УДК 532.59

ТРАНСФОРМАЦИЯ ПРЕРЫВНОЙ ВОЛНЫ НА УСТУПЕ ДНА КАНАЛА

А. А. Малышева, И. А. Малышева

Новосибирский государственный архитектурно-строительный университет (Сибстрин), 630008 Новосибирск E-mail: bukreev@hydro.nsc.ru

Приведены результаты экспериментального исследования прямых и отраженных волн типа бора в окрестности резкого изменения отметки дна канала. Показано, что в условиях, характерных для аварийных ситуаций на судоходном шлюзе, высота волн может достигать 8 м.

Ключевые слова: жидкость, свободная поверхность, прерывные волны, эксперимент.

Введение. Термин "прерывная волна" используется для волны в нижнем бьефе после разрушения плотины [1]. Как правило, на начальном этапе она имеет вид классического движущегося гидравлического прыжка, затем трансформируется в ондулярный прыжок. Для движущегося гидравлического прыжка используется термин "бор" [2]. Аналогичные волны образуются при разрушении ворот судоходного шлюза. В этом случае на картину волн существенное влияние оказывает то, что в створе ворот имеется резкое понижение дна вниз по потоку (уступ). В частности, в определенных условиях за уступом образуются два движущихся друг за другом гидравлических прыжка [3–5]. Прерывные волны образуются также при входе в реку цунами или приливной волны, оползне берега водоема, падении метеорита или обломка скалы, резкой остановке танкера или наклонного судоподъемника, захлестывании волнами палубы судна и в других случаях.

Для расчета прерывных волн используются первое приближение теории мелкой воды [2–4, 6], уравнения Сен-Венана [1, 7, 8] и метод конечного контрольного объема [9]. Перспективен также метод расчета на основе математической модели работы [10], в которой учитывается процесс турбулентного перемешивания в гидравлическом прыжке. Этот метод позволяет описывать реальную форму гидравлического прыжка, тогда как в других методах все пять возможных форм прыжка моделируются скачком уровня свободной поверхности. Из экспериментальных работ можно выделить [11–13].

Актуально исследование процесса трансформации прерывных волн на неровностях дна. В задаче о разрушении плотины такая информация необходима для учета влияния местных гидравлических сопротивлений. В задаче о разрушении ворот судоходного шлюза представляет интерес аварийная ситуация, в которой происходит разрушение ворот между подходным каналом и верхней камерой при открытых вторых (сверху) воротах и закрытых третьих воротах. Эта ситуация может быть особенно опасной для судна, шлюзующегося из нижнего бьефа и находящегося в момент аварии в нижней камере.

В данной работе приводятся результаты экспериментальных исследований процесса трансформации прерывных волн на неровности дна в виде уступа, которые могут быть

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 04-01-00040) и интеграционной программы № 3.13.1 СО РАН.

Рис. 1. Схема экспериментальной установки (размеры в м): 1 — бассейн; 2 — канал; 3 — плоский щит; 4 — уступ

использованы при проверке различных методов расчета. Такие расчеты пока не выполнялись, поскольку упомянутые выше методы требуют достаточно сложной адаптации к этой задаче.

Методика эксперимента. Схема эксперимента представлена на рис. 1, где приведена также используемая система координат. Опыты выполнялись в прямоугольном канале шириной 0,2 м. Уступ высотой b = 0,072 м располагался на расстоянии l = 2,4 м от правого закрытого конца канала. Левый открытый конец канала присоединялся к бассейну шириной 1 м. Таким способом имитировались граничные условия, типичные для судоходного шлюза, перед которым имеется аванпорт с большой площадью свободной поверхности. Начальный перепад уровней свободной поверхности $h_- + b - h_+$ создавался с помощью плоского щита, расположенного на расстоянии $l_1 = 1,21$ м выше по потоку от уступа. Для параметра h_+ в начальных условиях следует различать диапазоны $h_+ \leq b$ ("сухое дно" на участке от щита до уступа) и $h_+ > b$ ("обводненное дно"). Параметры b, l, l_1 в опытах не менялись. Начальные уровни свободной поверхности определялись мерными иглами с абсолютной погрешностью не более 0,05 см. В верхнем бьефе глуби́ны измерялись от дна канала перед уступом, в нижнем бьефе — от дна за уступом.

В момент времени $t_0 = 0$ щит удалялся из канала вручную. Закон его движения регистрировался реохордным датчиком. Отклонение свободной поверхности от начального уровня η как функция времени t в заданных точках по продольной координате x измерялось волномерами, принцип работы которых основан на различии электрической проводимости воды и воздуха. Разрешающая способность волномеров составляла 0,2 мм. Верхняя граница частоты колебаний, отслеживаемой волномерами с погрешностью не более 10 %, составляла 10 Гц. Использовалась также фотосъемка. Обработка первичного материала осуществлялась на компьютере.

В эксперименте возникают трудности при измерении скорости распространения рассматриваемых волн. Прежде всего, строгое определение скорости распространения можно дать лишь для стационарных волн, когда их форма неизменна в системе координат, движущейся с волной, или для автомодельных решений. Условия стационарности или автомодельности, строго говоря, не выполняются из-за диссипации энергии. Другим осложняющим фактором является наличие нестабильного вальца на переднем фронте классического гидравлического прыжка. В эксперименте в качестве скорости распространения волны принимается скорость перемещения выделенной точки на профиле волны. Экспериментальные данные получены для средней по высоте точки переднего фронта волны по результатам измерений времени перемещения Δt этой точки на заданном интервале продольной координаты Δx между двумя неподвижными волномерами. Существенное значение имеет координата x середины интервала Δx , к которой отнесены измеренные значения $D = \Delta x / \Delta t$. В опытах выбирались такие значения x (вниз по потоку), на которых глубина за прыжком была постоянной. Значения Δx варьировались от 20 до 40 см при прочих равных условиях. При этом различие результатов измерений находилось в пределах случайной погрешности, обусловленной нестабильностью вальца гидравлического прыжка. Для уменьшения случайной погрешности осреднялись. Тем не менее погрешность экспериментального определения D была больше погрешности определения характерных глубин.

Результаты опытов. На рис. 2 показан график закона движения нижней кромки щита $z_*(t)$ (кривая 1), по которому определяется время выхода щита из воды. Оно не превышало 0,05 с. Там же приведены кривые уровня свободной поверхности $\eta(t)$ в трех точках по продольной координате (кривые 2–4). Волномер не различает направления движения волн (на рисунке их передний фронт расположен слева). В соответствии со схемой, представленной на рис. 1, волны распространялись слева направо. В данном примере высота волн была наибольшей из ее значений, полученных при различных сочетаниях параметров.

В случае ровного дна при значениях $h_{-} = 15$ см и $h_{+} - b = 5$ см, как в рассматриваемом примере, в нижний бьеф распространяется прерывная волна с одним гидравлическим прыжком [3, 11], средняя высота переднего фронта которого (разность уровней свободной поверхности за прыжком и перед ним без учета ондуляций) $a/h_{-} = 0,22$. При наличии уступа высотой $b/h_{-} = 0,48$ прямая волна в нижнем бьефе также имела форму одного гидравлического прыжка. Высота прыжка зависит от x. На рис. 2 видно, что выше уступа (кривая 3, $x/h_{-} = -2,73$) эта величина на 45 % больше, непосредственно на уступе (кривая 4, $x/h_{-} = 0$) на 16 % меньше, на некотором расстоянии вниз по потоку от уступа (кривая 2, $x/h_{-} = 8,0$) на 22 % больше, чем в случае ровного дна. Как и в случае ровного дна, за передним фронтом прыжка имеются ондуляции. Относительный размах ондуля-

Рис. 2. Закон движения щита (кривая 1) и колебания уровня в трех характерных точках (кривые 2–4) при b=7,2 см, $h_-=15$ см, $h_+-b=5$ см: 2-x=120 см; 3-x=-41 см; 4-x=0

ций (разность уровней между первым гребнем и первой впадиной, отнесенная к средней высоте прыжка) вниз по потоку возрастает: 32 % при $x/h_{-} = -2,73, 53$ % при $x/h_{-} = 0$ и 70 % при $x/h_{-} = 8,0$. Характерный период ондуляций $T\sqrt{g/h_{-}} = 2,70$, характерная длина (расстояние между соседними гребнями) $\lambda/h_{-} = 2,82$ (g — ускорение свободного падения). При фиксированном значении x уровень свободной поверхности выходит со временем на постоянное значение, причем в подтопленном режиме это значение перед уступом и за ним одинаково (кривые 2, 3 на рис. 2). Непосредственно на уступе (кривая 4) в подтопленном режиме это значение меньше, чем перед уступом и за ним. По определению [14] режим сопряжения бьефов называется неподтопленным, если процессы в нижнем бьефе не влияют на процессы в верхнем бьефе, и подтопленным в противном случае.

На рис. 2 на оси абсцисс отмечены три характерных момента времени: t_1 — время добегания волны понижения уровня до левого открытого конца канала, t_2 — время добегания прерывной волны до правого закрытого конца канала, t_3 — время добегания волны понижения уровня до левой торцевой стенки бассейна, моделирующего аванпорт шлюза (см. рис. 1). Во все эти моменты времени происходят качественные изменения картины волн. В частности, при t_2 наблюдается высокий заплеск воды на стенку [15], а вверх по потоку распространяется прыжок, который в данном примере имел форму ондулярного бора. Из рис. 2 следует, что уровень свободной поверхности, соответствующий гребням ондуляций в отраженной волне, превышает начальный уровень верхнего бьефа, что может вызвать излив большой массы воды через боковые стенки шлюза [13].

Обозначим постоянную глубину за прыжком до прихода к волномеру отраженной волны через h_{as} . В интервале $x \leq 0$ эта величина измерялась от дна до уступа, а при x > 0 от дна за уступом. На рис. З приведена зависимость h_{as} от h_+ при четырех значениях $x \leq 0$: в створе щита (кривая 4), непосредственно над уступом (кривая 1) и в двух промежуточных точках (кривые 2, 3). Глубина h_+ измерялась от дна за уступом, поэтому ее значение может быть на высоту уступа больше начальной глубины верхнего бьефа h_- , которая измерялась от дна до уступа (см. рис. 1).

Из рис. 3 следует, что при $h_+ \leq b$ и всех $x \leq 0$ величина h_{as} не зависит от h_+ . В створе щита (кривая 4) такая независимость сохраняется в более широком интервале $h_+ \leq b+0,138h_-$ (штриховая линия 6), причем числовой коэффициент 0,138 такой же, как в случае разрушения плотины над ровным дном [2]. Это верхняя граница неподтопленного режима. В случае ровного дна при $h_+ \leq b + 0,138h_-$ в створе щита устанавливается глубина, равная $4h_-/9$ [2]. Кривая 4 подтверждает этот теоретический результат и в случае дна с уступом, если щит располагается достаточно далеко вверх по потоку.

Глубина над уступом меньше глубины в створе щита при всех значениях h_+ . По данным, приведенным на рис. 3, в интервале $h_+ \leq b$ отношение этих глубин постоянно и равно 3/4. Таким образом, опыты показали, что в бесконечно длинном канале на достаточно больших временах и при $h_+ \leq b$ рассматриваемое течение определяется двумя характерными глубинами: критической глубиной $h_* = 4h_-/9$ в створе щита и глубиной $h_*^0 \approx h_*/1,33$ над уступом, если расстояние от щита до уступа достаточно большое. Опыты [12] показали также, что при расположении щита непосредственно над уступом здесь устанавливается так называемая вторая критическая глубина $h_{**} \approx h_*/1,3$.

На рис. 4 в безразмерном виде приведены графики функции $h_{as}(h_+)$ при трех значениях x > 0 (за уступом), а также график функции $h_{as}^1(h_+)$ при x = 150 см (h_{as}^1 — средняя глубина за отраженной волной). При $h_+/h_- > b/h_-$ экспериментальные точки при различных значениях x для прямых волн ложатся на универсальную кривую, что свидетельствует о существовании автомодельного режима движения. При $h_+/h_- < b/h_-$ экспериментальные точки, соответствующие x = 40 см, расположены ниже точек, соответствующих большим значениям x. Это следствие локального понижения глубины при

Рис. 3. Асимптотические глубины за прямыми волнами при $x \leq 0, b = 7,2$ см, $h_- = 15$ см, $h_+ - b = 5$ см:

 $1-x=0;\ 2-x=-11$ см; 3-x=-41см; 4-x=-121см; 5— высота уступа; 6— теоретическая верхняя граница неподтопленного режима

Рис. 4. Асимптотические глубины за прямыми волнами h_{as} (кривые 1–3) и за отраженной волной h_{as}^1 (кривая 4) при x > 0, b = 7,2 см, $h_- = 15$ см, $h_+ - b = 5$ см: 1 - x = 40 см; 2 - x = 80 см; 3, 4 - x = 150 см; 5 — высота уступа

натекании струи, падающей с уступа, на дно канала. Для отраженных волн автомодельность имела место при всех значениях $0.27 \leq x/h_{-} \leq 10$. На рис. 4 приведены данные только при $x/h_{-} = 10$.

Для случая расположения щита непосредственно над уступом согласно теории [3, 4] и экспериментальным данным [12] за порогом могут распространятся прерывные волны с одним и двумя, движущимися друг за другом, прыжками. Такие же формы волн наблюдались в обсуждаемых опытах с расположением щита выше по потоку от уступа. Для этого случая в первом приближении границу, разделяющую области существования этих форм, можно определить по алгоритму, представленному в [3, 4], или по графику, приведенному в работе [12, с. 68].

Зависимость скорости распространения переднего фронта волны D от глубины за щитом h_+ при двух значениях x приведены на рис. 5. При x < 0 эта зависимость практически такая же, как в случае ровного дна [16]. В частности, при $h_+ < b$ волна на участке x < 0распространяется по сухому дну. В этом случае согласно теории [2] $D = 2\sqrt{gh_-}$. Как и в случае ровного дна [16], в данных опытах получено меньшее значение, близкое к предельной скорости распространения уединенных волн: $D \approx c_{**} = 1,3\sqrt{gh_-}$. Погрешность измерения D показана отрезком вертикальной прямой. На участке x < 0 эта скорость постоянна. При $h_+ > b$ волна на участке x < 0 распространяется по обводненному дну. В этом случае экспериментальные данные достаточно хорошо согласуются с теоретическими [2].

При достаточно больших x > 0 и $h_+ > b$ полученные данные для $D(h_+)$ также мало отличаются от теоретических и экспериментальных результатов в случае расположения щита над уступом [12]. При $h_+ < b$ положение щита существенно влияет на D. При расположении щита непосредственно над уступом скорость распространения переднего фронта волны с уменьшением h_+ увеличивается более значительно, чем в обсуждаемых опытах.

Рис. 5. Зависимость скорости распространения переднего фронта прямой волны от начальной глубины за уступом при b = 7,2 см, $h_- = 15$ см: 1 - x = -26 см; 2 - x = 135 см; 3 — высота уступа

Заключение. Экспериментальные данные получены при таких значениях x и t, когда трение на стенках несущественно влияет на волновые процессы. Поэтому переход от модели к натурному объекту может выполняться по критерию Фруда. Параметры h_- и b в рассмотренном примере в масштабе 1 : 100 соответствуют параметрам судоходного шлюза Новосибирской ГЭС. Полученные данные показывают, что в описанной выше аварийной ситуации первый подъем уровня свободной поверхности на прямой волне достигает с учетом ондуляций 5,8 м. Второй подъем уровня на отраженной волне еще больше и с учетом ондуляций достигает 7,8 м. Возможен также продолжительный излив через борта камеры.

Авторы выражают благодарность В. И. Букрееву и А. В. Гусеву за помощь в работе.

ЛИТЕРАТУРА

- 1. Васильев О. Ф., Гладышев М. Т. О расчете прерывных волн в открытых руслах // Изв. АН СССР. Механика жидкости и газа. 1966. № 6. С. 184–189.
- 2. Стокер Дж. Дж. Волны на воде. Математическая теория и приложения. М.: Изд-во иностр. лит., 1959.
- 3. Атавин А. А., Васильев О. Ф. Оценка возможных последствий аварий на судоходном шлюзе, связанных с разрушением затворов его камер // Тез. докл. Междунар. симпоз. "Гидравлические и гидрологические аспекты надежности и безопасности гидротехнических сооружений", Санкт-Петербург, 28 мая — 1 июня 2002 г. СПб.: Всерос. науч.-исслед. ин-т гидротехники, 2002. С. 121.
- 4. Остапенко В. В. Течения, возникающие при разрушении плотины над уступом дна // ПМТФ. 2003. Т. 44, № 6. С. 107–122.
- 5. Букреев В. И., Гусев А. В., Остапенко В. В. Распад разрыва свободной поверхности жидкости над уступом дна канала // Изв. РАН. Механика жидкости и газа. 2003. № 6. С. 72–82.
- Христианович С. А. Неустановившееся движение в каналах и реках // Некоторые новые вопросы механики сплошной среды / С. А. Христианович, С. Г. Михлин, Б. Б. Девисон. М.; Л.: Изд-во АН СССР, 1938. С. 15–154.
- 7. Атавин А. А., Васильев О. Ф., Яненко А. П. Гидродинамические процессы в судопропускных сооружениях. Новосибирск: Наука. Сиб. отд-ние, 1993.

- Васильев О. Ф. Математическое моделирование гидравлических и гидрологических процессов в водоемах и водотоках (обзор работ, выполненных в Сибирском отделении РАН) // Вод. ресурсы. 1999. Т. 26, № 5. С. 600–611.
- 9. Прокофьев В. А. Современные численные схемы на базе метода контрольного объема для моделирования бурных потоков и волн прорыва // Гидротехн. стр-во. 2002. № 7. С. 22–29.
- 10. **Ляпидевский В. Ю., Тешуков В. М.** Математические модели распространения длинных волн в неоднородной жидкости. Новосибирск: Изд-во СО РАН, 2000.
- Dressler R. F. Comparison of theories and experiments for the hydraulic dam-break wave // Intern. Assoc. Sci. Hydrology. 1954. V. 3, N 38. P. 319–328.
- 12. Букреев В. И., Гусев А. В. Гравитационные волны при распаде разрыва над уступом дна открытого канала // ПМТФ. 2003. Т. 44, № 4. С. 64–75.
- 13. Дегтярев В. В., Шаталина В. Н., Букреев В. И. и др. Экспериментальное исследование гидродинамических аспектов развития чрезвычайных аварийных ситуаций на судоходных шлюзах // Изв. вузов. Стр-во. 2002. № 5. С. 70–75.
- 14. Киселев П. Г. Справочник по гидравлическим расчетам. М.: Госэнергоиздат, 1957.
- Букреев В. И. Заплеск воды на вертикальную стенку при распаде разрыва над уступом // ПМТФ. 2003. Т. 44, № 1. С. 71–76.
- 16. Букреев В. И., Гусев А. В., Малышева А. А., Малышева И. А. Экспериментальная проверка газогидравлической аналогии на примере задачи о разрушении плотины // Изв. РАН. Механика жидкости и газа. 2004. № 5. С. 143–152.

Поступила в редакцию 9/VIII 2004 г.