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Поставлена задача о совместном нестационарном однонаправленном движении двух
несмешивающихся жидкостей в цилиндрической трубе, на твердой поверхности кото-
рой задан постоянный перепад температуры. С математической точки зрения задача
является сопряженной и обратной относительно градиента давления одной из жидко-
стей вдоль трубы. Условием переопределения задачи является заданный нестационар-
ный общий расход указанных жидкостей. Найдено стационарное решение. Получены
априорные оценки решения нестационарной задачи в равномерной метрике. На основе
этих оценок сформулированы достаточные условия для входных данных, при которых
стационарное решение является экспоненциально устойчивым.

Ключевые слова: термокапиллярность, поверхность раздела, обратная задача, апри-
орные оценки

1. Основные уравнения и граничные условия. Рассматривается следующая
начально-краевая задача:

w1t = w1rr +
1

r
w1r + f1(t), T1t =

1

Pr1

(
T1rr +

1

r
T1r

)
+ w1(r, t),

(1.1)
0 < r < 1, 0 6 t 6 t0;

|w1(0, t)| <∞, |T1(0, t)| <∞, 0 6 t 6 t0; (1.2)

w1(r, 0) = w10(r), T1(r, 0) = T10(r), 0 6 r 6 1; (1.3)

w2t =
1

ν

(
w2rr +

1

r
w2r

)
+

1

ν
f2(t), T2t =

1

Pr2ν

(
T2rr +

1

r
T2r

)
+

1

ν
w2(r, t),

(1.4)

1 < r < λ, 0 6 t 6 t0;

w2(r, 0) = w20(r), T2(r, 0) = T20(r), 1 6 r 6 λ. (1.5)

Кроме того,

w2(1, t) = νw1(1, t), w2r(1, t) = µνw1r(1, t)− νMa; (1.6)
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T1(1, t) = T2(1, t), T2r(1, t) = kT1r(1, t); (1.7)

w2(λ, t) = 0, T2(λ, t) = 0, 0 6 t 6 t0; (1.8)

1∫
0

rw1(r, t) dr +
1

ν

λ∫
1

rw2(r, t) dr =
q(t)

2π
, 0 6 t 6 t0. (1.9)

Функции f1(t), f2(t) связаны конечным соотношением

f2(t) = µνf1(t) + νMa, 0 6 t 6 t0. (1.10)

Поставленная задача (1.1)–(1.10) описывает в безразмерных переменных двухслойное
движение вязких теплопроводных жидкостей в цилиндрической трубе. В размерных пере-
менных движение первой жидкости происходит в области |z̄| < ∞, 0 < r̄ < a, а второй —
в слое |z̄| < ∞, a < r̄ < b с заданными a > 0, b > 0. Жидкости характеризуются следую-
щими физическими постоянными: ρj > 0 — плотности, νj > 0 — кинематические вязкости

(µj = ρjνj — динамические вязкости), kj > 0 — теплопроводности, χj > 0 — температу-
ропроводности. В поставленной выше задаче ν = ν1/ν2; µ = µ1/µ2; Prj = νj/χj — числа

Прандтля; Ma = κAa2/(µ2ν1) — число Марангони; κ > 0 — температурный градиент

поверхностного натяжения на межфазной границе r̄ = a, которое линейно зависит от тем-
пературы: σ(Θ) = σ0−κΘ; σ0 > 0 — постоянная; A — постоянный градиент температуры

на твердой боковой поверхности трубы r̄ = b; λ = b/a > 1 — геометрический параметр.
В размерных переменных решение представляется в виде

u = (0, 0, w̄j(r̄, t̄)), p̄j = −ρjfj(t̄)z̄ + D̄j(t̄), Θ̄j = Az̄ + T̄j(r̄, t̄).

Вводятся следующие безразмерные величины: r = r̄/a; t = ν1t̄/a
2; wj(r, t) = aw̄j/νj

— осевые скорости; Tj(r, t) = T̄j/(aA) — возмущения температуры; D̄2(t) = D̄1(t)− [σ0 −
κT̄1(a, t)]/a, при этом можно считать D̄1(t) = 0; fj(t) = a3fj/ν

2
j — осевые градиенты

давлений; q(t) = q̄/(aν1) — общий расход жидкостей через поперечное сечение трубы.
Соотношение (1.9) означает, что задан общий нестационарный расход обеих жидкостей.
Это есть условие переопределения, поскольку наряду с неизвестными wj , Tj необходимо

найти градиент давления f1(t) (или f2(t)). Иными словами, задача (1.1)–(1.10) является
обратной.

Для существования гладкого решения задачи должны быть выполнены условия со-
гласования, которые имеют вид

|w10(0)| <∞, |T10(0)| <∞, w20(λ) = 0, T20(λ) = 0,

w20(1) = νw10(1), T10(1) = T20(1),

∂

∂r
w20(1) = µν

∂

∂r
w10(1)− νMa,

∂

∂r
T20(1) = k

∂

∂r
T10(1),

1∫
0

rw10(r) dr +
1

ν

λ∫
1

rw20(r) dr =
q(0)

2π
.

В работе [1] была изучена аналогичная (1.1)–(1.8), (1.10) прямая задача, в которой
задавался градиент давления f1(t) в первой жидкости, а условие переопределения отсут-
ствовало. Заметим также, что стационарная задача об осесимметричном течении двух
жидкостей во вращающейся трубе при условии (1.9) и q = const анализировалась в рабо-
тах [2, 3].
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В данной работе приводятся априорные оценки решения задачи (1.1)–(1.10) в рав-
номерной метрике и на их основе получены достаточные условия для расхода q(t), при
котором найденное стационарное решение является экспоненциально устойчивым.

2. Стационарное решение обратной задачи. Пусть ws
j(r), T s

j (r), fs
1 — стацио-

нарное решение задачи (1.1)–(1.10). С учетом условий ограниченности при r = 0 имеем
представления

ws
1(r) = α1 − fs

1
r2

4
, T s

1 (r) = Pr1

(fs
1

48
r4 − α1

r2

4

)
+ α2, 0 6 r 6 1, (2.1)

где α1, α2 — постоянные. Поскольку ws
2(λ) = 0, T s

2 (λ) = 0, при 1 6 r 6 λ

ws
2(r) =

fs
2

4
(λ2 − r2) + β1 ln

( r

λ

)
,

(2.2)

T s
2 (r) = Pr2

{fs
1

16

(3

4
λ4 +

1

4
r4 − λ2r2

)
− β1

4

[
r2 ln

( r

λ

)
+ λ2 − r2

]}
+ β2 ln

( r

λ

)
(β1, β2 — постоянные). После ряда преобразований получаем равенства

α1 =
1

4
fs
1 [µ(2 ln λ + λ2 − 1) + 1] +

Ma

4
(2 ln λ + λ2 − 1); (2.3)

β1 = −1

2
µνfs

1 −
νMa

2
; (2.4)

fs
1 =

1

µ(λ2 − 1)(3 + λ2) + 1

(8qs

π
−Ma (λ2 − 1)(3 + λ2)

)
; (2.5)

fs
2 =

ν

µ(λ2 − 1)(3 + λ2) + 1

(8µqs

π
+ Ma

)
. (2.6)

Из условий непрерывности скоростей и потоков тепла (1.7) следует

α2 =
Pr1
4

(
α1 −

fs
1

12

)
− β2 ln λ + Pr2

(fs
2

64
(3λ4 + 1− 4λ2) +

β1

4
(ln λ + 1− λ2)

)
,

(2.7)

β2 =
kPr1

2

(fs
1

6
− α1

)
− Pr2

4

(fs
2

4
(2λ2 − 1) + β1(1 + 2 ln λ)

)
.

Поскольку величины α1, f
s
1 , fs

2 , β1 известны, постоянные α2, β2 также известны. Таким
образом, стационарное решение построено.

3. Априорные оценки решения задачи (1.1)–(1.10). Предположим, что q(t) ∈
C1[0, t0], и выполним преобразование

w1(r, t) = v(r, t) + Π(r, t), 0 6 r 6 1,
(3.1)

Π(r, t) =
Ma

µ
(2r2 − 5r3 + 3r4) +

30q(t)

π
(r2 − 2r3 + r4).

Полином Π(r, t) выбран таким образом, чтобы выполнялись следующие условия:

∣∣∣Πr

r

∣∣∣ <∞ при r = 0, Π(1, t) = 0, Πr(1, t) =
Ma

µ
,

1∫
0

rΠ(r, t) dr =
q(t)

2π
.
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Новая неизвестная функция v(r, t) удовлетворяет уравнению

vt = vrr +
1

r
vr + f1(t) + g(r, t), 0 < r < 1,

(3.2)

g(r, t) = Πrr +
1

r
Πr − Πt.

Согласно (3.1) в правую часть уравнения для T1(r, t) (см. (1.1)) вместо w1(r, t) нуж-
но подставить величину v(r, t) + Π(r, t). Начальное условие для v(r, t) имеет вид v(r, 0) =
w10(r)−Π(r, 0) ≡ v0(r), r ∈ [0, 1]. Уравнения для функций w2(r, t), T2(r, t), а также гранич-
ные и начальные условия (1.5), (1.7), (1.8) не меняются. Условия (1.6), (1.9) принимают
вид (два из них также становятся однородными)

1∫
0

rv(r, t) dr +
1

ν

λ∫
1

rw2(r, t) dr = 0,

(3.3)

w2r(1, t) = µνvr(1, t), w2(1, t) = νv(1, t), t ∈ [0, t0].

Уравнение (3.2) умножим на rv и проинтегрируем по r от 0 до 1, первое уравнение (1.4)
умножим на (µν)−1rw2 и проинтегрируем по r от 1 до λ. В результате сложения с учетом
соотношений (3.3) получаем

1

2

d

dt

( 1∫
0

rv2 dr +
1

µν

λ∫
1

rw2
2 dr

)
+

1∫
0

rv2
r dr +

1

µν2

λ∫
1

rw2
2r dr =

1∫
0

r
(
g − Ma

µ

)
v dr. (3.4)

Ясно, что уравнение (3.4) справедливо для любого решения задачи (1.4)–(1.8), (3.2), (3.3),
т. е. является тождеством. Заметим, что оно не содержит градиенты давлений f1(t), f2(t)
и является основным при получении априорных оценок.

Рассмотрим вспомогательное неравенство

w(r, t) =

{
v(r, t), 0 6 r 6 1,

ν−1w2(r, t), 1 6 r 6 λ.
(3.5)

Из третьего условия (3.3) следует непрерывность w(r, t) для всех r ∈ [0, λ]; здесь t ∈ [0, t0]
является параметром. Из первого соотношения (3.3) получаем равенство

λ∫
0

rw(r, t) dr = 0. (3.6)

Если wr ∈ L2(r; 0, λ) (vr ∈ L2(r; 0, 1), w2r ∈ L2(r; 1, λ)), то выполняется неравенство [4]

λ∫
0

rw2 dr 6
λ2

x2
1

λ∫
0

rw2
r dr.

Из определения w(r, t) (3.5) следует

1∫
0

rv2 dr +
1

ν2

λ∫
1

rw2
2 dr 6

λ2

x2
1

( 1∫
0

rv2
r dr +

1

ν2

λ∫
1

rw2
2r dr

)
, (3.7)

где x1 ≈ 3,8317 — первый положительный корень функции Бесселя J1(x).
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Полагая

Y =

1∫
0

rv2 dr +
1

µν

λ∫
1

rw2
2 dr

и используя (3.7), получаем оценку снизу

1∫
0

rv2
r dr +

1

µν2

λ∫
1

rw2
2r dr > min

(
1,

1

µ

)( 1∫
0

rv2 dr +
1

ν2

λ∫
1

rw2
2r dr

)
> δY, (3.8)

где δ = min [min (1, µ−1), min (1, µν−1)]x2
1λ
−2 > 0. Правую часть (3.4) оценим сверху:∣∣∣ 1∫

0

r
(
g − Ma

µ

)
v dr

∣∣∣ 6
[ 1∫

0

r
(
g − Ma

µ

)2
dr

]1/2( 1∫
0

rv2 dr
)1/2

6 G1(t)
√

Y ,

(3.9)

G1(t) =
[ 1∫

0

r
(
g − Ma

µ

)2
dr

]1/2
.

Таким образом, из (3.4) получаем неравенство Yt +2δY 6 2G1(t)
√

Y , из которого находим

Y (t) 6
(√

Y (0) +

t∫
0

eδτ G1(τ) dτ
)2

e−2δt,

(3.10)

Y (0) =

1∫
0

rv2
0(r) dr +

1

µν

λ∫
1

rw2
20(r) dr.

Следовательно, L2 — нормы с весом r функций v(r, t), w2(r, t) — ограничены для всех

t ∈ [0, t0], если q(t) ∈ C1[0, t0]. Действительно, из выражений (3.1) для Π(r, t), (3.2) для
g(r, t) находим

g(r, t)− Ma

µ
=

Ma

µ
(7− 45r + 48r2) +

60q(t)

π
(2− 7r + 8r2)−

− 30q′(t)

π
(r2 + 2r3 − r4). (3.11)

Тогда можно точно вычислить интеграл в (3.9), однако ограничимся получением оценки

сверху для G1(t) с использованием неравенства
( n∑

j=1

aj

)2
6 n

n∑
j=1

a2
j и условия r 6 1.

В результате имеем

1∫
0

r
(
g − Ma

µ

)2
dr 6 300

(Ma2

µ2
+

324q2(t)

π2
+

36[q′(t)]2

π2

)
.

Так как (a2
1 + a2

2 + a2
3)

1/2 6 |a1|+ |a2|+ |a3|, то

G1(t) 6
[ 1∫

0

r
(
g − Ma

µ

)2
dr

]1/2
6 10

√
3
( |Ma|

µ
+ 18

|q(t)|
π

+ 6
|q′(t)|

π

)
≡ h1(t). (3.12)



18 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 5

Из неравенств (3.10), (3.12) и определения Y (t) при t ∈ [0, t0] получаем оценки

1∫
0

rv2 dr 6
(√

Y (0) +

t∫
0

eδτ h1(τ) dτ
)2

e−2δt,

(3.13)
λ∫

1

rw2
2 dr 6 µν

(√
Y (0) +

t∫
0

eδτ h1(τ) dτ
)2

e−2δτ .

Из (3.1) находим

1∫
0

rw2
1 dr 6 2

1∫
0

rv2 dr + 2

1∫
0

rΠ2 dr.

Из явного представления Π(r, t) при 0 6 r 6 1 следует неравенство

1∫
0

rΠ2 dr 6 4
Ma2

µ2
+ 30

q2(t)

π2
≡ h2

2(t). (3.14)

Значит, для всех t ∈ [0, t0]

1∫
0

rw2
1 dr 6 2

(√
Y (0) +

t∫
0

eδτ h1(τ) dτ
)2

e−2δτ + 2h2
2(t). (3.15)

3.1. Два представления для градиента давления f1(t) и его оценка. Из первых урав-
нений (1.1), (1.4) с учетом (1.2), (1.10) получаем равенства

d

dt

1∫
0

rw1 dr = w1r(1, t) +
1

2
f1(t),

d

dt

1

ν

λ∫
1

rw2 dr =
1

ν2
[λw2r(λ, t)− w2r(1, t)] +

1

2

µ

ν
f1(t) +

1

2ν
Ma,

складывая которые находим

1

2
(1 + ρ)f1(t) =

1

2π
q′(t)− λ

ν2
w2r(λ, t) + (ρ− 1)w1r(1, t)−

3

2ν
Ma (3.16)

(µ = ρν; ρ = ρ1/ρ2).
Так как следы производных w2r(λ, t), w1r(1, t) не известны, представление (3.16) непри-

годно для оценки |f1(t)|. Однако оно позволяет найти значение f1(0) (а значит, и f2(0))
через входные данные:

1

2
(1 + ρ)f1(0) =

1

2π
q′(0)− λ

ν2
w20,r(λ) + (ρ− 1)w10,r(1)− 3

2ν
Ma. (3.17)

Для получения второго представления f1(t) умножим уравнение для w1(r, t) в (1.1) на
полином r2(1− r)2 и проинтегрируем полученный результат от 0 до 1:

1∫
0

r3(1− r)2w1t dr =

1∫
0

r2(1− r)2(rw1r)r dr +
1

60
f1(t).
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Интегрируя правую часть этого выражения дважды по частям (при этом внеинтегральные
слагаемые равны нулю), находим

1

60
f1(t) =

1∫
0

r3(1− r)2w1t dr − 2

1∫
0

r(2− 9r + 8r2)w1 dr. (3.18)

Таким образом, для получения оценки |f1(t)| достаточно знать оценку интеграла
1∫

0

rw2
1t dr,

поскольку второй интеграл в (3.18) удовлетворяет неравенству∣∣∣− 2

1∫
0

r(2− 9r + 8r2)w1 dr
∣∣∣ 6 4

1∫
0

√
r |w1| dr 6

6 4
( 1∫

0

rw2
1 dr

)1/2
6 4
√

2
[(√

Y (0) +

t∫
0

eδτ h1(τ) dτ
)

e−δt + h2(t)
]
. (3.19)

Заметим, что при выводе (3.19) учтена оценка (3.15).

3.2. Оценка интеграла

1∫
0

rv2
t (r, t) dr. Рассмотрим задачу (3.2), (1.4) для v(r, t), w2(r, t)

с граничными условиями (3.3), w2(λ, t) = 0, |v(0, t)| < ∞ и начальными данными

v0(r) = w10(r) − Π(r, 0), 0 6 r 6 1, w2(r, 0) = w20(r), 1 6 r 6 λ. Градиенты давлений
связаны равенством (1.10).

Продифференцируем данную задачу по t. Тогда функции V (r, t) = vt(r, t), W (r, t) =
w2t(r, t) есть решение сопряженной задачи

Vt = Vrr +
1

r
Vr + f ′1(t) + gt(r, t), 0 < r < 1, 0 6 t 6 t0,

(3.20)

Wt =
1

ν

(
Wrr +

1

r
Wr

)
+

1

ν
f ′2(t), 1 < r < λ, 0 6 t 6 t0;

Wr(1, t) = µνVr(1, t), W (1, t) = νV (1, t),

(3.21)1∫
0

rV (r, t) dr +
1

ν

λ∫
1

rW (r, t) dr = 0;

|V (0, t)| <∞, W (λ, t) = 0; (3.22)

V (r, 0) = vt(r, 0) = v0,rr(r) +
1

r
v0,r(r) + f1(0) + g(r, 0) ≡ V0(r),

(3.23)

W (r, 0) = w2t(r, 0) =
1

ν

(
w20,rr(r) +

1

r
w20,r(r)

)
+

1

ν
f2(0) ≡ W0(r).

В силу (1.10)

f ′2(t) = µνf ′1(t). (3.24)

Поставленная обратная задача (3.20)–(3.23) совпадает с задачей для v(r, t), w2(r, t),
f1(t), если выполнить замену fj на f ′j , начальных данных v0 на V0, w20 на W0 и правой
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части g на gt. В равенстве (3.24) отсутствует постоянное слагаемое νMa, поэтому для V ,

W имеет место тождество (3.4), в правой части которого содержится интеграл

1∫
0

rgtv dr.

Выражение (3.9) принимает вид

Ḡ1(t) =
( 1∫

0

rg2
t dr

)1/2
,

а (3.11) имеет вид

gt =
60

π
q′(t)(2− 7r + 8r2)− 30

π
q′′(t)(−r2 − 2r3 + r4). (3.25)

Здесь требуется дополнительное условие q(t) ∈ C2[0, t0].
Таким образом,

1∫
0

rv2
t dr 6

(√
Ȳ (0) +

t∫
0

eδτ h̄1(τ) dτ
)2

e−2δt,

(3.26)

λ∫
1

rw2
2t dr 6 µν

(√
Ȳ (0) +

t∫
0

eδτ h̄1(τ) dτ
)2

e−2δt,

где Ȳ (0) отличается от Y (0) только начальными данными:

h̄1(t) =
60
√

3

π
(3|q′(t)|+ 3|q′′(t)|), h̄2

2(t) =
30

π2
[q′(t)]2. (3.27)

Оценка (3.15) принимает вид

1∫
0

rw2
1t dr 6 2

(√
Ȳ (0) +

t∫
0

eδτ h̄1(τ) dτ
)2

e−2δt + 2h̄2
2(t). (3.28)

Используя формулу (3.25) и учитывая неравенства (3.19), (3.28), получаем оценку

|f1(t)| 6 240
√

2
[(√

Y (0) +

t∫
0

eδτ h1(τ) dτ
)

e−δt + h2(t)
]

+

+ 60
√

2
[(√

Ȳ (0) +

t∫
0

eδτ h̄1(τ) dτ
)

e−δt + h̄2(t)
]
, t ∈ [0, t0]. (3.29)

Из равенства (1.10) следует

|f2(t)| 6 µν|f1(t)|+ ν|Ma|. (3.30)
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4. Оценки скоростей в равномерной метрике. Для решения сопряженной задачи
(1.1)–(1.9) можно использовать также тождество

1∫
0

rv2
t dr +

1

µν

λ∫
1

rw2
2t dr +

1

2

d

dt

( 1∫
0

rv2
r dr +

1

µν2

λ∫
1

rw2
2r dr

)
=

=
Ma

µν

λ∫
1

rw2t dr +

1∫
0

rgvt dr. (4.1)

Поскольку |ab| 6 εa2/2 + b2/(2ε) для любых a, b ∈ R и ε > 0, правая часть (4.1) не
превышает значения выражения

|Ma|
µν

( 1

4ε
(λ2 − 1) +

ε

2

λ∫
1

rw2
2t dr

)
+

1

2

1∫
0

rg2 dr +
1

2

1∫
0

rv2
t dr.

Полагая ε = 1/|Ma|, из (4.1) получаем неравенство

d

dt

( 1∫
0

rv2
r dr +

1

µν2

λ∫
1

rw2
2r dr

)
6

Ma2

2µν
(λ2 − 1) +

1∫
0

rg2 dr,

откуда следует

1∫
0

rv2
r dr +

1

µν2

λ∫
1

rw2
2r dr 6

1∫
0

rv2
0,r dr +

1

µν2

λ∫
1

rw20,r dr +

+
|Ma|2(λ2 − 1)t

2µν
+

t∫
0

rg2(r, τ) dτ ≡ h3(t) (4.2)

для всех t ∈ [0, t0]. Значит,

1∫
0

rv2
r dr 6 h3(t),

λ∫
1

rw2
2r dr 6 µν2h3(t). (4.3)

Так как w2(λ, t) = 0 и 1 6 r 6 λ, то

w2
2(r, t) = 2

∣∣∣ λ∫
r

w2w2r dr
∣∣∣ 6 2

λ∫
1

(
√

r |w2|)(
√

r |w2r|) dr 6

6 2
( λ∫

1

rw2
2 dr

)1/2( λ∫
1

rw2
2r dr

)1/2
6

6 2 [µ2ν3h3(t)]
1/2

(√
Y (0) +

t∫
0

eδτ h1(τ) dτ
)

e−δt ≡ h2
4(t) e−δt
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в силу (3.13), (4.2). Поэтому

|w2(r, t)| 6 h4(t) e−δt/2 (4.4)

для всех r ∈ [1, λ], t ∈ [0, t0].
Однако подобное рассуждение неприменимо для оценки |w1(r, t)|. Так как при r = 1

|w1(1, t)| =
1

ν
|w2(1, t)| 6

h4

ν
(t) e−δt/2, (4.5)

то, считая правую часть f1(t) уравнения (1.1) для w1(r, t) известной, получаем [5]

w1(r, t) =

1∫
0

w10(ξ)G(r, ξ, t) dξ −
t∫

0

w1(1, τ)Λ(r, t− τ) dτ +

+

t∫
0

f1(τ)
( 1∫

0

G(r, ξ, t− τ) dξ
)

dτ, (4.6)

где G(r, ξ, t) — функция Грина:

G(r, ξ, t) = 2ξ
∞∑

n=1

1

J2
1 (ξn)

J0(ξnr)J0(ξnξ) e−ξ2
nt,

(4.7)

Λ(r, t) =
∂

∂ξ
G(r, ξ, t)

∣∣∣
ξ=1

.

В силу оценок (3.19), (4.5) имеем |w1(r, t)| <∞ для всех r ∈ [0, 1], t ∈ [0, t0].
5. Оценки возмущений температур. Уравнение (1.1) умножим на kT1/χ, уравне-

ние (1.4) — на T2. После ряда преобразований получаем тождество

1

2

d

dt

(k

χ

1∫
0

rT 2
1 dr +

λ∫
1

rT 2
2 dr

)
+

k

Pr1χ

1∫
0

rT 2
1r dr +

1

Pr2ν

λ∫
1

rT 2
2r dr =

=
k

χ

1∫
0

rw1T1 dr +
1

ν

λ∫
1

rw2T2 dr. (5.1)

Так как имеет место неравенство [4]

1∫
0

rT 2
1 dr +

λ∫
1

rT 2
2 dr 6 M0

(
k

1∫
0

rT 2
1r dr +

λ∫
1

rT 2
2r dr

)
(5.2)

с некоторой известной постоянной M0 > 0, зависящей от k и λ, то, вводя обозначение

Z(t) =
k

χ

1∫
0

rT 2
1 dr +

λ∫
1

rT 2
2 dr, (5.3)
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с учетом
√

a +
√

b 6
√

2(a + b), a > 0, b > 0 из (4.1) получаем

1

2

dZ

dt
+ δ1Z 6 H1(t)

√
Z. (5.4)

Здесь

δ1 =
min (χk−1, 1)

M0 max (Pr1χ, Pr2ν)
,

H1(t) =
√

2 max
(2k

χ
,
√

ρ
)[(√

Y (0) +

t∫
0

eδτ h1(τ) dτ
)

e−2δt + h2
2(t)

]1/2
,

при этом учтены оценки (3.13), (3.15) и равенство µ = ρν.
Таким образом,

k

χ

1∫
0

rT 2
1 dr +

λ∫
1

rT 2
2 dr 6

(√
Z(0) +

t∫
0

eδτ H1(τ) dτ
)2

e−2δ1t ≡ H2
2 (t) e−2δ1t,

(5.5)

Z(0) =
k

χ

1∫
0

rT 2
10 dr +

λ∫
1

rT 2
20 dr.

Для оценок производных

1∫
0

rT 2
1r dr,

λ∫
1

rT 2
2r dr используем второе тождество (5.5):

k

χ

1∫
0

rT 2
1t dr +

λ∫
1

rT 2
2t dr +

1

2

∂

∂t

( k

Pr1χ

1∫
0

rT 2
1r dr +

1

Pr2ν

λ∫
1

rT 2
2r dr

)
=

=
k

χ

1∫
0

rw1T1t dr +
1

ν

λ∫
1

rw2T2t dr. (5.6)

Тогда

k

Pr1χ

1∫
0

rT 2
1r dr +

1

Pr2ν

λ∫
1

rT 2
2r dr 6

k

Pr1χ

1∫
0

rT 2
10r dr +

1

Pr2ν

λ∫
1

rT 2
20r dr +

+

t∫
0

(k

χ

1∫
0

rw2
1 dr +

1

ν2

λ∫
1

rw2
2 dr

)
dτ ≡ H2

3 (t). (5.7)

Так же как и при выводе оценки (4.4), из (5.5), (5.7) получаем

|T2(r, t)| 6 H4(t) e−δ1t/2 (5.8)

для всех r ∈ [1, λ], t ∈ [0, t0],

H2
4 (t) 6 2H2(t)H3(t)

√
Pr2ν. (5.9)
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Для функции T1(r, t) имеем представление [1]

T1(r, t) =

1∫
0

T10(ξ)G(r, ξ, t) dξ − 1

Pr1

t∫
0

T2(1, τ)Λ(r, τ) dτ +

+

t∫
0

1∫
0

w1(ξ, τ)G(r, ξ, t− τ) dξ dτ (5.10)

с функцией Грина (см. (4.7))

G(r, ξ, t) =
∞∑

n=1

2ξ

J2
1 (ξn)

J0(ξnr)J0(ξnξ) e−ξ2
nt/Pr1 ,

(5.11)

Λ(r, t) =
∂

∂ξ
G(r, ξ, t)

∣∣∣
ξ=1

.

В силу оценок для |w1| и (5.8) получаем |T1(r, t)| 6∞ для всех r ∈ [0, 1], t ∈ [0, t0].
6. Достаточные условия стремления решения с увеличением времени к ста-

ционарному состоянию. Пусть расход определен для всех t > 0 и q(t) ∈ C2(0,∞). Рас-
смотрим дополнительные условия для q(t), при которых wj(r, t) → ws

j(r), Tj(r, t) → T s
j (r),

f1(t) → fs
1 при t → ∞ в равномерной метрике. Для этого выполним замену: Wj(r, t) =

wj(r, t) − ws
j(r), Kj(r, t) = Tj(r, t) − T s

j (r), F1(t) = f1(t) − fs
1 . Полученные функции яв-

ляются решением той же задачи (1.1)–(1.9) с функцией Q(t) = q(t) − qs и измененными

начальными данными Wj0(r) = wj0(r) − ws
j(r), Kj0(r) = Tj0(r) − T s

j (r). Поэтому для W2,

Fj , K2 справедливы оценки (3.29), (3.30), (4.4), (5.8); величины |W1|, |K1| будем оценивать
непосредственно с помощью рядов (4.7), (5.11).

Прежде всего заметим, что указанная задача для Wj , Fj , Kj не содержит число Ма-
рангони, т. е. во всех формулах, в которые оно входило, нужно положить Ma = 0.

Предположим, что справедливы оценки

|q(t)− qs| 6 C e−αt, |q′(t)| 6 C eαt, |q′′(t)| 6 C e−αt (6.1)

с положительными постоянными C и α. Ясно, что должен сходиться интеграл в (3.10)
∞∫
0

eδτ G1(τ) dτ. (6.2)

Согласно (3.12) при Ma = 0 имеем

G1(t) 6
60
√

3

π
(5 |q(t)− qs|+ |q′(t)|) =

60
√

3

π
(3 |Q(t)|+ |Q′(t)|) ≡ h1(t),

а интеграл (6.2) сходится при α > δ. Далее,

h1(t) 6
240
√

3

π
C e−αt ≡ d e−αt; (6.3)

h2
2(t) 6

30

π2
Q2(t) 6

30

π2
C2 e−2αt . (6.4)

Значит, сходится интеграл
∞∫
0

eδτ h1(τ) dτ. (6.5)
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Так как согласно (3.27) h̄1(t) 6 d1 e−αt, h̄2
2(t) 6 d3 e−2αt, то при t→∞ сходятся также

интегралы в неравенствах (3.26), (3.29). В частности, из (3.29), (3.30), гдеMa = 0, следует

|F1(t)| 6 d4 e−δt + d5 e−2αt, |F2(t)| 6 µν |F1(t)|. (6.6)

Согласно (3.12), (4.2) интеграл

∞∫
0

1∫
0

rg2(r, τ) dr dτ

является сходящимся, поэтому из (4.4) находим

|W2(r, t)| 6 d6 e−δt/2 . (6.7)

Далее, из (5.3), (5.4), (6.4) следует

H1(t) 6 d7 e−δt + d8 e−αt, H2(t) 6 d9 (6.8)

для всех t > 0. Величина H3(t) в (5.7) также ограничена при всех t > 0. Это следует
из оценок (3.13), (3.15), где wj нужно заменить на Wj , j = 1, 2. Тогда из (6.8) получаем
оценку

|K2(r, t)| 6 d10 e−δ1t/2 . (6.9)

Для получения оценок |W1(r, t)|, |K1(r, t)| при t > 0 используем представления (4.6),
(5.9). В рассматриваемом случае формула (4.6) имеет вид

W1(r, t) =

1∫
0

W10(ξ)G(r, ξ, t) dξ −
t∫

0

W1(1, τ)Λ(r, t− τ) dτ +

+

t∫
0

F1(τ)
( 1∫

0

G(r, ξ, t− τ) dξ
)

dτ, (6.10)

где G, Λ — функции, определенные в (4.7).
Приведем некоторые результаты, полученные с помощью функций Бесселя. При

x→∞

Jν(x) =

√
2

πx
cos

(
x− π

2
ν − π

4

)
+ O

( 1

x3/2

)
,

поэтому при n� 1 корни ξn уравнения J0(ξ) = 0 приближенно равны

ξn ≈
π

2
(2n + 1) +

π

4
≈ πn.

В этом случае

J1(ξn) ≈
√

2

π2n
cos

(π

2
(2n + 1)− π

2
− π

4

)
=

√
1

π2n
(−1)n.

Кроме того, J ′0(x) = −J1(x), |Jν(x)| 6 1.
Пусть t > ε > 0 для любого ε. Оценим первое слагаемое в (6.10). Так как ξn − ξ1 > 0,

n > 1, то∣∣∣ 1∫
0

W10(ξ)G(r, ξ, t) dξ
∣∣∣ 6 2π2 max (|W10(ξ)|) e−ξ1t

∞∑
n=1

n e−(ξn−ξ1)ε 6 d11 e−ξ2
1t .
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Для получения оценки второго слагаемого в (6.10) используем равенство

Λ(r, t) = −2
∞∑

n=1

J0(ξnr)

J1(ξn)
e−ξ2

nt .

Используя неравенство (6.7), при W1(1, t) = W2(1, t) с учетом |W1(1, t)| 6 d6 e−δt/2

имеем оценку∣∣∣ t∫
0

W1(1, τ)Λ(r, t− τ) dτ
∣∣∣ 6 2πd6

∞∑
n=1

√
n e−ξ2

nt

t∫
0

e(ξ2
n−δ/2)τ dτ 6

6 4πd6

∞∑
n=1

√
n

2ξ2
n − δ

(e−δt/2− e−ξ2
nt) 6 d12 e−δt/2,

так как ряд

∞∑
n=1

n−3/2 сходится.

Рассмотрим последнее слагаемое формулы (6.10). Так как xJ0(x) = (xJ1(x))′, то
1∫

0

G(r, ξ, t− τ) dξ = 2
∞∑

n=1

J0(ξnr)

ξnJ1(ξn)
e−ξ2

n(t−τ) .

Используя оценку (6.6) в виде |F1(t)| 6 d13 e−δt, получаем∣∣∣ t∫
0

F1(τ)

1∫
0

G(r, ξ, t− τ) dξ dτ
∣∣∣ 6 2d13

∞∑
n=1

1√
n (ξ2

n − δ)
(e−δt − e−ξ2

nt) 6 d14 e−δt

ввиду сходимости ряда

∞∑
n=1

n−5/2.

Таким образом, при t > ε > 0

|W1(r, t)| 6 d11 e−ξ2
1t + d12 e−δt/2 + d14 e−δt 6 d15 e−α1t, α1 = min (ξ2

1 , δ/2). (6.11)

В рассматриваемом случае формула (5.10) имеет вид

K1(r, t) =

1∫
0

K10(ξ)G(r, ξ, t) dξ − 1

Pr1

t∫
0

K2(1, τ)Λ(r, t) dτ +

+

t∫
0

1∫
0

W1(ξ, τ)G(r, ξ, t− τ) dξ dτ, (6.12)

где функции G и Λ определены в (5.11). С учетом неравенств (6.9), (6.11) из (6.12) полу-
чаем

|K1(r, t)| 6 d16 e−ξ2
1t/Pr1 + d17 e−δ1t/2 + d18 e−α1t 6 d19 e−α2t,

(6.13)
α2 = min (ξ2

1/Pr1, δ1/2, α1).

Итак, согласно оценкам (6.6), (6.7), (6.11), (6.13) нестационарное решение задачи (1.1)–
(1.9) при условиях (6.1) и t → ∞ стремится к стационарным значениям (2.1), (2.2), (2.5),
(2.6) по экспоненциальному закону.
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