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Рассмотрена задача о стесненном кручении тонкостенных стержней под действием
концевого закручивающего момента. С помощью метода асимптотического расщеп-
ления получена система разрешающих уравнений, описывающая совместное круче-
ние, растяжение-сжатие и изгиб стержня. Для проверки полученной модели на при-
мере типичных сечений проведено сравнение напряженно-деформированного состояния
в стержне, определенного в расчете по разработанной модели и трехмерном численном
расчете методом конечных элементов. Выполнен анализ полученной математической
модели и выявлены ее преимущества по сравнению с широко применяемой теорией Вла-
сова. Показано, что разработанная модель не содержит ограничений, накладываемых
гипотезами в теории Власова, таких как недеформируемость поперечного контура и
отсутствие деформаций сдвига на срединной поверхности. В ряде случаев полученная
модель позволяет более точно определять возникающее напряженно-деформированное
состояние. В частности, показано, что разработанная модель учитывает наличие вбли-
зи заделки пограничного слоя, возникающего при кручении уголковых сечений и вно-
сящего существенный вклад в продольные напряжения, в то время как теория Власова
не позволяет восстановить возникающие продольные напряжения.

Ключевые слова: тонкостенные стержни, стесненное кручение, метод асимптоти-
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Введение. Тонкостенные стержни открытого профиля широко используются в раз-
личных отраслях промышленности, в частности в промышленном и гражданском строи-
тельстве. Кроме того, тонкостенные стержни применяются в авиастроении в виде типо-
вых элементов конструкций, таких как лонжероны и стрингеры. Многие силовые каркасы
элементов машин представляют собой стержневые системы с различными тонкостенными

профилями.Широкое применение тонкостенных стержней обусловлено рядом их конструк-
тивных преимуществ, таких как большая жесткость и сравнительно небольшой вес. Од-
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нако их расчет на прочность существенно затруднен вследствие сложности возникающего

в них напряженно-деформированного состояния.
Особенностью тонкостенных стержней является то, что в общем случае при их рас-

чете на прочность неприменима гипотеза плоских сечений. Депланация, возникающая в
поперечных сечениях в процессе деформирования, может приводить к появлению значи-
тельных по величине продольных напряжений. Обычно при расчете стержней на кручение
используется теория кручения Сен-Венана [1], в которой скорость изменения угла закру-
чивания по длине стержня остается постоянной, а продольные напряжения полагаются
равными нулю. Однако в том случае, если депланация в каком-либо поперечном сечении
стеснена, в других сечениях возникают продольные деформации и скорость изменения уг-
ла закручивания перестает быть постоянной. Такой тип деформирования называется стес-
ненным кручением, и для его расчета необходимо учитывать вклад депланации сечения в
напряженно-деформированное состояние стержня. Отклонение от закона плоских сечений
при изгибе швеллера впервые обнаружил К. Бах в 1909 г. Экспериментальное подтверж-
дение возникновения депланации при стесненном кручении получено в работе [2]. При этом
для определения продольных деформаций в некоторых точках сечения использовались зер-
кальные тензометры. В работе [3] для определения депланации по всей площади сечения
применялся оптический метод с корреляцией цифровых изображений.

При расчете тонкостенных стержней на прочность обычно используются два под-
хода, основанные на методе конечных элементов. В первом подходе при моделировании

применяются оболочечные элементы, что позволяет в полной мере учесть как стесненное
кручение, так и различные типы закрепления торцов стержня. Недостатком этого под-
хода являются существенные вычислительные затраты, поскольку каждый стержень в
конструкции рассматривается как оболочка, что приводит к значительному увеличению
количества неизвестных. Второй подход основан на использовании стержневой аппрок-
симации с помощью стержневых теорий, позволяющих учитывать депланацию сечения.
Применение тонкостенных конечных элементов значительно эффективнее использования

оболочечных элементов, однако при этом возникают затруднения при описании погранич-
ных слоев вблизи узлов соединений [4]. Одним из примеров таких конструкций являются
мостовые коробчатые балки, поперечные сечения которых являются сечениями комбиниро-
ванного типа [5, 6]. Поэтому актуально построение стержневых теорий, не использующих
каких-либо гипотез и позволяющих восстанавливать напряженно-деформированное состо-
яние внутри стержня, а также в узлах соединений для произвольных поперечных сечений.

Наиболее широко применяемой теорией для расчета на прочность тонкостенных

стержней открытого профиля является теория Власова [7], в основу которой положены две
гипотезы: 1) контур поперечного сечения стержня недеформируем в своей плоскости; 2) де-
формации сдвига в срединной поверхности отсутствуют. При этом вводится новое обоб-
щенное внутреннее усилие, называемое бимоментом. Бимомент может быть представлен
в виде пары моментов с противоположными знаками, действующих в поперечном сечении.
Теория Власова разработана для стержней, толщина стенки которых мала по сравнению
с размерами элементов поперечного сечения. В случае если толщина какого-либо элемента
сечения не является малой, точность получаемых результатов уменьшается. Еще одним
ограничением теории Власова является отсутствие учета деформаций сдвига на средин-
ной поверхности, что не позволяет в полной мере оценить вклад сдвиговых напряжений
при изгибе стержня. В ряде работ построены теории, позволяющие учитывать деформа-
ции сдвига на срединной поверхности [8–12]. В работе [12] предложена модель, основанная
на теориях Власова и Тимошенко. За счет этого модель позволяет учитывать деплана-
цию сечения вследствие наличия сдвиговых компонент тензора напряжений, что наиболее
актуально в случае коротких стержней, в которых деформации сдвига могут оказывать
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значительное влияние. Следует отметить полусдвиговую теорию Сливкера [13], позволяю-
щую частично учесть влияние деформаций сдвига. В рамках полусдвиговой теории каса-
тельные напряжения изгиба полагаются пренебрежимо малыми по сравнению с касатель-
ными напряжениями кручения. Преимуществом полусдвиговой теории является ее приме-
нимость для стержней как открытого, так и замкнутого профиля. В работе [14] для учета
пограничных слоев вблизи узлов крепления тонкостенного стержня под действием крутя-
щего момента использовались экспоненциально затухающие функции. Полученная модель
позволила оценить угол закручивания на свободном конце заделки c точностью до 5 % для

различных типов сечений. Однако для полного описания напряженно-деформированного
состояния вблизи заделки экспоненциальной зависимости недостаточно.

Конечно-элементный расчет тонкостенных стержней на прочность с помощью стан-
дартных программных продуктов затруднен в силу того, что используемые в них стерж-
невые элементы имеют шесть степеней свободы и при учете кручения основаны на теории

Сен-Венана [15]. Однако некоторые программные продукты (ANSYS, NASTRAN) содер-
жат основанные на теории Власова семиузловые тонкостенные конечные стержневые эле-
менты, в которых седьмая степень свободы позволяет учитывать депланацию в сечении.
Основными различиями большинства тонкостенных конечных элементов являются способ

аппроксимации, вид функций формы, способ интегрирования и т. д. [6, 16–19]. В работе [20]
исследованы стержневая, оболочечная и твердотельная аппроксимации, применяемые для
расчета изгибного кручения тонкостенного швеллера в решателе NASTRAN. Показано,
что значения напряжений и перемещений в точках поперечных сечений швеллера при

стержневой аппроксимации CBEAM согласуются с соответствующими значениями, най-
денными в результате оболочечной и трехмерной аппроксимаций. В работе [21] на примере
двутаврового стержня исследован заложенный в программный продукт ANSYS конечный
элемент BEAM188 и установлено, что расчет стержня на прочность по классической ше-
стиузловой схеме может привести к значительной (в 4–5 раз) недооценке общей жесткости
стержня по сравнению с расчетом по семиузловой схеме.

В данной работе для анализа тонкостенных стержней открытого профиля и построе-
ния теории расчета без использования гипотез теории Власова применяется метод асимп-
тотического расщепления (МАР). Ранее этот метод применялся при исследовании задач
об изгибе композитных балок и пластин [22–27]. Преимуществом метода является то, что в
нем не используются гипотезы о характере распределения напряженно-деформированного
состояния внутри стержня. Решение ищется асимптотически, как конечные суммы диф-
ференциальных операторов по продольной переменной, что позволяет учесть в решении
все компоненты тензора напряжений. В настоящее время ограничением МАР является его
применимость только при решении линейных задач.

1. Постановка задачи о кручении тонкостенного стержня. Рассмотрим задачу
о кручении однородного стержня открытого профиля. Положим, что ось Oz направлена
вдоль оси стержня. Левый конец (z = 0) стержня заделан, а к противоположному концу
(z = L) приложен положительный закручивающий момент T̄ (рис. 1). Полагается, что
характерный размер поперечного сечения hs существенно меньше длины стержня. Для
тонкостенных стержней толщина стенки сечения полагается существенно меньшей вели-
чины hs.

Рассмотрим постановку задачи в рамках линейной теории упругости в безразмерных

переменных, не меняя их обозначений. Уравнения равновесия имеют вид

∂σαx

∂x
+

∂σαy

∂y
+ ε

∂σαz

∂z
= 0, α ∈ (x, y, z), (1)

где ε = hs/L — малый параметр.
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Рис. 1. Схема кручения тонкостенного стержня

Краевые условия на поверхности можно представить в виде

σαxnx + σαyny = 0, α ∈ (x, y, z).

Закон Гука для однородного изотропного материала записывается следующим обра-
зом:

σαβ = λ
∑

γ∈(x,y,z)

eγγδαβ + 2µeαβ, α, β ∈ (x, y, z).

Краевые условия на торцах задаются в интегральном виде с учетом депланации се-
чения. Фиксация левого конца стержня означает, что в нем средние перемещения в трех
перпендикулярных направлениях равны нулю, также равны нулю угол закручивания се-
чения относительно оси Oz и углы поворота сечения вокруг осей Ox, Oy. Далее углы
поворота сечения вокруг осей Ox, Oy будем называть углами наклона сечения к осям Oy
и Ox соответственно. На правом конце к сечению стержня приложен крутящий момент.
Стесненное кручение возникает в том случае, если в каком-либо сечении наложено огра-
ничение на депланацию поперечного сечения стержня. Если депланация стержня на левом
конце равна нулю, то фиксация стержня абсолютно жесткая и в его сечении не возника-
ют продольные перемещения. Аналогичная ситуация имеет место на правом конце: если
крутящий момент приложен таким образом, что сечение стержня остается плоским, то
депланация в этом сечении равна нулю и наблюдается стесненное кручение.

2.Метод асимптотического расщепления. В соответствии с основной идеей МАР
компоненты вектора перемещений и тензора напряжений имеют вид

(uη
z)

(n) =
n+2∑
k=0

(Uη
z )(k) dkη(n)

dzk
εk, (uη

β)(n) =
n+3∑
k=0

(Uη
β )(k) dkη(n)

dzk
εk,

(ση
zz)

(n) =
n+1∑
k=0

(τη
zz)

(k) dkη(n)

dzk
εk, (ση

zα)(n) =
n+2∑
k=0

(τη
zα)(k) dkη(n)

dzk
εk, (2)

(ση
αβ)(n) =

n+3∑
k=0

(τη
αβ)(k) dkη(n)

dzk
εk, α, β ∈ (x, y),

где индекс n означает номер асимптотического приближения; η(z) — некоторая функция,
зависящая от типа выбранной аппроксимации.

В отличие от большинства методов, применяемых в стержневых теориях, в MАР
не вводится срединная линия стержня, относительно которой вычисляются обобщенные
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перемещения и усилия, а используются средние по всему сечению величины. Макропере-
мещением стержня vα вдоль оси Oα считается среднее значение всех перемещений uα в

сечении стержня:

vη
α(z) =

1

F

∫
uα dF, α ∈ (x, y, z)

(F — площадь поперечного сечения). В свою очередь, углы наклона ϕβ поперечного се-
чения определяются методом наименьших квадратов в результате минимизации средне-
квадратичного отклонения плоскости, задаваемой углом поворота ϕβ, зависящим от про-
дольных перемещений в сечении [25]. С учетом сказанного выше средние углы наклона
поперечных сечений к оси Oβ равны

ϕβ(z) =
1

Jβ

∫
(β − aβ)uz dF, Jβ =

∫
(β − aβ)2 dF, β ∈ (x, y),

где Jβ — момент инерции в направлении оси Oβ; aβ — координаты геометрического цен-
тра тяжести сечения. Средний угол закручивания сечения относительно геометрического
центра тяжести также определяется методом наименьших квадратов:

θ(z) =
1

J

∫
((x− ax)uy − (y − ay)ux) dF, J =

∫
((x− ax)2 + (y − ay)

2) dF

(J — центробежный момент инерции сечения).
В работе [24] показано, что для описания деформирования стержня в общем виде до-

статочно рассмотреть четыре типа аппроксимаций: аппроксимацию растяжения-сжатия
вдоль оси Oz (η = vz); две изгибные аппроксимации вдоль осей Ox и Oy (η = vx и η = vy

соответственно); аппроксимацию кручения вокруг оси Oz (η = θ0). В соответствии с прин-
ципом суперпозиции итоговые перемещения получаются в виде суммы перемещений для

всех четырех аппроксимаций:

uα(z) =
∑

η

uη
α(z), ϕβ(z) =

∑
η

ϕη
β(z), θ(z) =

∑
η

θη(z),

α ∈ (x, y, z), β ∈ (x, y), η ∈ (vx, vy, vz, θ0).

(3)

При этом величины θη(z), ϕη
β(z) выражаются через жесткостные функции перемещений

следующим образом:

θη(z) =
n+3∑
k=0

(Kη)(k) dkη(n)

dzk
εk, (Kη)(k) =

1

J

∫ (
(x− ax)(Uη

y )(k) − (y − ay)(U
η
x )(k)

)
dF,

ϕη
β(z) =

n+2∑
k=0

(Φη
β)(k) dkη(n)

dzk
εk, (Φη

β)(k) =
1

Jβ

∫
(β − aβ)(Uη

z )(k) dF.

(4)

Из закона Гука следует связь между жесткостными функциями напряжений (τη
αβ)(k) и

жесткостными функциями перемещений (Uη
α)(k):

(τη
xx)(k) = (λ + 2µ)

∂ (Uη
x )(k)

∂x
+ λ

∂ (Uη
y )(k)

∂y
+ λ(Uη

z )(k−1),

(τη
yy)

(k) = λ
∂ (Uη

x )(k)

∂x
+ (λ + 2µ)

∂ (Uη
y )(k)

∂y
+ λ(Uη

z )(k−1),

(τη
zz)

(k) = λ
∂ (Uη

x )(k)

∂x
+ λ

∂ (Uη
y )(k)

∂y
+ (λ + 2µ)(Uη

z )(k−1), (5)
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(τη
βz)

(k) = µ
(∂ (Uη

z )(k)

∂β
+ (Uη

β )(k−1)
)
,

(τη
xy)

(k) = µ
(∂ (Uη

x )(k)

∂y
+

∂ (Uη
y )(k)

∂x

)
, β ∈ (x, y).

2.1. Краевые задачи в сечении стержня. Подстановка аппроксимации (3) в уравнения
равновесия (1) приводит к ряду краевых задач в сечении стержня:

∂ (τη
αx)(k)

∂x
+

∂ (τη
αy)

(k)

∂y
+ (τη

αz)
(k−1) = 0, α ∈ (x, y, z),

(τη
αx)(k)nx + (τη

αy)
(k)ny = (Dη

α)(k)fα(Γ).

(6)

Здесь k — номер краевой задачи; (Dη
α)(k) — некоторые константы; fα(Γ) — функция, опи-

сывающая распределение внешней нагрузки на границе сечения. Неизвестными в краевых
задачах (6) являются жесткостные функции перемещений, с использованием которых по
формулам (5) могут быть найдены жесткостные функции напряжений.

Порядок аппроксимации n в разложении (2) зависит от исследуемого объекта. В рабо-
тах [23, 27] при исследовании изгиба коротких композитных балок использовалась аппрок-
симация изгиба в одной плоскости при n = 3. Однако для длинных балок достаточно огра-
ничиться первым приближением при n = 1. Для задачи о кручении тонкостенных стерж-
ней рассмотрим аппроксимацию изгиба при n = 1, аппроксимацию растяжения-сжатия
при n = 0 и аппроксимацию кручения при n = 1. Заметим, что в случае отсутствия необ-
ходимости учета эффекта стесненного кручения достаточно рассмотреть аппроксимацию

кручения при n = 0.
Для последовательного решения краевых задач (6) необходимо добавить к ним допол-

нительные условия нормализации, которые зависят от выбранного типа аппроксимации.
Введение условий нормализации обеспечивает единственность решения краевых задач.
Условия нормализации для решения первых четырех краевых задач (6) имеют следую-
щий вид:∫

(Uvα
β )(0) dF = δαβ,

∫
(U

θ0
β )(0) dF = 0, (Kvα)(0) = 0, (Kθ0)(0) = 1,∫

(Uvα
β )(k) dF =

∫
(U

θ0
β )(k) dF = 0, (Kvα)(k) = (Kθ0)(k) = 0,

α, β ∈ (x, y, z), k = 1, 2, 3.

Условия нормализации можно представить в виде

1

F

∫
(uvα

β )(n) dF = δαβv
(n)
α (z), (θvα)(n) = 0,

1

F

∫
(u

θ0
β )(n) dF = 0, (θθ0)(n) = (θ)(n), α, β ∈ (x, y, z)

(суммирование по индексу α не проводится), из которых следует, что среднее перемещение
вдоль оси Oα не равно нулю только для аппроксимации vα. Аналогично средний угол
закручивания не равен нулю только для аппроксимации кручения θ0.

Краевые задачи в сечении решаются последовательно. При этом можно доказать, что
для анизотропных материалов с поперечной плоскостью симметрии часть неизвестных

жесткостных функций тождественно равна нулю [24]. В данной работе краевые задачи

в поперечных сечениях решались численно методом конечных элементов в библиотеке с

открытым исходным кодом Fenics Project [28].



А. Г. Горынин, Г. Л. Горынин, С. К. Голушко 129

2.2. Вывод разрешающей системы уравнений. Для стержня справедливы уравнения
равновесия

ε
dNz

dz
= 0, ε

dQx

dz
= 0, ε

dQy

dz
= 0, ε

dMz

dz
= 0. (7)

С учетом типа аппроксимации (2) продольное усилие Nz, изгибающие моменты Mx,
My, перерезывающие силы Qx, Qy и крутящий момент Mz выражаются через функции

(vα)(n), (θ)(n) следующим образом:

Nz =

∫
σzz dF =

∑
α∈(x,y)

(Bvα
z )(3) d2v

(1)
α

dz2
ε2 + (Bvz

z )(2) dv
(1)
z

dz
ε + (Bθ0

z )(3) d2θ(1)

dz2
ε2,

Qβ =

∫
σβz dF =

∑
α∈(x,y)

(Bvα
β )(4) d3v

(1)
α

dz3
ε3 + (Bvz

β )(3) d2v
(1)
z

dz2
ε2 + (B

θ0
β )(4) d3θ(1)

dz3
ε3,

Mβ =

∫
σzz(β − aβ) dF =

∑
α∈(x,y)

(Ivα
β )(4) d2v

(1)
α

dz2
ε2 + (Ivz

β )(3) dv
(1)
z

dz
ε + (I

θ0
β )(4) d2θ(1)

dz2
ε2,

(8)

Mz =

∫
(σyz(x− ax)− σxz(y − ay)) dF =

=
∑

α∈(x,y)

(Gvα)(4) d3v
(1)
α

dz3
ε3 + (Gvz)(3) d2v

(0)
z

dz2
ε2 + (Gθ0)(2) dθ(1)

dz
ε + (Gθ0)(4) d3θ(1)

dz3
ε3.

Здесь коэффициенты (Bη
α)(k), (Iη

β)(k), (Gη)(k) — характеристики жесткости стержня:

(Bη
α)(k) =

∫
(τη

αz)
(k−1) dF, (Iη

β)(k) =

∫
(τη

zz)
(k−2)(β − aβ) dF,

(Gη)(k) =

∫ (
(x− ax)(τη

yz)
(k−1) − (y − ay)(τ

η
xz)

(k−1)
)
dF,

α ∈ (x, y, z), β ∈ (x, y).

Подставляя (8) в (7), получаем разрешающую систему уравнений деформирования

тонкостенного стержня 14-го порядка относительно неизвестных макровеличин v
(1)
x , v

(1)
y ,

v
(0)
z , θ(1):

(Bvx
x )(4) d4v

(1)
x

dz4
ε4 + (B

vy
x )(1) d4v

(1)
y

dz4
ε4 + (Bvz

x )(3) d3v
(0)
z

dz3
ε3 + (Bθ0

x )(4) d4θ(1)

dz4
ε4 = 0,

(Bvx
y )(4) d4v

(1)
x

dz4
ε4 + (B

vy
y )(4) d4v

(1)
y

dz4
ε4 + (Bvz

y )(3) d3v
(0)
z

dz3
ε3 + (Bθ0

y )(4) d4θ(4)

dz4
ε4 = 0,

(Bvx
z )(3) d3v

(1)
x

dz3
ε3 + (B

vy
z )(3) d3v

(1)
y

dz3
ε3 + (Bvz

z )(2) d2v
(0)
z

dz2
ε2 + (Bθ0

z )(3) d3θ(1)

dz3
ε3 = 0, (9)

(Gvx)(4) d4v
(1)
x

dz4
ε4 + (Gvy)(4) d4v

(1)
y

dz4
ε4 + (Gvz)(3) d3v

(0)
z

dz3
ε3 +

+ (Gθ0)(2) d2θ(1)

dz2
ε2 + (Gθ0)(4) d4θ(1)

dz4
ε4 = 0.
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В случае если один конец стержня (z = 0) заделан, а на другом конце (z = 1) приложен
крутящий момент T̄ , краевые условия в соответствии с выражениями (8) имеют вид

z = 0: (vβ)(1) = 0, (vz)
(0) = 0, (ϕ)β = 0, (θ)(1) = 0,

d(θ)(1)

dz
= 0,

z = 1: Nz = 0, Mβ = 0, Qβ = 0, Mz = T̄ ,
d2(θ)(1)

dz2
= 0.

(10)

Рассмотрим более подробно выражения для краевых условий (10). Угол поворота се-
чения (ϕ)β в краевых условиях с учетом выражений (3), (4) при n = 1 выражается через
неизвестные следующим образом:

ϕβ(z) =
∑

α∈(x,y)

(dv
(1)
β

dz
ε + (Φ

vβ
β )(3)

d3v
(1)
β

dz3
ε3

)
+

+ (Φ
θ0
β )(1) dθ(1)

dz
ε + (Φ

θ0
β )(3) d3θ(1)

dz3
ε3 + (Φvz

β )(2) d2v
(0)
z

dz2
ε2.

В краевых условиях (10) содержатся первая и вторая производные от функции угла
закручивания θ(z), которые позволяют учитывать влияние депланации сечения. Равенство
нулю первой производной от угла закручивания приводит к тому, что главный член в
аппроксимации кручения для продольных перемещений также равен нулю. Следовательно,
равна нулю и главная величина депланации сечения. В свою очередь, равенство нулю
второй производной от угла закручивания приводит к тому, что главный ненулевой член
в выражении для продольных напряжений также равен нулю. С физической точки зрения
этим обеспечивается свободное перемещение нагруженного конца стержня в продольном

направлении и отсутствие продольных напряжений в поперечном сечении.
Разрешающая система (9) с краевыми условиями (10) в общем виде является доста-

точно громоздкой, однако следует учитывать, что если сечение имеет оси симметрии или
главные оси сечения совпадают с главными осями принятой системы координат, то систе-
ма и краевые условия значительно упрощаются. Так, для однородных сечений компонента-
ми продольной аппроксимации можно пренебречь, так как не было найдено конфигураций
поперечных сечений, при которых крутящий момент вызывает значительные удлинения
стержня в продольном направлении. Заметим, что в случае композитных многослойных
стержней компоненты продольной аппроксимации необходимо учитывать.

2.3. Нулевое приближение и теория кручения Сен-Венана. Если ограничиться нуле-
вым приближением n = 0 в аппроксимации кручения, то разрешающая система и краевые
условия принимают следующий вид:

(Bvx
x )(4) d4v

(1)
x

dz4
ε4 + (B

vy
x )(1) d4v

(1)
y

dz4
ε4 + (Bvz

x )(3) d3v
(0)
z

dz3
ε3 = 0,

(Bvx
y )(4) d4v

(1)
x

dz4
ε4 + (B

vy
y )(4) d4v

(1)
y

dz4
ε4 + (Bvz

y )(3) d3v
(0)
z

dz3
ε3 = 0,

(Bvx
z )(3) d3v

(1)
x

dz3
ε3 + (B

vy
z )(3) d3v

(1)
y

dz3
ε3 + (Bvz

z )(2) d2v
(0)
z

dz2
ε2 = 0,

(11)

(Gθ0)(2) d2θ(1)

dz2
ε2 = 0;

(vβ)(1)(0) = 0, (vz)
(0)(0) = 0, (ϕ)β(0) = 0, (θ)(0)(0) = 0,

Nz(1) = 0, Mβ(1) = 0, Qβ(1) = 0, Mz(1) = T̄ .
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Рис. 2. Геометрические размеры исследуемых поперечных сечений:
а — двутавр, б — швеллер, в — равнополочный уголок

Для углов наклона поперечного сечения и обобщенных усилий достаточно положить

коэффициенты (B
θ0
z )(3), (B

θ0
β )(4), (I

θ0
β )(4), (Gθ0)(4), (Φ

θ0
β )(3) в выражениях (4), (8) равными

нулю. Следует отметить, что в этом случае уравнение кручения в разрешающей систе-
ме (11) совпадает с уравнением кручения в теории Сен-Венана и не зависит от уравнений
растяжения-сжатия и изгиба.

3. Анализ полученной модели и сравнение с теорией Власова. Рассмотрим
частный случай, когда кручение стержня не зависит от изгибных и продольных компо-
нент (например, кручение двутавра), что целесообразно при сравнении с теорией Власова.
Тогда разрешающая система (9) и краевые условия упрощаются и остается только одно
уравнение для кручения стержня

(Gθ0)(2) d2θ(1)

dz2
ε2 + (Gθ0)(4) d4θ(1)

dz4
ε4 = 0, (12)

а краевые условия принимают вид

z = 0: (θ)(1) = 0,
dθ(1)

dz
= 0,

z = 1: Mz ≡ (Gθ0)(2) dθ(1)

dz
ε + (Gθ0)(4) d3θ(1)

dz3
ε3 = T̄ ,

d2θ(1)

dz2
ε2 = 0.

Нетрудно показать, что уравнение (12) для двутавра совпадает с известным диффе-
ренциальным уравнением стесненного кручения в теории Власова, если положить, что
(Gθ0)(2) = GJk — крутильная жесткость, (Gθ0)(4) = −EJw — секториальная жесткость

при депланации:

GJk
d2θ(1)

dz2
ε2 − EJw

d4θ(1)

dz4
ε4 = 0.

Заметим также, что краевые условия в случае двутаврового стержня аналогичны краевым
условиям в теории Власова. Однако при этом в МАР не вводится понятие бимомента и
краевые условия получаются с учетом равенства нулю главных асимптотических членов

в выражениях для продольных перемещений или продольных напряжений.
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Таб ли ц а 1

Значения крутильной и секториальной жесткостей для двутавра,
полученные с использованием МАР и теории Власова

t/h GJk (Gθ0)(2) EJw −(Gθ0)(4) λV λAS

0,05 1,538 · 104 1,505 · 104 2,666 · 104 2,394 · 104 0,759 0,793
0,25 1,923 · 106 1,683 · 106 1,333 · 105 6,604 · 104 3,797 5,049

Проведем сравнение крутильной и секториальной жесткостей для стержня с двутав-
ровым сечением, схема которого представлена на рис. 2,а, при h = b = 0,2 м. Здесь и далее
результаты приведены в размерных переменных, в частности, переменная z меняется в
диапазоне от нуля до L = h/ε, где L — длина стержня. Рассмотрим два случая: 1) тол-
щина стенок в стержне мала: t = 0,01 м; 2) толщина стенок значительно больше общего
размера сечения: t = 0,05 м. Здесь и далее во всех случаях, за исключением оговоренных
особо, будем полагать, что стержень выполнен из однородного изотропного материала с
модулем Юнга, равным E = 200 ГПa, и коэффициентом Пуассона ν = 0,3. Крутящий
момент равен T̄ = 1000 Н ·м.

В табл. 1 приведены значения величин λV =
√

GJk/EJw, λAS =
√
−(Gθ0)(4)/(Gθ0)(2),

являющихся характеристическими числами дифференциальных уравнений для теории

Власова и МАР соответственно и определяющих длину пограничного слоя вблизи торцов.
Анализируя данные, приведенные в табл. 1, можно сделать вывод, что в случае тонко-
стенного двутавра значения крутильных и секториальных жесткостей близки (различие
не превышает 10 %). В то же время, в случае если толщина стенки сопоставима с харак-
терным размером всего сечения, значения жесткостей различаются существенно (более
чем на 10 %). Это объясняется тем, что в МАР не используется предположение о ма-
лой толщине стенки. Напомним, что в МАР для нахождения интегралов используются
решения двумерных краевых задач в сечении стержня. В свою очередь, в теории Власо-
ва интегрирование проводится вдоль срединной поверхности стенок поперечного сечения.
Крутильная GJk и секториальная EJw жесткости для различных типов сечений в теории

Власова вычислялись по формулам, приведенным в [29].

На рис. 3 приведены эпюры угла закручивания по длине стержня при ε = 0,100; 0,025
и различных краевых условиях, в случаях когда депланация стержня на правом конце
была свободной или отсутствовала. На рис. 3,а видно, что для тонкостенного двутавра
результаты расчетов по теории Сен-Венана значительно (более чем в два раза) отлича-
ются от результатов расчетов с использованием МАР и теории Власова. При этом МАР и
теория Власова дают близкие значения угла закручивания. Вблизи торца, где депланация
стержня является стесненной, возникает пограничный слой большой протяженности, ко-
торый в случае ε = 0,1 покрывает весь стержень. На расстоянии от торца, приближенно
равном L/2, при ε = 0,025 углы наклона кривых на рис. 3,б, полученных с использованием
всех рассматриваемых теорий, приближенно равны. Это свидетельствует о том, что на
расстоянии от торца, большем L/2, влияние пограничного слоя, возникающего вследствие
депланации сечения, на общее решение незначительно. В случае если на правом конце

также наложено ограничение на депланацию стержня, пограничные слои возникают на
обоих его концах (см. рис. 3,в).

В случае кручения швеллера и уголка возникает следующий эффект. Если приложить
крутящий момент к концу сечения в виде швеллера, схема которого приведена на рис. 2,б,
то весь стержень будет изгибаться, несмотря на то что на него не действуют какие-либо
перерезывающие силы. МАР позволяет учесть этот эффект, так как в данном случае
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Рис. 3. Эпюры угла закручивания для двутавра при h = 0,2, t = 0,01 и различ-
ных значениях ε и краевых условиях:
а — ε = 0,1, б — ε = 0,025, в — ε = 0,025, w(L) = 0; 1 — расчет по теории Сен-Венана,
2 — расчет с использованием МАР, 3 — расчет по теории Власова
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Та бли ц а 2

Значения крутильной и секториальной жесткостей для швеллера и уголка,
полученные с использованием МАР и теории Власова

Тип сечения GJk (Gθ0)(2) EJw −(Gθ0)(4) −(Ḡθ0)(4)

Швеллер 1,487 · 104 1,486 · 104 3,165 · 104 2,138 · 105 3,197 · 104

Уголок 104 9,908 · 103 0 2,344 · 104 0,878 · 102

уравнения растяжения и изгиба, а также уравнение кручения полностью сопряжены через
жесткостные характеристики стержня и краевые условия. Аналогичная ситуация наблю-
дается в сечении равнополочного уголка, ориентированного таким образом, как показано
на рис. 2,в.

Так как стержень будет изгибаться только вдоль оси Oy, разрешающие уравнения
принимают следующий вид:

(B
vy
y )(4) d4v

(1)
y

dz4
ε4 + (Bθ0

y )(4) d4θ(1)

dz4
ε4 = 0,

(Gvy)(4) d4v
(1)
y

dz4
ε4 + (Gθ0)(2) d2θ(1)

dz2
ε2 + (Gθ0)(4) d4θ(1)

dz4
ε4 = 0.

Краевые условия записываются в виде

z = 0: (vy)
(1) = 0, (ϕ)y = 0, (θ)(0) = 0,

dθ(1)

dz
= 0,

z = 1: My(1) = 0, Qy(1) = 0, Mz(1) = T̄ ,
d2θ(1)

dz2
= 0.

Заметим, что из уравнения кручения можно исключить изгибную компоненту, вы-
разив ее из уравнения изгиба. В результате получаем уравнение кручения, аналогичное
уравнению, полученному в теории Власова, в котором жесткость (Ḡθ0)(4) вычисляется

с поправкой на изгибную аппроксимацию:

(Gθ0)(2) d2θ(1)

dz2
ε2 + (Ḡθ0)(4) d4θ(1)

dz4
ε4 = 0, (Ḡθ0)(4) = (Gθ0)(4) − (Gvy)(4) (B

θ0
y )(4)

(B
vy
y )(4)

.

В табл. 2 приведены значения крутильных и секториальных жесткостей, найденные
с использованием МАР и теории Власова. Значения крутильных жесткостей практиче-
ски совпадают как для швеллера, так и для уголка. Анализируя полученные значения
для секториальных жесткостей, заметим, что если изгибными компонентами в МАР пре-
небречь и рассмотреть только аппроксимацию кручения, аналогично тому как это было
сделано для двутаврового сечения, то значение −(Gθ0)(4) будет существенно (более чем
в 10 раз) превышать секториальную жесткость EJw, вычисленную по теории Власова.

В свою очередь, значение −(Ḡθ0)(4), полученное с учетом поправки на изгибную аппрокси-
мацию, практически совпадает (различие составляет менее 1 %) с найденным по теории
Власова. Таким образом, в случае кручения сечения в виде швеллера изгибными аппрокси-
мациями в МАР нельзя пренебрегать. В случае уголкового сечения результаты расчетов
с использованием теорий Власова и Сен-Венана практически совпадают, так как при вы-
числении интеграла секториальная жесткость равна нулю. В расчетах с помощью МАР
с учетом изгибной аппроксимации жесткость −(Ḡθ0)(4) отлична от нуля, но значительно
меньше, чем в случае сечения в виде швеллера, что свидетельствует о меньшем размере
зоны влияния пограничного слоя (рис. 4). Несмотря на то что толщина пограничного слоя
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от координаты z при ε = 0,1, t = 0,01

в этом случае меньше, значения продольных напряжений в нем могут достигать больших
значений и оказывать существенное влияние на общее напряженно-деформированное со-
стояние в конструкции. Ниже показано, что в случае уголковых сечений МАР позволяет
определять напряженно-деформированное состояние в пограничном слое.

Исследуем величину прогиба vy для уголка и швеллера при их кручении и ее вклад в

общее решение. Сначала определим величину изгибающего момента

My = M
vy
y + Mθ

y , M
vy
y = (I

vy
β )(4) d2v

(1)
y

dz2
ε2, Mθ

y = (Iθ0
y )(4) d2θ(1)

dz2
ε2,

где суммарный изгибающий моментMy равен сумме изгибающих моментов для аппрокси-

мации изгибаM
vy
y и аппроксимации крученияMθ

y . На рис. 5 приведена эпюра изгибающих
моментов по длине стержня. Видно, что по всей длине стержня суммарный изгибающий
момент равен нулю, в то время как изгибная и крутильная компоненты отличны от нуля и
уравновешивают друг друга. Таким образом, несмотря на то что суммарный изгибающий
момент равен нулю, стержень изгибается пропорционально изгибной составляющей изги-
бающего момента M

vy
y . Величины прогибов, отнесенные к характерному размеру сечения,

приведены на рис. 6. Видно, что для уголкового сечения и швеллера величины прогибов не
превышают 10 % высоты сечения h. Таким образом, вклад изгибной аппроксимации для
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Рис. 6. Зависимость величины прогиба от координаты z для швеллера (1) и
уголка (2) при ε = 0,1, t = 0,01

величины угла закручивания может быть значительным. Заметим также, что теория Вла-
сова не позволяет определить прогибы стержня при кручении в случае, когда изгибающий
момент тождественно равен нулю.

4. Трехмерное конечно-элементное моделирование кручения тонкостенного
стержня. Большинство стержневых теорий основаны на приближенном решении про-
странственной задачи теории упругости путем введения различных гипотез о распределе-
нии напряжений и деформаций в конструкции. Поэтому для оценки эффективности полу-
ченной модели следует провести сравнение решения, найденного с помощью этой модели,
и решения трехмерной задачи линейной теории упругости методом конечных элементов в

пакете программ COMSOL. На практике такой подход не применяется вследствие значи-
тельных вычислительных затрат, связанных с использованием большого количества узлов
при построении равномерной конечно-элементной сетки для тонкостенного стержня. Од-
нако для теоретического обоснования и оценки эффективности математических моделей

такой подход представляется наиболее корректным.
Проведем моделирование процесса кручения тонкостенного стержня в пакете про-

грамм COMSOL на примере тонкостенного швеллера. Для расчета использовались гек-
саэдрические конечные элементы серендипова типа со вторым порядком аппроксимации.
Разбиение стержня выполнялось таким образом, чтобы по толщине стенка моделировалась
как минимум двумя элементами. Существенное влияние на вид общего решения оказывает
способ задания краевых условий. Для моделирования жесткой заделки достаточно зафик-
сировать все степени свободы в плоскости сечения. Однако крутящий момент может быть
приложен различными способами: в виде пары сил, в виде нагрузок, распределенных по
контуру сечения, и т. д. Для того чтобы избежать локальных эффектов, зависящих от
способа задания крутящего момента, в COMSOL была использована процедура жесткой
связки: все узлы в сечении связывались между собой кинематическим условием, в соот-
ветствии с которым сечение является жестким целым. В случае отсутствия в сечении

депланации выбиралась жесткая формулировка, в соответствии с которой все узлы в се-
чении жестко связывались между собой и привязывались к одному общему узлу в геомет-
рическом центре тяжести сечения. На этот общий узел накладывались ограничения или
прикладывались нагрузки. Заметим, что неважно, к какому узлу был приложен крутящий
момент, поскольку его величина не зависит от точки приложения. В случае наличия в се-
чении депланации выбиралась гибкая формулировка, в соответствии с которой все узлы в
сечении связывались между собой, так чтобы перемещение общего узла было равно сред-
нему перемещению всех связываемых узлов. Заметим, что в этом случае не только имеет
место депланация, но и изменяется контур сечения.
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Та бли ц а 3
Средние значения угла закручивания θ на нагруженном конце двутавра z = L

ε
COMSOL МАР Теория Власова Теория Сен-Венана

θ, рад θ, рад ∆, % θ, рад ∆, % θ, рад ∆, %

0,05 1,837 · 10−1 1,822 · 10−1 0,8 1,754 · 10−1 4,5 2,657 · 10−1 45,5
0,10 5,642 · 10−2 5,584 · 10−2 1,0 5,244 · 10−2 7,0 1,328 · 10−1 135,0
0,20 1,144 · 10−2 1,115 · 10−2 2,5 1,018 · 10−2 11,0 6,643 · 10−2 480,0
0,50 1,389 · 10−3 8,570 · 10−4 38,0 7,718 · 10−4 45,0 2,657 · 10−2 �100
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Рис. 7. Исходное (1) и деформированное (2) состояния швеллера

На основе построенной модели был проведен ряд численных экспериментов для раз-
личных типов поперечных сечений и при различных значениях малого параметра ε. На
рис. 7 приведено распределение продольных напряжений в тонкостенном швеллере под дей-
ствием крутящего момента. В заделке депланация стержня была равна нулю, а на конце
z = L стержень мог свободно деформироваться. Несмотря на то что стержень однородный
и к нему приложен только крутящий момент, он изгибается вдоль стенки швеллера. При
этом изгибная составляющая вносит существенный вклад в напряженно-деформированное
состояние. В отличие от кручения швеллера кручение равнополочного двутавра не сопро-
вождается его изгибом.

5. Сравнение полученных результатов. Проведем сравнение результатов расче-
тов по полученной модели с результатами расчетов по трехмерной конечно-элементной
модели. Напомним, что при использовании МАР для получения жесткостей стержня и
жесткостных функций необходимо решить краевые задачи в сечении стержня (6). Систе-
ма разрешающих уравнений (9) решалась с помощью процедуры bvp solve [30] библиотеки
SciPy. Эта процедура основана на методе коллокаций и позволяет решать краевые задачи
для систем обыкновенных дифференциальных уравнений. В качестве примера рассмотрим
несколько типов открытых сечений, схемы которых представлены на рис. 2. Двутавровое
сечение обладает полной симметрией, в то время как сечения типа швеллера и уголка
обладают только одной осью симметрии.

5.1. Двутавровое сечение. Принимались следующие размеры поперечного сечения:
h = b = 0,2 м, t = 0,01 м. В табл. 3 приведены расчетные значения углов поворота на
нагруженном конце стержня, полученные с использованием теории кручения Сен-Венана,
теории кручения Власова, МАР и в результате решения трехмерной задачи в пакете про-
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Таб ли ц а 4
Значения напряжения в характерных точках двутавра

Способ расчета σz в точке A σxz в точке B σyz в точке C

ε = 0,1, z = L/10

COMSOL −7,759 · 107 −1,191 · 107 6,855 · 106

МАР −7,715 · 107 −1,091 · 107 7,117 · 106

Теория Власова −7,163 · 107 −9,492 · 106 6,384 · 106

Теория Сен-Венана 0 −6,014 · 107 5,115 · 107

ε = 0,1, z = L/2

COMSOL −3,538 · 107 −3,086 · 107 2,481 · 107

МАР −3,454 · 107 −3,038 · 107 2,453 · 107

Теория Власова −3,222 · 107 −2,501 · 107 2,304 · 107

Теория Сен-Венана 0 −6,014 · 107 5,115 · 107

Таб ли ц а 5

Значения среднего угла закручивания θ на нагруженном конце (z = L) стержня
для сечений типа швеллера и уголка

ε
COMSOL МАР Теория Власова Теория Сен-Венана

θ, рад θ, рад ∆, % θ, рад ∆, % θ, рад ∆, %

Швеллер

0,05 1,172 · 10−1 1,721 · 10−1 0,4 1,722 · 10−1 0,3 2,691 · 10−1 55
0,10 4,923 · 10−2 4,841 · 10−2 2 4,842 · 10−2 2 1,345 · 10−1 169
0,20 9,881 · 10−3 8,975 · 10−3 9 8,881 · 10−3 9 6,727 · 10−2 �100

Уголок

0,05 3,950 · 10−1 3,900 · 10−1 1 4,040 · 10−1 2 4,040 · 10−1 2
0,10 1,950 · 10−1 1,890 · 10−1 3 2,020 · 10−1 3 2,020 · 10−1 3
0,20 9,260 · 10−2 8,770 · 10−2 3 1,010 · 10−1 8 1,010 · 10−1 8

грамм COMSOL, при различных значениях параметра ε. На основе полученных результа-
тов можно сделать вывод, что в расчетах с использованием теории Сен-Венана значения
угла поворота в условиях стесненного кручения завышаются в несколько раз. Результаты
расчета с помощьюМАР хорошо согласуются с результатами трехмерного численного рас-
чета (различие не превышает 1 %) даже в случае очень коротких балок (ε = 0,2). Расчет
с использованием теории Власова также дает результаты, удовлетворительно согласую-
щиеся с результатами трехмерного численного расчета при различных значениях малого

параметра (различие не превышает 10 %). Очевидно, что при экстремальном значении
параметра ε = 0,5 результаты расчетов с использованием МАР и теории Сен-Венана зна-
чительно отличаются от результатов трехмерного расчета. В табл. 4 приведены значения
напряжений в характерных точках сечения в соответствии со схемой, представленной на
рис. 2,а. Напряжения вычислялись в двух сечениях (вблизи заделки и посередине стержня),
в которых влияние краевых условий незначительно. Можно сделать вывод, что в случае
двутавровых сечений использование МАР и теории Власова позволяет с удовлетворитель-
ной точностью определять напряженно-деформированное состояние в пограничном слое.

5.2. Сечения типа швеллера и уголка. В табл. 5, 6 приведены значения углов закру-
чивания и прогибов на нагруженном конце стержня для сечений типа швеллера и уголка

при h = b = 0,2 м, t = 0,01 м. Можно сделать вывод, что в случае швеллера исполь-
зование МАР и теории Власова позволяет достаточно точно относительно трехмерного

расчета определять угол закручивания (различие не превышает 10 %). Также МАР поз-
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Та бли ц а 6

Значения прогиба vy на нагруженном конце (z = L) стержня
для сечений типа швеллера и уголка

ε
COMSOL МАР

vy, м vy, м ∆, %

Швеллер

0,05 −2,569 · 10−2 −2,549 · 10−2 1
0,10 −7,185 · 10−3 −7,138 · 10−3 1
0,20 −1,461 · 10−3 −1,301 · 10−3 11

Уголок

0,05 −2,720 · 10−2 −2,840 · 10−2 4
0,10 −1,330 · 10−2 −1,370 · 10−2 3
0,20 −6,390 · 10−3 −6,420 · 10−3 1

Таб ли ц а 7
Значения напряжения в характерных точках швеллера и уголка

Способ расчета

Швеллер Уголок

σz

в точке A
σxz

в точке B
σyz

в точке C
σz

в точке A
σxz

в точке B
σyz

в точке C

ε = 0,1, z = L/10
COMSOL −7,25 · 107 −1,05 · 107 −6,32 · 106 −2,35 · 107 −4,85 · 107 −4,81 · 107

МАР −7,25 · 107 −8,87 · 106 −6,65 · 106 −2,39 · 107 −4,83 · 107 −4,83 · 107

Теория Власова −7,27 · 107 −9,08 · 106 −5,79 · 106 0 −5,49 · 107 −5,49 · 107

Теория Сен-Венана 0 −5,18 · 107 −5,18 · 107 0 −5,49 · 107 −5,49 · 107

ε = 0,1, z = L/2
COMSOL −3,43 · 107 −2,29 · 107 −2,15 · 107 −6,04 · 103 −5,49 · 107 −5,49 · 107

МАР −3,40 · 107 −2,31 · 107 −2,17 · 107 −5,29 · 103 −5,49 · 107 −5,49 · 107

Теория Власова −3,40 · 107 −2,34 · 107 −2,12 · 107 0 −5,49 · 107 −5,49 · 107

Теория Сен-Венана 0 −5,18 · 107 −5,18 · 107 0 −5,49 · 107 −5,49 · 107

воляет с высокой точностью определять прогибы стержня при его кручении. Для сечений
типа двутавра и швеллера, для которых ширина полок в два раза меньше высоты стенки:
h = 2b, решения различаются незначительно, и для них справедливы те же выводы, что
и для сечений с h = b.

Для уголковых профилей теория Власова, МАР и теория Сен-Венана дают близкие
значения, так как вблизи торца длина пограничного слоя стремится к нулю. В табл. 7
приведены значения напряжений, вычисленные в характерных точках швеллера и угол-
ка в соответствии с рис. 2,б,в. Следует отметить, что для уголкового сечения значения
продольных напряжений вблизи заделки сопоставимы со значениями сдвиговых напряже-
ний и быстро убывают по мере удаления от заделки. МАР позволяет учесть продольные
напряжения с точностью до 2 %. В теории Власова нормальные напряжения остаются

постоянными по толщине стенки, а касательные напряжения распределены по линейному
закону. Однако в случае кручения уголкового сечения продольные напряжения в стержне
являются переменными по толщине и близкими к нулю на срединной поверхности. Сле-
довательно, максимальное значение продольного напряжения достигается в точке A (см.
рис. 2,в). Таким образом, теория Власова не позволяет учесть распределение продольных
напряжений вблизи заделки и поэтому может значительно занижать величину напряже-
ний.
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Заключение. В работе исследована задача о кручении тонкостенных стержней от-
крытого профиля. С помощью МАР разработана математическая модель, описывающая
совместное кручение, растяжение-сжатие и изгиб стержня. Проведенный анализ позволил
выявить ее основные преимущества по сравнению с широко применяемой теорией Власо-
ва. В МАР отсутствует гипотеза о недеформируемости контура поперечного сечения. Та-
ким образом, при необходимости компоненты напряжений и деформаций, определяющие
деформирование контура, могут быть вычислены. В МАР не используется допущение о
малости толщины стенки, поэтому могут рассчитываться на прочность стержни с ком-
бинированными сечениями с толстыми стенками, в которых распределение продольных
напряжений становится непостоянным по толщине стенки. Вычислительные затраты при
использовании МАР значительно меньше по сравнению с вычислительными затратами,
необходимыми для решения трехмерной задачи, однако решение двумерных краевых задач
для получения жесткостных характеристик поперечных сечений в общем случае требует

больше времени, чем вычисление с использованием известных стержневых теорий, в том
числе теории Власова.

Разработанная модель учитывает изгиб тонкостенных стержней при отсутствии в

системе перерезывающих сил. Показано, что разработанная модель учитывает наличие
пограничного слоя вблизи заделки, возникающего при кручении уголковых сечений и вно-
сящего существенный вклад в продольные напряжения вблизи заделки, в то время как
теория Власова не позволяет вычислить возникающие продольные напряжения.
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12. Pavazza R., Matoković A., Vukasović M. A theory of torsion of thin-walled beams of
arbitrary open sections with influence of shear // Mech. Based Design Structures Machines. 2022.
V. 50, N 1. P. 206–241.



А. Г. Горынин, Г. Л. Горынин, С. К. Голушко 141

13. Сливкер В. И. Строительная механика. Вариационные основы. М.: Изд-во Ассоц. строит.
вузов, 2005.

14. Reagan S. W., Pilkey W. D. Constrained torsion of prismatic bars // Finite Elements Anal.
Design. 2002. V. 38, N 10. P. 909–919.

15. Hoogenboom P. C. J., Borgart A. Method for including restrained warping in traditional
frame analyses // Heron. 2005. V. 50, N 1. 55.

16. Туснин А. Р. Конечный элемент для численного расчета конструкций из тонкостенных
стержней открытого профиля // Метал. конструкции. 2009. Т. 15, № 1. С. 73–78.

17. Лалин В. В., Рыбаков В. А., Морозов С. А. Исследование конечных элементов для
расчета тонкостенных стержневых систем // Mag. Civil Engng. 2012. V. 1, N 27. P. 53–73.

18. Lalin V., Rybakov V., Sergey A. The finite elements for design of frame of thin-walled
beams // Appl. Mech. Materials. 2014. V. 578. P. 858–863.

19. Shakourzadeh H., Guo Y. Q., Batoz J.-L. A torsion bending element for thin-walled beams
with open and closed cross sections // Comput. Structures. 1995. V. 55, N 6. P. 1045–1054.

20. Жилкин В. А. Численный расчет тонкостенных стержней открытого профиля в MSC
Patran-Nastran // Вестн. Челяб. гос. агроинж. акад. 2013. Т. 65. С. 84–95.

21. Ramsay A., Maunder E. A. W. The influence and modelling of warping restraint on beam //
Structure Mag. 2016.

22. Горынин Г. Л. Пространственные задачи изгиба и кручения слоистых конструкций.Метод
асимптотического расщепления / Г. Л. Горынин, Ю. В. Немировский. Новосибирск: Наука.
Сиб. издат. фирма, 2004.

23. Горынин Г. Л., Немировский Ю. В. GN-теория расчета композитной балки при изгибе.
Общая теория. Сообщ. 1 // Изв. вузов. Стр-во. 2012. Т. 6. С. 3–12.

24. Gorynin G. L., Nemirovskii Y. V. Deformation of laminated anisotropic bars in the three-
dimensional statement. 1. Transverse-longitudinal bending and edge compatibility condition //
Mech. Composite Materials. 2009. V. 45. P. 257–280.

25. Горынин Г. Л., Немировский Ю. В. Продольно-поперечный изгиб слоистых балок в
трехмерной постановке // ПМТФ. 2004. Т. 45, № 6. С. 133–143.

26. Голушко С. К., Горынин Г. Л., Горынин А. Г. Метод асимптотического расщепления
в динамических задачах пространственной теории упругости // Итоги науки и техники. Сер.
Соврем. математика и ее прил. Темат. обзоры. 2020. Т. 188. С. 43–53.

27. Golushko S., Gorynin G., Gorynin A. A new beam element for the analysis of laminated
composites based on the asymptotic splitting method // J. Phys.: Conf. Ser. 2020. V. 1666, N 1.
012066.

28. Alnæs M. S., Blechta J., Hake J., et al. The FEniCS project version 1.5 // Arch. Numer.
Software. 2015. V. 3, N 100. P. 9–23.

29. Young W. C. Roark’s formulas for stress and strain / W. C. Young, R. G. Budynas, A. M. Sadegh.
S. l.: McGraw-Hill, 2012.

30. Kierzenka J., Shampine L. F. A BVP solver based on residual control and the Maltab PSE //
ACM Trans. Math. Software. 2001. V. 27, N 3. P. 299–316.

Поступила в редакцию 21/IX 2023 г.,
после доработки — 16/X 2023 г.
Принята к публикации 30/X 2023 г.


