузией определяющие уравнения
для вязкой части тензора напряжений и тензора пар напряжений принимают вид

S = 2ηsBs + 2ηaBa, N = 2ηωA− α4 ε : (l× ωr).

Поток концентрации определяется по обобщенному закону Фика

l = −α1[γ3∇c− α4 rot ω × ωr].

В работе [8] установлено, что коэффициент α4 определяет вращательную диффузию [11].
Такая диффузия обусловливает перемещение частиц Сегре — Зильберберга в поперечном

направлении [4].
Введем безразмерные переменные

x = x̃x′, v = ṽv′, t = t̃t′, p = p̃p′, ω = ω̃ω′,

S = S̃S′, N = ÑN ′, l = l̃l′, J = J̃j

(величины с символом “∼” — характерные значения соответствующих величин). Поло-
жим

t̃ =
x̃

ṽ
, ω̃ =

1

t̃
, p̃ = ρṽ2, S̃ =

η̃sṽ

x̃
, Ñ = x̃ω̃η̃s, J̃ = x̃2, l̃ = ρṽ

и введем безразмерные параметры

Re =
ρx̃ṽ

η̃s
, Γ3 =

α1γ3

ρx̃ṽ
, Γ4 =

α1α4ω̃
2

ρṽ2
, L1 =

ηω

x̃2η̃s
, L2 =

α4ρṽ

x̃η̃s
.
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Опуская штрихи, получаем следующие безразмерные уравнения:

vt + div (v ⊗ v) = −∇p + 2 Re−1 div S, div v = 0,

j Re [(cω)t + div (ω ⊗ (cv + ρ−1l))] = div N − ε : S,

ct + (v · ∇)c = −ρ−1 div l,

S =
ηs

η̃s
Bs +

ηa

η̃s
Ba, N = L1∇ω − L2 ε : (l× ωr), l = −Γ3∇ c + Γ4 rot ω × ωr.

В общем случае вязкости могут зависеть от концентрации частиц. Так как при c = 0
и c = 1 диффузионный поток l должен обращаться в нуль, безразмерные коэффициенты
диффузии и вращательной диффузии выбираются в виде

Γi = Γ0
i c(1− c), i = 3, 4.

3. Течения типа течения Куэтта между двумя вращающимися несоосными
цилиндрами. Рассмотрим сначала двумерные круговые течения между двумя соосными
вращающимися цилиндрами (R1 — радиус внутреннего цилиндра, R2 — радиус внешнего

цилиндра). Без учета силы тяжести картины течения в каждом сечении, перпендикуляр-
ном оси симметрии цилиндров z, одинаковы. Поля скорости и угловой скорости не зависят
от переменной z и имеют представления

v = (v1, v2, 0)т, ω = (0, 0, ω)т. (19)

Координаты векторов v, ω зависят лишь от времени и переменных x, y. Остальные неиз-
вестные функции зависят только от этих переменных. Следует отметить, что течения
типа (19) также допускаются полными уравнениями при наличии эксцентриситета меж-
ду цилиндрами, когда ось вращения внешнего цилиндра проходит через начало системы
координат (x, y), а центр внутреннего цилиндра задается вектором r1, лежащим в плос-
кости (x, y).

Будем рассматривать вращение только внутреннего цилиндра с угловой скоростью

Ω, направленной вдоль оси z. В размерном виде указанному течению соответствуют сле-
дующие граничные условия на поверхностях цилиндров Σi:

v
∣∣
Σ1

= Ω× (r − r1)
∣∣
Σ1

, v
∣∣
Σ2

= 0; (20)

ω
∣∣
Σi

=
λi

2
rot v

∣∣
Σi

, (cρv + l) · n
∣∣
Σ1∪Σ2

= 0. (21)

Здесь равенства (20) представляют собой граничные условия прилипания. Первое усло-
вие (21) означает, что микровращения пропорциональны макровращениям с различными
постоянными проскальзывания λi (0 6 λi 6 1) на внутренней и внешней границах [7].
Второе условие (21) означает отсутствие потока частиц через границы, n есть вектор

внешней нормали.
Представим характерные значения в виде x̃ = R1, ω̃ = Ω, ṽ = R1Ω, а радиус R2

внешнего цилиндра выберем таким образом, чтобы в безразмерных переменных область
течения между соосными цилиндрами определялась неравенствами 1 < r < 2. При вычис-
лениях будем использовать следующие значения параметров: Re = 10−2, j = 10−9, L1 = 1,
L2 = 10−3, Γ3 = 3 · 10−3, Γ4 = 3, λ1 = 0,5, λ2 = 0. Различие постоянных λ1 и λ2 соответ-
ствует различным условиям проскальзывания на Σ1 и Σ2. Шероховатость как частиц, так
и поверхностей цилиндров в данной работе не учитывается.

Граничные условия в безразмерных переменных записываются в виде

v · n
∣∣
Σ1∪Σ2

= 0, vτ

∣∣
Σ1

= 1, vτ

∣∣
Σ2

= 0, l · n
∣∣
Σ1∪Σ2

= 0.

Здесь vτ = v ·τ ; τ — касательный единичный вектор на границе области течения. В каче-
стве начальных данных выбраны следующие значения параметров: v = 0, ω = 0, c = 0,2.
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Рис. 1. Распределения абсолютного значения скорости смеси |v| (а) и микро-
вращений частиц ω (б)
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Рис. 2. Распределение концентрации частиц в различные моменты безразмер-
ного времени:
a — t = 2, б — t = 4, в — t = 8

Приведем результаты вычислений, выполненных с помощью некоммерческого пакета
FreeFem++. На рис. 1 показаны скорость и угловая скорость вращения частиц в некото-
рый момент времени. Видно, что наибольшая интенсивность течения наблюдается вблизи
вращающегося внутреннего цилиндра. На рис. 2 представлена динамика концентрации ча-
стиц, подтверждающая наличие седиментации. Несмотря на то что решались двумерные
уравнения, фронт седиментации представляет собой окружность. Значит, седиментация
развивается устойчиво. Более детальная картина седиментации представлена на рис. 3.

Установлено, что седиментация вызвана вращением частиц. Действительно, если ко-
эффициент вращательной диффузии в законе Фика положить равным нулю, то седимен-
тация отсутствует (рис. 4). На рис. 4 Γ0

4 — безразмерный коэффициент вращательной

диффузии. Заметим, что именно вращательной диффузией можно объяснить эффект Сег-
ре — Зильберберга. Учет силы Магнуса не позволяет обосновать разделение фаз, так как
в рассматриваемых течениях скорости частиц и несущей жидкости одинаковы и проскаль-
зывание отсутствует.

В известных экспериментах с цилиндрами конечной высоты наблюдается седимента-
ция в случае равноплотных суспензий.Однако процесс разделения фаз происходит неустой-
чиво, возможно, это обусловлено гравитацией [12].
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Рис. 3. Распределение концентрации частиц вдоль линии y = 0, x ∈ (1, 2)
в различные моменты времени:
1 — t = 2, 2 — t = 4, 3 — t = 8

Рис. 4. Распределение концентрации частиц вдоль линии y = 0, x ∈ (1, 2)
в момент времени t = 8:
1 — Γ0

4 = 3, 2 — Γ0
4 = 0

Исследуем случай несоосных цилиндров. Рассматривается двумерное течение между
двумя цилиндрами с радиусами R1 = 1, R2 = 2, центр внешнего цилиндра радиусом R2

находится в начале координат (x0
2, y

0
2) = (0, 0), центр внутреннего цилиндра смещен на

расстояние ∆x = 0,1 по горизонтальной оси (x0
1, y

0
1) = (0,1, 0). Все параметры расчета те

же, что и в случае концентрических цилиндров, кроме коэффициента вращательной диф-
фузии Γ0

4, который выбран равным 0,7. На рис. 5,а видно, что микровращения отстают
от макровращений, так как ωr < 0. Значение величины ω больше в широкой части зазора
(рис. 5,б), но относительная скорость микровращений больше в узкой части (см. рис. 5,а).
Из рис. 6 следует, что седиментация имеет место и в случае наличия эксцентриситета.
Поясним важность этого результата. В ряде работ, посвященных исследованию седимен-
тации в центрифугах в виде сектора, удается подобрать эмпирическую центробежную

силу, зависящую от радиуса r. При таком подходе законы сохранения не используются,
а математическая модель представляет собой одно параболическое уравнение Ламма для

концентрации [2]

∂c

∂t
=

1

r

∂

∂r

(
rD

∂c

∂r
− sΩ2r2c

)
,

где s — эмпирический коэффициент седиментации. Ясно, что такой подход неприменим
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Рис. 5. Распределения относительной угловой скорости частиц ωr = ω − rotv/2 (а)
и микровращений частиц ω (б)
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Рис. 6. Распределение концентрации частиц в момент времени t = 30

в случае несоосных цилиндров, поскольку эмпирическая сила не может зависеть лишь
от радиуса. В заключение следует отметить, что в рассматриваемом подходе для объяс-
нения центрифужной седиментации нейтрально плавучих частиц не требуется введения

центробежных сил. Показано, что такая седиментация объясняется вращением частиц и
вращательной диффузией.
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