УДК 541.124/128.3:541.64+542.943.7+546.74+546.73 DOI: 10.15372/KhUR20170110

Причины возникновения эффектов неаддитивности в Ni^{II}- и Co^{II}-содержащих каталитических системах окисления Na₂S кислородом

А. В. САФРОНИХИН, М. П. ЖИЛЕНКО

Московский государственный университет им. М. В. Ломоносова, Москва, Россия E-mail: safronikhin@yandex.ru

Аннотация

Обнаружены положительные и отрицательные эффекты неаддитивности скоростей поглощения кислорода при окислении Na₂S в присутствии (Ni^{II} + Co^{II})-содержащих катализаторов. Установлено, что эти эффекты связаны с особенностями образования частиц сульфидов никеля и кобальта. Положительные эффекты неаддитивности наблюдаются в начале реакции на этапе возникновения зародышей сульфидов металлов и относятся к синергическим явлениям. Отрицательные эффекты выявлены на стадии роста частиц сульфидной фазы. Они имеют несинергическую природу и связаны с отложением сульфидов никеля на поверхности частиц сульфида кобальта.

Ключевые слова: неаддитивность, катализ, окисление, сульфид никеля, сульфид кобальта

введение

Эффекты неаддитивности, которые зачастую называют эффектами синергизма, широко распространены в катализе [1-6]. В работе [1] описано многообразие таких явлений и предложена их классификация по природе возникновения. Однако не всегда явления неаддитивности могут быть отнесены к эффектам именно синергизма, трактуемого как согласованное совместное действие компонентов каталитической системы, например, компонентов катализатора [3]. Несинергическая природа эффектов неаддитивности имеет место в системах, где компоненты катализатора, взаимодействуя между собой, образуют новые химические соединения - устойчивые комплексы, кластеры, ассоциаты и т. п. [4, 5]. Сюда же можно отнести эффекты неаддитивности, возникающие вследствие взаимодействия катализаторов с реакционной средой, которое может приводить к изменению фазового состояния катализаторов в ходе реакции.

Одним из таких примеров является реакционная система $Na_2S - O_2$ – ионы переходных металлов. Она интересна тем, что окисление S^{2-} кислородом протекает в условиях непрерывного формирования каталитически активной фазы – сульфидов металлов [6]. С другой стороны, при введении в такие системы ионов второго металла отмечены эффекты неаддитивности каталитического действия таких бинарных катализаторов, которые отнесены именно к синергическим эффектам [3]. Но неаддитивное поглощение кислорода в таких системах может быть связано и с процессами изменения фазового состояния катализатора в ходе окисления субстрата.

По этой причине нами исследована связь между причинами возникновения, характером (величина, знак) эффектов неаддитивности и процессами формирования сульфидной фазы при окислении Na₂S в присутствии бинарных катализаторов.

В данной работе изучены каталитические системы двух типов: системы I с незакреп-

ленными ионами металлов и системы **II** с ионами металлов, введенными в трехмерную полимерную сетку полиакриламидного геля (ПААГ): $I_1 \{Na_2S + O_2 + Ni^{II}\}$ **II**₁ $\{Na_2S + O_2 + Ni^{II}/\Pi AAF\}$ $I_2 \{Na_2S + O_2 + Co^{II}\}$ **II**₂ $\{Na_2S + O_2 + Co^{II}/\Pi AAF\}$ $I_3 \{Na_2S + O_2 + (Ni^{II} + Co^{II})\}$ **II**₃ $\{Na_2S + O_2 + (Ni^{II} + Co^{II})/\Pi AAF\}$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали $Na_2S \cdot 9H_2O$, Ni $Cl_2 \cdot 6H_2O$, Co $Cl_2 \cdot 6H_2O$, акриламид (AA), N,N'-метиленбисакриламид (БАА) квалификации "ч. д. а.", а также технический кислород с объемной долей кислорода не менее 99.7 %.

Полиакриламидный гель (ПААГ) со степенью сшивки 2 мас. % и набухаемостью (20±2) г H₂O/ г полимера получали методом радикальной полимеризации AA, используя в качестве сшивающего агента БАА [7]. Предварительно AA и БАА перекристаллизовывали из этанола.

Катализаторы готовили из растворов 0.01 M NiCl₂ и 0.01 M CoCl₂. В системах I_1-I_3 окисление Na₂S осуществляли в присутствии 0.2 мл растворов NiCl₂, CoCl₂ или NiCl₂ + CoCl₂. При этом в системах I_1-I_2 содержание ионов металла в опыте варьировало от $0.4 \cdot 10^{-6}$ моль (20%) до $2 \cdot 10^{-6}$ моль (100%). В системе I_3 исходные растворы 0.01 M NiCl₂ и CoCl₂ смешивали в процентных соотношениях 20/80, 40/60, 60/40 и 80/20, сохраняя постоянным суммарное количество ионов металлов, равное $2 \cdot 10^{-6}$ моль.

Для систем II_1-II_3 катализаторы готовили методом пропитки. К 0.0092 г воздушно-сухого ПААГ приливали 0.2 мл раствора NiCl₂ или CoCl₂ или смеси этих солей в необходимой пропорции. При этом весь добавленный раствор переходил в фазу геля, и образцы катализаторов получались предельно набухшими. Относительное содержание ионов металлов в катализаторах систем II_1-II_3 варьировали аналогично соответствующим системам I_1-I_3 .

Каталитическую активность систем определяли волюмометрическим методом в статической системе при атмосферном давлении в избытке O_2 и температуре (40±0.05) °C по методике, описанной в [8]. В один отсек реактора загружали 5 мл 0.1 моль/л водного раствора Na₂S, во второй отсек – катализатор. Реактор подсоединяли к кислороду и начинали интенсивно перемешивать систему на быстроходной качалке, регистрируя поглощение O₂ через определенные промежутки времени.

Измеренные объемы поглощенного кислорода приводили к нормальным условиям и строили кривые расхода O_2 от времени, после дифференцирования которых определяли начальные (W_0) и максимальные ($W_{\text{макс}}$) скорости поглощения O_2 . Исходя из них вычисляли каталитическую активность *a* (в моль $O_2/(c \cdot моль M^{II})$) по формуле

$$a = W/n \cdot 60 \cdot 22400$$

где W – текущая скорость расхода O_2 ; n – количество Ni^{II} и/или Co^{II} в опыте, моль.

Поведение бинарных катализаторов в процессе окисления Na_2S исследовали в системах I_3 и II_3 , определяя в них скорости поглощения O_2 ($W_{\text{неадд}}$) при различных относительных содержаниях Ni^{II} и Co^{II} . По соответствующим кинетическим данным строили концентрационные зависимости W_0 и $W_{\text{макс}}$ поглощения O_2 для всех систем.

Значения аддитивных скоростей W_{add} вычисляли из данных, полученных для систем I_1 и I_2 или II_1 и II_2 , путем сложения соответствующих концентрационных зависимостей скоростей расхода O_2 в этих системах.

Величину эффекта неаддитивности Ξ вычисляли по формуле

 Ξ = (W_{\rm неадд} – $W_{\rm add})/W_{\rm add}$ = (W_{\rm неадd}/W_{\rm add}) - 1

Исследование катализаторов проводили методом ЭПР-спектроскопии. Из систем I извлечь сульфидную фазу катализаторов не удавалось вследствие ее высокой дисперсности, поэтому изучали полимерсодержащие катализаторы. ЭПР-спектры регистрировали на радиоспектрометре Radiopan SE/X-2542 с рабочей частотой 9.4 ГГц. Калибровку магнитного поля осуществляли с помощью ядерного магнетометра. В качестве стандарта для определения *g*-фактора применяли сигнал N,N-дифенил-N'-пикрилгидразила (ДФПГ). Все измерения выполнены при 77 К.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кривые кинетической зависимости объемов поглощенного в ходе реакции О₂ для всех каталитических систем имели S-образный вид. Такая форма кривых обусловлена совокуп-

Рис. 1. Начальные скорости W_0 (*a*) и максимальные скорости $W_{\text{макс}}$ (б) поглощения O_2 в процессе окисления Na_2S в присутствии: $1 - Co^{II}$; $2 - Ni^{II}$; 3, $4 - Co^{II} + Ni^{II}$, рассчитанная (3) и экспериментальная (4). 100 % соответствуют $2 \cdot 10^{-6}$ моль ионов металлов в опыте.

ностью физико-химических изменений катализаторов в ходе взаимодействия с реакционной средой, включая как изменение состава и структуры активных центров катализаторов, так и собственно процессы фазообразования. Согласно [9], формирование новой фазы протекает через возникновение и рост ее зародышей. В начале реакции, когда зародыши твердого продукта практически отсутствуют, скорость каталитической реакции весьма мала. С появлением зародышей и, соответственно, поверхности раздела фаз скорость реакции растет, проходит через максимум при достижении максимальной поверхности раздела и затем снижается по мере укрупнения частиц фазы.

Рис. 2. Максимальные скорости $W_{\text{макс}}$ поглощения O_2 в процессе окисления Na_2 S в присутствии: $1 - \text{Co}^{II}/\Pi \text{AA}\Gamma$; $2 - \text{Ni}^{II}/\Pi \text{AA}\Gamma$; $3, 4 - (\text{Co}^{II} + \text{Ni}^{II})/\Pi \text{AA}\Gamma$, рассчитанная (3) и экспериментальная (4). 100 % соответствуют $2 \cdot 10^{-6}$ моль ионов металлов в опыте.

В связи с S-образной формой всех кинетических кривых их обработку проводили по начальным и максимальным скоростям поглощения O_2 для каждой системы. Концентрационные зависимости W_0 и $W_{\text{макс}}$ для систем $\mathbf{I_1}$ - $\mathbf{I_3}$ приведены на рис. 1. Поскольку для систем $\mathbf{I_1}$ - $\mathbf{I_3}$ величины W_0 практически равны нулю, то для них строили только концентрационные зависимости $W_{\text{макс}}$ (рис. 2).

Из данных рис. 1 следует, что никелевые катализаторы без ПААГ в несколько раз активнее соответствующих кобальтовых аналогов при оценке как по W_0 , так и по $W_{\text{макс}}$. В то же время формы концентрационных кривых не зависят от природы иона металла, что может отражать общие закономерности формирования сульфидов никеля и кобальта в условиях катализа.

Начало реакции окисления Na_2S , характеризуемое значениями W_0 , очевидно, совпадает с процессами возникновения и роста зародышей сульфидной фазы. Число зародышей тем больше, чем выше содержание иона металла в системе. Вследствие высокой дисперсности активной фазы на данном этапе большинство сульфидных центров оказываются доступными для окисляемого субстрата, и активность катализатора должна быть постоянной при условии неизменной активности каждого центра и линейного роста их числа при увеличении количества иона металла. Наблюдаемый на рис. 3, *а* (кривые 2, 4) рост активности Ni^{II}- и Co^{II}-содержащих

Рис. 3. Данные по начальным (a) и максимальным (b) скоростям W (1, 3) и активностям a (2, 4) поглощения O_2 в процессе окисления Na_2S в присутствии: 1, 2 – Ni^{II} ; 3, 4 – Co^{II} . 100 % соответствуют $2 \cdot 10^{-6}$ моль ионов металлов в опыте.

катализаторов может быть обусловлен нелинейной зависимостью числа зародышей от концентрации иона металла и/или изменением состава, структуры, а следовательно, и активности центров катализа с увеличением содержания иона металла.

В период достижения $W_{\text{макс}}$ наблюдается антибатность концентрационных зависимостей общей и удельной скоростей расхода O_2 в данном процессе (см. рис. 3, б). Это, по-видимому, обусловлено тем, что часть активных центров катализаторов уходит в объем сульфидной фазы и становится недоступной для окисляемого субстрата. Поэтому формальное снижение активности как Ni^{II}-, так и Co^{II}-содержащих катализаторов является тривиальным фактом влияния степени дисперсности гетерогенного катализатора на его активность.

ТАБЛИЦА 1

Величина эффекта неаддитивности Ξ, рассчитанная по начальным (Ξ_{W_0}) и максимальным ($\Xi_{W_{\text{макс}}}$) скоростям окисления Na₂S, для разных парциальных содержаний Ni^{II} и Co^{II} в катализаторе

Ni ^{II} /Co ^{II} , %	Системы			
	I ₃		II_3	
	Ξ_{W_0}	$\Xi_{W_{\text{make}}}$	$\Xi_{W_{\text{make}}}$	
20/80	1.2	0	-0.4	
40/60	1.2	-0.4	-0.3	
60/40	0.2	-0.3	-0.2	
80/20	0.2	-0.2	-0.2	

Концентрационные зависимости экспериментальных (неаддитивных) величин W_0 и $W_{\text{макс}}$ для бинарных катализаторов (системы I₃) представлены кривыми 4, а соответствуюцие им зависимости рассчитанных (аддитивных) величин – кривыми 3 (см. рис. 1). Несовпадение кривых 3 и 4 указывает на эффект неаддитивности в исследуемых системах, как при W_0 , так и при $W_{\text{макс}}$. При этом на начальном этапе реакции наблюдается положительный эффект неаддитивности, а в период достижения $W_{\text{макс}}$ он отрицательный (табл. 1).

Введение ионов металлов в полимерную матрицу (системы II) приводит к замедлению скоростей окисления субстрата по сравнению с системами I. Это, очевидно, связано с появлением диффузионных затруднений и, соответственно, с замедлением процессов формирования активной фазы катализаторов в ходе проведения реакции [7, 8]. При этом значения W₀ в случае нанесенных катализаторов снижались до нуля, что не позволило оценить величину и знак эффекта неаддитивности в системах II на начальном этапе реакции. Значения $W_{\text{макс}}$ для этих систем в среднем вдвое меньше по сравнению с таковыми для систем I. Результаты обработки кинетических кривых в период достижения $W_{\text{макс}}$ для систем $II_1 - II_3$ приведены на рис. 2 и в табл. 1. Как следует из данных табл. 1, в период достижения значений $W_{\text{макс}}$ в системах \mathbf{I}_3 и \mathbf{II}_3 проявляются эффекты неаддитивности, прак-

Рис. 4. ЭПР-спектры Со^П/ПААГ на разных этапах процесса: 1 – до катализа; 2 – в период достижения W_0 ; 3 – в период достижения $W_{\text{макс}}$ T = 77 К.

тически одинаковые по величине и знаку. Это свидетельствует о том, что полимерная матрица не оказывает заметного влияния на возникновение эффекта неаддитивности и его знак.

Согласно данным рис. 2, в системах с Со^{II}/ ПААГ (кривая 1) величина $W_{\text{макс}}$ слабо зависит от содержания в них ионов кобальта, а бинарный катализатор $(Ni^{II} + Co^{II})/\Pi AA\Gamma$ ведет себя как монокомпонентный $\mathrm{Ni}^{\mathrm{II}}/\mathrm{\Pi}\mathrm{AA\Gamma}$ (кривые 4 и 2 соответственно). В результате во всем интервале соотношений Ni^{II} и Co^{II} появляется отрицательный эффект неаддитивности. Наиболее вероятной причиной такого поведения катализатора (Ni^{II} + Co^{II})/ПААГ является изоляция его кобальтосодержащих активных центров вследствие различной скорости образования и роста зародышей сульфидов никеля и кобальта. Можно предположить, что сульфиды никеля формируются на частицах сульфида кобальта, препятствуя контакту последних с реакционной средой.

Это предположение подтверждается появлением сигнала ЭПР у образцов Со^{II}/ПААГ в период достижения $W_{\text{макс}}$ (рис. 4), который отсутствует в случае бинарных катализаторов (Ni^{II} + Co^{II})/ПААГ. Его можно отнести к образованию моноаддукта Со^{II} с O₂ (µ-супероксокомплекс), описанному в [10, 11]: Co(L) + O₂ \leftrightarrow Co(L) \cdot (O₂) где L – лиганд.

В аддукте происходит смещение электронной плотности от иона кобальта к кислороду, ион кобальта формально меняет валентность $Co^{II} \rightarrow Co^{III}$, и образуется ион-радикал O⁺₂. Появление последнего обусловливает возникновение сигнала ЭПР в спектре Co^{II}-содержащего катализатора (см. рис. 4, спектр 3).

В табл. 2 приведены значения параметра g⊥ для различных соединений Со^{II} и их аддуктов с О2. Видно, что значения параметра g⊥ соединений кобальта до и после образования аддукта с О2 сильно различаются. В последнем случае они меньше и составляют примерно 2.000. Значение д⊥ = 2.002, полученное в настоящей работе, свидетельствует в пользу образования кобальтокислородного моноаддукта в ходе реакции. А близость вычисленных значений параметров $g \perp = 2.002$ и g∥ = 2.006, по-видимому, вызвана оттягиванием почти всей электронной плотности (~90 %) от Co^{II} к кислороду [11]. Отсутствие подобного сигнала в ЭПР-спектрах бинарных катализаторов указывает на то, что в этом случае ионы Co^{II} не взаимодействуют с кис-

ТАБЛИЦА 2

Параметры ЭПР-спектров соединений Со^{II} и их моноаддуктов с кислородом [11]

Соединение	$g \bot$		
	Без О ₂	Аддукт с O_2	
Co(Salen)(DMSO)	2.500	1.998	
Co(Salen)(THF)	2.409	1.999	
Co(Salen)(Py)	2.354	1.999	
Co(Pc)(Py)	2.327	2.004	
Co(Hdmg) ₂ (Py)	2.240	2.000	

Примечание. Salen — N,N'-этиленбис(салицилиденимин), DMSO — диметилсульфоксид, THF — тетрагидрофуран, Ру — пиридин, Рс — фталоцианин, Hdmg диметилглиоксим. лородом, очевидно, из-за изоляции их под слоем сульфида никеля.

ЗАКЛЮЧЕНИЕ

Таким образом, на эффекты неаддитивного поглощения O₂ при окислении Na₂S в присутствии бинарных катализаторов оказывают влияние процессы формирования сульфидов никеля и кобальта. В начале реакции, на этапе возникновения зародышей фазы, в каталитической системе возникают положительные эффекты неаддитивности, которые, повидимому, можно отнести к синергическим явлениям. Отрицательные эффекты, отмечающиеся на стадии роста частиц сульфидной фазы, не связаны с синергизмом, так как на этом этапе реакции бикомпонентный (Ni^{II} + Со^{II})-содержащий катализатор работает как монокомпонентный никелевый из-за отложения сульфидов никеля на поверхности Co^{II}содержащих частиц. Поэтому в системе, где наряду с каталитической реакцией изменяется фазовое состояние катализатора вследствие его взаимодействия с реакционной средой, возможные эффекты неаддитивности могут иметь несинергическую природу, обусловленную именно особенностями фазовых преобразований катализаторов.

СПИСОК ЛИТЕРАТУРЫ

- 1 Голодов В. А. // Росс. хим. журн. 2000. № 3. С. 45-57.
- 2 Allen A. E., MacMillan D. W. C. // Chem. Sci. 2012. Iss. 3. P. 633–658.
- 3 Тяу Ван Минь, Стоян В. П., Руденко А. П. // Журн. физ. химии. 1995. Т. 69, № 12. С. 2241–2245.
- 4 Adams R. D. // J. Organomet. Chem. 2000. Vol. 600, Iss. 1–2. P. 1–6.
- 5 Борисенкова С. А., Гиренко Е. Г., Михаленко С. А., Негримовский В. М., Соловьева Л. И., Калия О. Л., Лукьянец Е. А. // Вестн. Моск. ун-та. Сер. 2. Химия. 2002. Т. 43, № 3. С. 192–193.
- 6 Тяу Ван Минь, Астанина А. Н., Руденко А. П. // Вестн. Моск. ун-та. Сер. 2. Химия. 1994. Т. 35, № 4. С. 367-374.
- 7 Safronikhin A. V., Zhilenko M. P., Rudenko A. P. // Moscow Univ. Chem. Bull. 2007. Vol. 62, Iss. 1. P. 57–61.
- 8 Zhilenko M. P., Papina Yu. E., Rudenko A. P. // Russ. J. Phys. Chem. A 2000. Vol. 74, Iss. 8. P. 1271–1275.
- 9 Melikhov I. V., Bozhevol'nov V. E. // Russ. Chem. Bull. 2005. Vol. 54, Iss. 1. P. 16–30.
- 10 Klevan L., Peone J., Jr., Madan S. K. // J. Chem. Educ. 1973. Vol. 50, No. 10. P. 670–675.
- 11 Минин В. В. Электронное строение низкоспиновых комплексов Co(II) и его влияние на взаимодействие с молекулярным кислородом: дис. ... канд. хим. наук. Москва, 1980.