УДК 622.831.32

DOI:10.15372/FPVGN2020070142

# ГЕОМЕХАНИЧЕСКОЕ СОСТОЯНИЕ МАССИВОВ ГОРНЫХ ПОРОД НА КАРЬЕРЕ АЛМАЗОНОСНОЙ ТРУБКИ "ЗАРНИЦА"

## В. И. Востриков, С. Ю. Гаврилов

Институт горного дела им. Н. А. Чинакала СО РАН, E-mail: vvi.49@mail.ru, Красный проспект 54, г. Новосибирск 630091, Россия

На карьере алмазаносной трубки "Зарница" в 2019 г. для наблюдения за геомеханическим состоянием приразломных зон тектонических разломов на горизонтах + 380 и + 405 была развернута измерительно-вычислительная система в составе двух датчиков. Мониторинг проводился в период с 02.10.2019 по 28.11.2019. Измерения показали знакопеременные смещения геоблоков в приразломной зоне величиной до 3 мм, которые приводят со временем к обрушениям горной породы по тектоническим разломам бортовых откосов карьера.

Алмазоносный карьер, измерительно-вычислительная система, датчик, мониторинг, тектонический разлом, приразломная зона, смещение

## GEOMECHANICAL STATE OF ROCK MASSES AT THE QUARRY OF THE ZARNITSA DIAMOND PIPE

#### V. I. Vostrikov and S. Yu. Gavrilov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Russia, E-mail: vvi.49@mail.ru, Krasny prospect 54, Novosibirsk 630091, Russia

The measuring and computing system consisting of two sensors was deployed to monitor the geomechanical state of the near-fault zones of tectonic faults at horizons +380 and +405 at the quarry of the Zarnitsa diamond pipe in 2019. The monitoring was carried out from 02.10.2019 to 28.11.2019. The measurements demonstrated alternating displacements of geoblocks in the near-fault zones up to 3 mm in size, which lead to rock caving along tectonic faults of the side slopes of the quarry.

Diamond quarry, measuring and computing system, sensor, monitoring, tectonic fault, near-fault zone, displacement

Тектонические разломы присутствуют в любом горном массиве на любой территории. Именно к тектоническим разломам чаще всего приурочены месторождения полезных ископаемых — алмазов, металлических руд, углеводородов, подземных вод и др. В узле зон субмеридионального и субширотного тектонических разломов расположены трубки "Комсомольская", "Зарница", "Нюрбинская". Действующие силы в земной коре приводят к тому, что геологическая среда находится в движении, в напряженном состоянии. Эти движения обладают незначительной амплитудой, однако могут оказывать существенное воздействие как на массивы горных пород, так и на инженерные сооружения [1].

Поскольку горные породы всегда перенапряжены, они начинают деформироваться и разрушаться, что проявляется в виде квазилинейных нарушений сплошности, которые разделяют массив горных пород на блоки разного порядка. Масштаб нарушений заключен в весьма широком диапазоне размеров: от  $10^{-8}$  м (дефекты кристаллической решетки породообразующих минералов) до  $10^{7}$  м (протяженность крупных тектонических разрывов) [2].

Работа выполнена в рамках проекта ФНИ (№ гос. регистрации АААА-А17-117121140065-7).

Разломы, трещины, зоны дробления имеют обычно значительно более низкие эффективные прочностные и деформационные характеристики по сравнению с материалом блоков. Именно нарушения сплошности массива горных пород несут ответственность за многие механические, геологические и геофизические процессы и являются важнейшим элементом геосистем [2].

На периферии разлома находится зона влияния, ассоциирующаяся обычно с зоной повышенной, по сравнению с вмещающим массивом, плотностью трещин. Подобные зоны были выделены, детально описаны и названы зонами "динамического влияния разломов". Зону влияния иногда дифференцируют на подзоны интенсивной и повышенной трещиноватости [3, 4].

На границах этих структурных образований инструментально фиксируются деформации, амплитуда которых превышает на один-два порядка соответствующие значения в смежных объемах среды [5, 6]. При этом наблюдаются как медленные движения (их скорость обычно несколько мм/год), так и короткопериодные с более высокими скоростями смещения и периодами в месяцы, а иногда даже часы [7, 8]. Зоны повышенных деформаций оказываются подчас достаточно широкими и могут не совпадать с геологическими разломами [9]. Высокая поведенческая изолированность консолидированных блоковых структур является важнейшим свойством, определяющим способность геофизической среды к релаксации на разных масштабных уровнях. За счет квазинезависимых движений блоков осуществляется диссипация "избыточной" энергии, которой постоянно подпитывается литосфера вследствие экзогенных и эндогенных процессов [2].

Геофизическая характеристика карьера алмазоносной трубки "Зарница". Карьеры алмазоносных трубок в республике Саха (Якутия) расположены в зоне жестких климатический условий Сибири, и характеризуются сложным геомеханическим состоянием массивов горных пород, что отражается на состоянии бортовых откосов карьера. Карьер алмазоносной трубки "Зарница" находится на пересечении тектонических нарушений северного и северо-восточного направлений, ширина приразломных зон которых достигает несколько десятков метров. Северный борт карьера находится под влиянием водонасыщенного слоя. В 2017 г. на дневной поверхности этого борта для отвода вод был выполнен ров, в 2018 г. — работы по разносу северного борта.

Во время сезонного оттаивания, слой которого составляет 2.0-2.5 м от поверхности грунта происходят наиболее сильные блоковые подвижки, приводящие к обрушениям бортов карьера, что представляет непосредственную опасность при движении горной техники по транспортным магистралям. Для осуществления наблюдений за геомеханическим состоянием таких геологических систем необходимы многоканальные измерительные комплексы с большой измерительной базой.

Карьер алмазоносной трубки "Зарница" расположен от г. Удачного, где находится ГОК, на расстоянии около 15 км. На карьере в конце 2019 г. развернута измерительно-вычислительная система с тросиковым и лазерным датчиками [10]. Информация от системы передается по радио-каналу в Управление ГОКа в службу геотехнического мониторинга.

**Описание установленной системы.** Базовый вариант разработанной измерительно-вычислительной системы включает в себя два датчика, два ретранслятора, блок приема-передачи информации и оконечное приемное устройство с сервером. Схема установленной системы на карьере алмазоносной трубки "Зарница" представлена на рис. 1a, карта карьера с указанием мест установки датчиков — на рис.  $1\delta$ .

Для организации приема информации по радиосвязи в Центр сбора информации ЦСИ блоком приема-передачи информации БППИ от датчиков потребовалось установить на дневной поверхности карьера ретрансляторы Р1 и Р2, так как прямая радиовидимость между датчиками и БППИ отсутствует. От датчика Д1 информация передается сначала на ретранслятор Р2, а затем ретранслятор Р1. С ретранслятора Р1 информация с обоих датчиков поступает в блок приема-передачи информации БППИ, установленный в операторской карьера. Далее, информация передается в службу геомеханического мониторинга в административном здании ГОКа, расположенном в г. Удачный на расстоянии около 15 км от карьера.

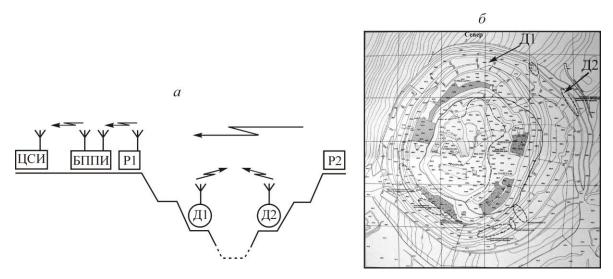



Рис. 1. Схема установленной системы (а) и карта карьера с указанием мест датчиков (б)

В датчике Д1 в качестве первичного преобразователя "смещение—напряжение" используется тросиковый потенциометр типа RX50, измерительная база равна 10 м. В датчике Д2 реализован принцип измерения расстояний с помощью лазерного излучателя-приемника и отражателя. Измерительная база составляет 69 м.

**Результаты мониторинга по** датчикам. Датчик Д1 установлен на северо-восточном борту карьера на гор. +380. Результаты мониторинга за период с 02.10.2019 по 28.11.2019 приведены на рис. 2.

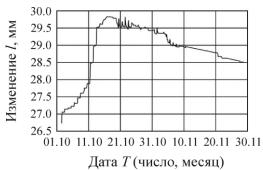



Рис. 2. Результаты мониторинга датчика Д1 в период с 02.10.2019 по 28.11.2019

В период с 02.10 по 17.10 наблюдается увеличение ширины приразломной зоны, изменение которой l составило +3.1 мм, скорость приращения — 0.2 мм/сут, затем в течение с 17.10 по 28.10 ширина зоны уменьшилась на 1.3 мм. Эти подвижки геоблоков в приразломной зоне северо-восточного борта карьера привели к обрушению на контролируемом участке бортового откоса на гор. +380 м (рис. 3).



Рис. 3. Обрушение горной массы на северо-восточном борту карьера

Датчик Д2 установлен на северном борту карьера на гор. +405 м. Время мониторинга по Д2 разделено на два периода: с 02.10.2019 по 10.11.2019 (рис. 4a) и с 19.11.2019 по 08.11.2019 (рис. 4b). За первый период изменение l ширины зоны характеризуется отрицательным трендом, максимальное составило порядка -2 мм, во втором периоде направление тренда сменилось на положительное и стало +2.7 мм.

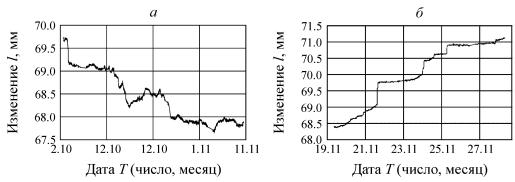



Рис. 4. Результаты мониторинга датчика Д2: a — 02.10.2019 – 10.11.2019;  $\delta$  — 19.11.2019 – 28.11.2019

Анализируя информацию по этим двум датчикам, можно предположить, что "клин" массива горных пород карьера, образованный разломами северного и северо-восточного направлений, с 02.10 по 17.10 двигался на север со смещением 3.1 мм, а затем — на северо-восток со смещением 2 мм.

### выводы

Карьер алмазоносной трубки "Зарница" расположен в месте пересечения квазиперпендикулярных тектонических разломов. Тектонические разломы характеризуются широким диапазоном ширины приразломной зоны, достигающей значений нескольких десятков метров. Для осуществления наблюдения за геомеханическим состоянием таких геологических систем необходимы измерительные комплексы с большой измерительной базой. Измерительно-вычислительная система, установленная на карьере, включает два измерительных датчика с базами 10 м и 69 м.

Измерения ширины приразломных зон трещиноватости проводились на бермах гор. +380 м и +405 м в северном и северо-восточном бортах карьера в период с 02.10.2019 по 28.11.2019 г.

Максимальные изменения ширины приразломной зоны по северном борту карьера гор. +380 м составило +3.1 мм, по северо-восточному на гор. +405 м — +3.4 мм. Зарегистрировано движение участка массивов горных пород между разломами на северном и северо-восточном бортах карьера сначала в северном, а затем в северо-восточном направлениях. Приращения смещений за период наблюдений составляют 2-3 мм. Знакопеременные движения приразломных геоблоков приводят со временем к обрушениям горной массы на участках тектонических разломов в бортовых откосах карьера.

#### СПИСОК ЛИТЕРАТУРЫ / REFERENCES

- 1. Sherman S. I. Tectonophysical parameters of lithosphere faults, selected methods of study and examples of use. Institute of the Earth's Crust SB RAS, Irkutsk, 2009. [Шерман С. И. Тектонофизические параметры разломов литосферы, избранные методы изучения и примеры использования. Иркутск: Институт земной коры СО РАН, 2009.]
- **2. Kocheryan G. G.** Fault geomechanics, Institute of Geosphere Dynamics, Moscow, 2016. [**Кочерян Г. Г.** Геомеханика разломов. М.: Институт динамики геосфер, 2016.]
- **3. Sherman S. I., Bornyakov S. A., and Buddo V. Yu.** Areas of dynamic influence of faults (simulation results), Novosibirsk, Nauka, 1983, 110 pp. [Шерман С. И., Борняков С. А., Буддо В. Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 110 с.]

- **4. Seminsky K. Zh.** Internal structure of continental fault zones. Tectonophysical aspect, Novosibirsk, publishing house of SB RAS, Branch "Geo", 2003, 243 pp. [Семинский К. Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, Филиал "Гео", 2003. 243 c.]
- **5. Modern geodynamics** and oil and gas content, Moscow, Nauka, 1989, 199 pp. [Современная геодинамика и нефтегазаносность. М.: Наука, 1989. 199 с.]
- **6. Kanamori H. and Brodsky E. E.** The physics of earthquakes, Reports on Progress in Physics, 2004, vol. 6, pp. 1429–1496. [**Канамори H., Бродский Е. Е.** Физика землетрясений: доклады о прогрессе в физике. 2004. Вып. 6. С. 1429–1496.]
- 7. **Kuzmin Yu. O.** Modern superintensive deformations of the earth's surface in the zones of platform faults, Geological Study and Use of the Subsurface, Moscow, Geoinformmark, 1996, Issue 4, pp. 43–53. [Кузьмин Ю. О. Современные суперинтенсивные деформации земной поверхности в зонах платформенных разломов // Геологическое изучение и использование недр. М.: Геоинформмарк, 1996. Вып. № 4. С. 43–53.]
- **8. Kuzmin Yu. O.** Modern anomalous geodynamics of aseismic fault zones, Department of Earth Sciences of the Russian Academy of Sciences, 2002, no. 1 (20), 27 pp. [**Кузьмин Ю. О.** Современная аномальная геодинамика асейсмичных разломных зон // ОНЗ РАН. 2002. № 1 (20). 27 с.]
- **9. Kuzikov S. I. and Mukhamediev Sh. A.** Structure of the field of modern speeds of the earth's crust in the area of the Central Asian GPS network, Physics of the Earth, 2010, no. 7, pp. 33−51. [**Кузиков С. И., Мухамедиев III. А.** Структура поля современных скоростей земной коры в районе Центрально-Азиатской GPS сети // Физика Земли. 2010. № 7. С. 33−51.]
- **10.** Vostrikov V. I., Polotnyanko N. S., Trofimov A. S., and Potoka A. A. Monitoring of the geomechanical state of rock massifs at the quarry of the diamond-bearing tube "Zarnitsa", Fundamental and Applied Mining Science, 2019, vol. 6, no. 2, pp. 35–39. [Востриков В. И., Полотнянко Н. С., Трофимов А. С., Потака А. А. Мониторинг геомеханического состояния массивов горных пород на карьере алмазоносной трубки "Зарница" // Фундаментальные и прикладные вопросы горных наук. 2019. Т. 6. № 2. С. 35–39.]