© 2014 г.

УДК 575.174.015.3

РАЗРАБОТКА ЦИТОПЛАЗМАТИЧЕСКИХ SSR-MAPKEPOB ДЛЯ ИССЛЕДОВАНИЙ СОСНЫ КЕДРОВОЙ СИБИРСКОЙ (PINUS SIBIRICA DU TOUR)

Е. А. Шилкина¹, Н. В. Орешкова^{2,3}, А. А. Ибе^{1,3}, К. О. Дейч^{1,3}, К. В. Крутовский^{3,4,5,6} 1 Филиал Российского центра защиты леса Центр защиты леса Красноярского края 660036, Красноярск, Академгородок, 50а/2 ² Институт леса им. В. Н. Сукачева СО РАН 660036, Красноярск, Академгородок, 50/28 3 Сибирский федеральный университет Научно-образовательный центр геномных исследований 660036, Красноярск, Академгородок, 50а/2

⁴ Институт общей генетики им. Н. И. Вавилова РАН 119991, ГСП-1, Москва, ул. Губкина, 3 5 Γ еттингенский университет Германия, 37077, Геттинген, ул. Бюсгенвег, 2 ⁶ Техасский агро-механический университет

США, Техас, 77843, Колледж Стейшн E-mail: helenbeauty74@mail.ru, oreshkova@ksc.krasn.ru, aaibis@mail.ru, kse-zhdanova@yandex.ru, kkrutovsky@gmail.com Поступила в редакцию 31.07.2014 г.

Разработаны три хлоропластных и один митохондриальный ДНК-маркеры для генотипирования сосны кедровой сибирской (Pinus sibirica Du Tour). По результатам генотипирования 60 деревьев из двух популяций два хлоропластных локуса оказались мономорфными и один – полиморфным с двумя аллелями. Таким образом, всего для хлоропластных локусов выявлено два гаплотипа. Для митохондриального маркера также выявлено два аллеля, или гаплотипа (митотипа).

Ключевые слова: ПЦР, хлоропластные и митохондриальные маркеры, митотип, локус, аллель, гаплотип, сосна кедровая сибирская (Pinus sibirica Du Tour).

В настоящее время в лесной отрасли назрела необходимость использования современных молекулярно-генетических методов для выявления происхождения древесины при борьбе с нелегальными рубками, лесосеменного районирования и уточнения качества семенного материала при лесовосстановлении. Все более актуальными становятся методы на основе прямого генотипирования и секвенирования ДНК, активно используемые за рубежом в лесном хозяйстве.

Цель данного исследования – выявление изменчивых цитоплазматических микросателлитных локусов и разработка на их основе

маркеров (Simple Sequence Repeats, или SSRмаркеров) для сосны кедровой сибирской.

МАТЕРИАЛЫ И МЕТОДЫ

Для работы использованы все доступные в Genbank (http://www.ncbi.nlm.nih.gov/ genbank) нуклеотидные сиквенсы хлоропластного и митохондриальных геномов и выборки по 30 деревьев в возрасте 40-70 лет из двух популяций сосны кедровой сибирской (*Pinus* sibirica Du Tour) Томской области (табл. 1). Образцы P. sibirica предоставлены сотрудником Института леса СО РАН А. В. Пименовым.

Таблица 1. Географическое расположение исследованных популяций сосны кедровой сибирской

Популяция	Район расположения	Возраст, лет
Кедр-3	Томская область, долина р. Жуковка, евтрофное болото (грубоподзо-	50-70
	листое)	
Кедр-4	Томская область, междуречье Иксы и Бакчара, олиготрофное болото	40-50

Для каждого дерева тотальная ДНК выделена из 100-200 мг высушенной хвои по стандартному протоколу для растительных тканей с применением цетилтриметиламмонийбромида (СТАВ-метод) (Devey et al., 1996). Выделенную ДНК использовали для проведения полимеразной цепной реакции (ПЦР) с пятью парами праймеров митохондриальной ДНК и девятнадцатью парами праймеров хлоропластной ДНК, которые разработаны для сосны кедровой сибирской. Для разработки праймеров использованы все доступные в базе Genbank (http://www.ncbi. nlm.nih.gov/genbank) хлоропластные и митохондриальные нуклеотидные сиквенсы Pinus sibirica, включая почти полный сиквенс хло-(gi|228016112|gb| ропластного генома FJ899558.1|). С помощью программы SciRo-Ko (Kofler et al., 2007; http://www.kofler.or.at/ bioinformatics/SciRoKo/index.html) выявлены микросателлитные районы и затем для них определены праймеры с помощью программы Primer3 (http://primer3plus.com/cgi-bin/ dev/primer3plus.cgi). Четыре микросателлитных локуса обнаружены в хлоропластном геноме и только один среди всех изученных митохондриальных генов — в интроне (nad1;gi|12002773|gb|AF160260.1|).

Для ПЦР использовали набор реагентов GenePak PCR Core OOO «Лаборатория Изоген», содержащий *Таq-*ДНК полимеразу для «горячего старта», дезоксинуклеозидтрифосфаты и хлорид магния с конечными концентрациями 1U, 200 µМ и 2,5 mM соответственно, а также оптимизированную буферную систему.

ПЦР-амплификацию отобранных микросателлитных локусов проводили при следующем режиме: предварительная денатурация ДНК при 94 °C в течение 1 мин; далее 10 циклов, включающих 30 с плавления при 94 °C, отжиг 30 с при 63–53 °C (–1 °C на каждый цикл) и 1 мин элонгации при 72 °C; последующие 25 циклов состояли из 30 с плав-

ления при 94 °C, отжига 30 с при 53 °C и 1 мин элонгации при 72 °C. Завершающий цикл элонгации проходил при 72 °C в течение 10 мин (Isoda, Watanabe, 2006).

Продукты ПЦР-амплификации разделяли путем электрофореза в 6%-м полиакриламидном геле с использованием трис-ЭДТАборатного электродного буфера в стандартных вертикальных камерах VE-20 (OOO «Хеликон») при напряжении 300V в течение 2,5 ч. Гели окрашивали в растворе бромистого этидия и визуализировали под УФ-светом. Относительную молекулярную массу фрагментов определяли путем сопоставления со стандартными маркерами длин, в качестве которых использовали ДНК плазмиды pBR322, обработанную рестриктазой *Hpa*II.

Для амплификации обнаруженного митохондриального микросателлитного локуса синтезированы и протестированы четыре пары ПЦР праймеров.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате анализа с использованием ДНК деревьев из двух природных популяций сосны кедровой сибирской отобрана пара с наилучшей амплификацией и для этого локуса выявлено два митотипа (табл. 2). Из исследованных популяций одна оказалась фиксированной по одному митотипу.

В результате тестирования праймеров для амплификации четырех хлоропластных локусов из-за сложности амплифицированного спектра от одного локуса пришлось отказаться. Два локуса оказались мономорфными в обеих популяциях, а третий — полиморфным с двумя аллелями (табл. 3). Таким образом, всего по трем хлоропластным локусам выявлено два гаплотипа в двух популяциях сосны кедровой сибирской.

В результате проведенного исследования протестированы 24 пары ПЦР праймеров для амплификации и генотипирования одного

Таблица 2. Характеристика отобранного митохондриального маркера для сосны кедровой сибирской

Маркер	Количество аллельных вариантов	Размер ПЦР фрагмен- тов	Сиквенсы форвард и реверс праймеров $(5' \rightarrow 3')$
P_sib_mt_SSR_CTAT_intron_nad1	2	236	AGGGGCTGTAGGTGATG
		240	GGCCTTGAAGGACCTTTTTC

Таблица 3. Характеристика отобранных хлоропластных маркеров для сосны кедровой сибирской

Маркер	Количество аллельных вариантов	Размер ПЦР фрагмента	Сиквенсы форвард и реверс праймеров $(5' \rightarrow 3')$
P_sib_chl_SSR_TTCCC_noncoding_intras	1	113	TCCCAGGTTTTTGATAAGGA
pace_psbA-tRNALys			TCCTACTTCGGTCGGAAAGA
P_sib_chl_SSR_GTGATG_non-	1	120	TCTGATTTGATGAGGGCTGA
coding_intraspace_ycf1-rps15			TTTCCCAAAATCAAGGGTCA
P_sib_chl_SSR_AT_noncoding_intraspace	2	141	TACGGTTCGAGCCCGTATAG
_tRNAVal-rps4		143	CCATCGATCTCGATAAGGACA

митохондриального и трех хлоропластных цитоплазматических локусов специально для сосны кедровой сибирской. При увеличении числа популяций в исследовании возможно изменение количества аллелей локусов. Поэтому для дальнейшего более точного генотипирования их аллелей необходима амплификация этих цитоплазматических локусов с помощью праймеров с флуоресцентной меткой и разделение продуктов ПЦР на генетическом анализаторе (секвенаторе) на основе капиллярного электрофореза. Авторами планируется дальнейший поиск и более детальное изучение цитоплазматических маркеров для сосны кедровой сибирской и других лесообразующих пород Сибири.

СПИСОК ЛИТЕРАТУРЫ

Devey M. E., Bell J. C., Smith D. N. A genetic linkage map for Pinusradiata based on RFLP, RAPD, and microsatellite markers // Theor. Appl. Genet. 1996. V. 92. N. 6. P. 673–679.

Isoda K., Watanabe A. Isolation and characterization of microsatellite loci from Larixkaempferi // Mol. Ecol. 2006. V. 6. P. 664–666.

Kofler R., Schlötterer C., Lelley T. SciRoKo: a new tool for whole genome microsatellite search and investigation // Bioinformatics. 2007. V. 23.
N. 13. P. 1683–1685. http://www.kofler.or.at/bioinformatics/SciRoKo/index.html

http://www.ncbi.nlm.nih.gov/genbank http://primer3plus.com/cgi-bin/dev/ primer3plus.cgi

Development of Cytoplasmatic SSR-Markers for Population Genetic Studies of the Siberian Stone Pine (*Pinus Sibirica* Du Tour)

E. A. Shilkina¹, N. V. Oreshkova^{2,3}, A. A. Ibe^{1,3}, K. O. Deych^{1,3}, K. V. Krutovsky^{3,4,5,6} ¹ Branch of the Russian Centre for Forest Protection Centre for Forest Protection of Krasnoyarsk Territory Akademgorodok, 50a/2, Krasnovarsk, 660036 Russian Federation ² V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch Akademgorodok, 50/28, Krasnoyarsk, 660036 Russian Federation ³ Siberian Federal University Genome Research and Education Centre Akademgorodok, 50a/2, Krasnoyarsk, 660036 Russian Federation ⁴ N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkin str., 3, Moscow, 119333 Russian Federation ⁵ University of Göttingen Büsgenweg, 2, Göttingen, D-37077 Germany Texas A&M University HFSB 305, 2138 TAMU, College Station, Texas, 77843 USA E-mail: helenbeauty74@mail.ru, oreshkova@ksc.krasn.ru, aaibis@mail.ru, kse-zhdanova@yandex.ru, kkrutovsky@gmail.com

Three chloroplast and one mitochondrial DNA markers were developed and used for genotyping of 60 trees in two populations of the Siberian stone pine (*Pinus sibirica* Du Tour). Two chloroplast loci were monomorphic in both populations, and one polymorphic with two alleles. Therefore, four chloroplast haplotypes were revealed totally. A mitochondrial DNA marker had two alleles or haplotypes (mitotypes).

Keywords: *DNA markers, PCR, chloroplast and mitochondrial markers, mitotype, locus, allele, haplotype, Siberian stone pine (Pinus sibirica Du Tour).*