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Выполнен анализ распределения энергии в угольно-породных образцах при их нагруже-
нии. Установлено, что разница накопленной энергии между углем и породой в основном 
зависит от их модулей упругости. На основе рассмотрения структурных характеристик 
и механических свойств угля и породы построена и проанализирована механическая мо-
дель угольно-породного тела и получена формула распределения энергии по компонентам. 
По результатам нагрузочных испытаний разработана энергетическая модель, позволяющая 
рассмотреть процесс деформирования угольно-породного тела. Предложен оценочный ко-
эффициент склонности угольно-породного тела к ударному разрушению, учитывающий 
разницу энергии упругой деформации между компонентами и время высвобождения энер-
гии. Этот коэффициент можно рассматривать в качестве критерия для оценки склонности 
угольно-породной среды к горному удару. 

Горное дело, система “уголь – порода”, составной материал, адгезивы, анализ физических 
свойств, хрупкое разрушение, дефект материала, коэффициент склонности к горному удару 
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Китай является крупнейшим производителем и потребителем угля, на долю которого 
приходится примерно 45 % от общемировой отработки мощных угольных пластов [1, 2]. 
В настоящее время в Китае наблюдается плавный переход к эксплуатации глубоко залегающих 
угольных пластов. Добыча угля на глубине свыше 1000 м осуществляется на 63 шахтах. Среднее 
увеличение глубины добычи находится в диапазоне 10 – 25 м в год. Следует отметить, что это 
общемировая тенденция. Так, в ЮАР глубина добычи превысила 4000 м [3].  

 

Работа выполнена при поддержке Национального фонда естественных наук Китая (№ 52304142) и Фонда фунда-
ментальных исследований колледжей и университетов Автономного региона Внутренняя Монголия 
(2023QNJS108). 
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Добыча полезных ископаемых на большой глубине сопряжена с высокой частотой динами-
ческих катастрофических явлений, наиболее серьезный из которых — горный удар. В 2021 г. 
в Китае зафиксировано 26 случаев горных ударов, включая 4 катастрофических, в результате 
которых погибло в общей сложности 38 человек. Несмотря на постоянное совершенствование 
систем предупреждения и мониторинга, горные удары несут угрозу безопасности и технологи-
ческому процессу угледобычи.  

Горный удар представляет собой динамическое явление, характеризующееся кратковре-
менной потерей устойчивости углепородного массива под действием горного давления. Ос-
новная черта горного удара заключается во внезапном высвобождении накопленной энергии. 
В этой связи в [4, 5, 6] выполнена оценка склонности угольно-породного тела (УПТ) к горному 
удару. В [7, 8] рассмотрены механизм диссипации энергии из УПТ в процессе нагружения 
и возможность горного удара в зависимости от энергии акустической эмиссии. В [9] исследо-
ван механизм эволюции энергии в УПТ в условиях равномерной и циклической одноосной 
нагрузки. В [10, 11] выполнен анализ постпиковой характеристики разрушения УПТ 
с энергетической точки зрения и построена нелинейная модель соотношения напряжения и де-
формации. В [12] изучены параметры энергетического перераспределения и деформационного 
разрушения УПТ, в [13] с этой целью разработана трехмерная модель. В [14] установлен меха-
низм накопления и высвобождения энергии в УПТ с разными углами падения. В [15] рассмот-
рена интенсивность перераспределений упругой энергии в УПТ с разными модулями упруго-
сти и соотношениями угля к породе. В [16] исследовано влияние доли породного компонента 
на механические свойства и характеристики акустической эмиссии в УПТ. В [17] при оценке 
развития внутренних трещин методами компьютерной томографии и акустической эмиссии 
установлено, что механические свойства и характер разрушения УПТ в основном зависят 
от угольного компонента. В [18] приведены характеристики акустической эмиссии и накопле-
ния энергии газосодержащего УПТ, в [19] — механические свойства и характеристики накоп-
ления энергии УПТ в условиях высокой скорости нагружения.  

Проходка подземных выработок и отработка выемочных камер меняет изначально равно-
весное напряженное состояние массива, в результате формируются области концентрации 
напряжений в их окрестностях. Из-за антропогенного воздействия на массив происходит быст-
рое повреждение структуры окружающего угля и породы на большой площади, что приводит 
к горным ударам. Угольно-породный массив вблизи выработки находится под воздействием 
значительных напряжений. Такое состояние можно считать крайне неустойчивым со значи-
тельной вероятностью разрушения. 

Анализ большого количества катастрофических явлений показывает, что горный удар яв-
ляется результатом не только поведения угля или породы в отдельности, но и результатом их 
взаимодействия. В этой связи для составления наиболее адекватных практических инженерных 
рекомендаций необходимо изучать динамические характеристики угольно-породного массива 
с точки зрения наиболее приближенной к его фактическому состоянию. 

В рамках настоящей работы на основе рассмотрения структурных характеристик и механи-
ческих свойств угля и породы построена модель комбинированного угольно-породного тела, 
для которого выведена расчетная формула определения количества накапливаемой энергии. 
Механизм накопления энергии в УПТ изучен в условиях одноосного сжатия. Выполнен анализ 
особенностей процесса накопления энергии и степени разрушения УПТ. По результатам анали-
за разработана энергетическая модель на основе теории диссипативных структур и предложен 
коэффициент склонности УПТ к горному удару с целью получения надежного инструмента для 
точного определения устойчивости и склонности системы “уголь – порода” к горному удару. 
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РАСЧЕТНАЯ ФОРМУЛА НАКОПЛЕННОЙ ЭНЕРГИИ ПРИ РАЗРУШЕНИИ  
УГОЛЬНО-ПОРОДНОГО ТЕЛА 

Теоретический анализ разницы количества накапливаемой энергии между углем и породой 
при одинаковом уровне напряжений. Каждая порода в системе “уголь – порода” обладает раз-
личными физико-механическими свойствами, такими как модуль упругости, коэффициент 
Пуассона и т. д., а также различными характеристиками накопления энергии. В общем виде 
в условиях одноосного сжатия количество объемной плотности накопленной энергии можно 
определить следующим образом:  

 21 1
2 2

U
E

= =εσ σ ,                   (1) 

где U — плотность накопленной энергии в породе; ε — относительная деформация породы; 
σ — напряжение в породе.  

Если известны значения модуля упругости, деформации и напряжения, то можно оценить 
плотность накопленной энергии упругости в породе. Согласно (1), энергия упругой деформа-
ции имеет положительную корреляцию с напряжением и отрицательную корреляцию 
с модулем упругости породы, т. е. чем больше модуль упругости при одинаковом напряжении, 
тем меньше количество накопленной энергии упругой деформации.  

На рис. 1. представлены величины плотности накопленной энергии в известняке, сланце, 
мелкозернистом и среднезернистом песчанике, а также угля 1 и угля 2 при двух уровнях 
напряжения, определяемого их прочностями на сжатие. Согласно [10], модуль упругости угля 1 
составляет 4.49 ГПа, прочность на сжатие — 15.84 МПа; модуль упругости угля 2 — 2.31 ГПа, 
прочность на сжатие — 27.49 МПа. Видно, что в данных условиях модуль упругости рассмат-
риваемых типов породы (угля) постепенно уменьшается, а количество накопленной энергии 
увеличивается. Прочность угля 1 на одноосное сжатие меньше прочности угля 2, поэтому 
уголь 2 не может достигнуть уровня напряжения угля 2.  

 
Рис. 1. Характеристики накопления энергии различными горными породами 

На рис. 2 показана связь отношения модулей упругости породы и угля и разницы плотно-
сти, накопленной углем и породой энергии, при одинаковом уровне напряжения по данным ра-
бот [10, 20]. Чем меньше отношение модулей упругости породы и угля, тем меньше разница 
между количеством накопленной энергии в угле и породе. При одинаковом уровне напряжения 
это следует из зависимости: 
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где Ec, Er — модули упругости угольного и породного компонентов соответственно; Uc, Ur — 
количество плотности накопленной энергии в угольном и породном компонентах соответ-
ственно; σ — уровень напряжения. 

 

Рис. 2. Разница плотности энергии упругой деформации между различными типами породы 
и углем: 1 — известняк; 2 — сланец; 3 — мелкозернистый песчаник; 4 — среднезернистый пес-
чаник 

В системе “уголь – порода“ накопление энергии происходит в результате действия горного 
давления. Если опустить собственный вес угля и породы, то угольные и породные тела будут 
накапливать разное количество энергии при одинаковом уровне горного давления. Отметим, 
что оценочное значение модулей угля и породы, приведенное в [10], недостаточно точное для 
обработки данных эксперимента, поэтому возникает разница с фактическим значением количе-
ства накопленной энергии. 

Расчетная формула накопленной энергии при разрушении угольно-породного тела. Для 
исследований применялся метод определения накопления энергии угольного и породного 
компонентов УПТ: по результатам испытаний на сжатие определялась кривая 
“напряжение – деформация”, затем устанавливалась площадь, заключенная между кривой 
до пикового значения деформации и горизонтальной осью. Это и будет составлять накоп-
ленную энергию.  

Расчетная формула детально рассмотрена на примере УПТ с одинаковым диаметром ком-
понентов. Прочность породы на сжатие значительно превышает прочность угля. При нагруже-
нии в момент разрушения угля порода находится в стадии упругой деформации [21]. На основе 
структурных характеристик и механических свойств угля и породы построена механическая 
модель УПТ (рис. 3).  

Со стороны испытательной машины к УПТ прикладывается осевое усилие F, под его 
воздействием образец постепенно сжимается. В первую очередь происходит разрушение 
угольного компонента, и в этот момент порода находится в стадии упругой деформации. 
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Опустим малое рассеивание энергии в породе и упростим породу до упругого тела, которое 
представлено в модели в виде пружины. Примем усилие на верхнем торце породного ком-
понента как F1, а площадь торца как S1, тогда напряжение на этом торце σ1 будет опреде-
ляться следующей формулой:  

 1
1

1

Fσ
S

= .              (3) 

 
Рис. 3. Механическая модель деформирования угольно-породного тела 

Исходя из условия равновесия, напряжение на верхнем F1 и нижнем F2 торцах образца, 
а также на границе раздела F3 будут равны между собой: 

 1 2 3 2
Fσ σ σ
πr

= = = .            (4) 

Угольно-породные формации состоят из нескольких породных слоев с уникальными меха-
ническими свойствами, поэтому испытания на одноосное сжатие выполнены при условии, что 
УПТ является единым телом. Для регистрации относительной деформации УПТ в целом ис-
пользовался длинный тензодатчик, для определения относительной деформации угольного 
компонента — короткий тензодатчик. В результате испытаний получена кривая “напряжение –
 деформация” как для всего УПТ, так и для угольного компонента в отдельности (рис. 3). 
На основании развития двух кривых получено значение общей предпиковой накопленной 
энергии E в УПТ, которое определяется площадью S(Onε2) между кривой до пикового значе-
ния деформации и горизонтальной осью. Значение предпиковой накопленной энергии 
в угольном компоненте Ec также обусловлено площадью (Omε1) между кривой до пикового 
значения деформации и горизонтальной осью. Накопленная энергия в породном компоненте 
определяется разностью между общей накопленной энергией и накопленной энергией 
в угольном компоненте: 

 2 1( ) ( )r cE E E S Onε S Omε= - = - .        (5) 

Данный метод позволяет проанализировать энергетическую пропорцию угольно-породного 
материала перед разрушением с помощью экспериментальных данных испытаний УПТ, а так-
же изучить механизм распределения энергии в УПТ перед разрушением. Исходя из описанного 
подхода, можно получить формулу расчета распределения энергии по компонентам для УПТ с 
разными диаметрами компонентов. В этом случае усилия, воздействующие на компоненты на 
границе раздела, будут равны между собой Fc = Fr. Можно записать соотношение, связываю-
щее напряжения в компонентах и площади их сечений: 
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Здесь σc, σr и Sc, Sr — напряжение и площади сечения угольного и породного компонентов со-
ответственно. 

ИСПЫТАНИЯ УГОЛЬНО-ПОРОДНОГО ОБРАЗЦА НА СЖАТИЕ 

Образец получен из пласта № 12 угольной шахты Hegang группы угледобывающих предпри-
ятий Heilongjiang Longmei. Мощность пласта № 12 составляет 3.4 м, угол падения — 3 – 5°. 
Прочность угля на одноосное сжатие — 14.38 МПа, модуль упругости — 1475 МПа. Кровля 
пласта состоит из крупнозернистого песчаника мощностью 3.5 м. Прочность песчаника на сжа-
тие составила 62.76 МПа, модуль упругости 3938 МПа. В шахте произошло два динамических 
явления (5.04.2018 и 6.01.2021), которые не привели к гибели рабочих или обрушению, однако 
повлияли на процесс добычи. 

Образцы подготовлены в соответствии со стандартами механических испытаний горных 
пород. Отклонение параллельности между торцами не превышает 0.01 мм, разница в диаметре 
между торцами не более 0.02 мм. Процесс подготовки образцов описан в [22]. В ходе испыта-
ний соблюдались следующие требования:  

— общий размер УПТ равен размеру стандартного образца с диаметром 50 мм и высотой 
h = 100 мм. Отношение высоты к диаметру составляет 2 : 1; 

— мощность пласта составляет 3.4 м, мощность кровли — 3.5 м, т. е. отношение мощности 
пласта к мощности кровли примерно равно 1 : 1, поэтому для отражения фактических условий 
отношение угля к породе установлено также на значении 1 : 1; 

— для соединения угольного и породного компонентов применялись способы, разработан-
ные ранее в [9, 23, 24], такое использование близко к реальным условиям границы раздела; 

— к УПТ прикреплены высокоточные тензодатчики для измерения осевой деформации как 
УПТ в целом, так и его компонентов.  

Нагружение УПТ проводилось на установке TAW-2000kH. Испытания проведены при сле-
дующих значениях скорости нагружения: 0.001, 0.005, 0.01, 0.05 и 0.1 мм/с, которые обеспечи-
вают статическое нагружение. Для снижения ошибки испытаний при каждой скорости нагру-
жения выполнены испытания пяти образцов (УПТ). 

АНАЛИЗ МЕХАНИЧЕСКИХ СВОЙСТВ УГОЛЬНО-ПОРОДНОГО ТЕЛА 

Прочность УПТ. В результате нагрузочных испытаний при различной скорости нагружения 
получены значения прочности УПТ, которые представлены на рис. 4а. Видно, что прочность на 
сжатие всех УПТ изменяется в диапазоне 15.48 – 29.50 МПа. Прочность УПТ больше, чем проч-
ность угля в отдельности на 1.10 – 15.12 МПа, т. е. породный компонент оказывает определенное 
влияние на прочность УПТ. При скорости нагружения 0.001, 0.005, 0.01, 0.05 и 0.1 мм/с средняя 
прочность на сжатие составила 17.20, 19.10, 22.66, 25.06 и 26.80 МПа соответственно. При уве-
личении скорости нагружения происходит плавный рост значений прочности на сжатие. 

В результате аппроксимации экспериментальных данных получена зависимость проч-
ности УПТ на сжатие от скорости нагружения y = 26.05 – 9.93 · 1.94x с коэффициентом кор-
реляции 0.97. При скоростях нагружения 0.001, 0.005 и 0.01 мм/с отмечается быстрое уве-
личение прочности, затем оно замедляется и далее стремится к устойчивому значению. Это 
свидетельствует о том, что прочность УПТ на сжатие чувствительна к изменениям малых 
скоростей нагружения.   
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Рис. 4. Прочность на сжатие угольно-породных тел (а) и предпиковая накопленная энергия (б) 
при различных значениях скорости нагружения  

Согласно рис. 4а, при увеличении скорости нагружения повышается дисперсия данных 
прочности на сжатие. Чем больше скорость нагружения, тем больше неустойчивость механи-
ческих свойств УПТ.   

Предпиковая энергия УПТ. Графики зависимостей “напряжение – деформация” из-за их 
большого размера не представлены в статье. С помощью ПО Origin определена площадь между 
кривой до пикового значения деформации и горизонтальной осью, т. е. предпиковой накоплен-
ной энергии. По полученным результатам построен соответствующий график (рис. 4б).  

Средняя предпиковаяя накопленная энергия при скорости нагружения 0.001, 0.005, 0.01, 0.05 
и 0.10 мм/с составила 0.134, 0.217, 0.354, 0.570 и 0.808 кДж соответственно. При увеличении ско-
рости нагружения предпиковая накопленная энергия плавно растет, однако интенсивность увели-
чения плавно снижается. Получена зависимость предпиковой накопленной энергии в УПТ от ско-
рости нагружения y = 0.93 – 0.77⋅3.64x с коэффициентом корреляции 0.97. При увеличении скорости 
нагружения некоторые трещины в УПТ не имеют возможности закрыться или расшириться вовре-
мя, что повышает прочность УПТ и увеличивает предпиковую накопленную энергию. 

Следует отметить, что при скорости нагружения 0.001 мм/с разница между максимальной 
и минимальной предпиковой накопленной энергии для пяти групп образцов составила 
0.027 кДж; а при скорости нагружения 0.1 мм/с — 0.542 кДж. Следовательно, чем меньше ско-
рость нагружения, тем меньше дисперсия значений накопленной энергии УПТ, и наоборот. Ина-
че, чем больше скорость нагружения, тем менее устойчивым является процесс разрушения УПТ. 

МЕХАНИЗМ НАКОПЛЕНИЯ ЭНЕРГИИ В УГОЛЬНО-ПОРОДНОМ ТЕЛЕ  
И ЭНЕРГЕТИЧЕСКИЙ АНАЛИЗ ПРОЦЕССА НАГРУЖЕНИЯ 

Распределение накопленной энергии по компонентам в УПТ. По расчетной формуле можно 
определить общее количество накопленной энергии в УПТ и количество накопленной энергии 
в угольном и породном компонентах в отдельности. На основе этой формулы можно проанали-
зировать механизм распределения энергии в УПТ.  

Из рис. 5а видно, что при увеличении скорости нагружения происходит плавное увеличе-
ние накопленной энергии в угольном компоненте со средними значениями 0.08, 0.15, 0.27, 0.47 
и 0.72 кДж соответственно. Зависимость количества накопленной энергии в угольном компо-
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ненте от скорости нагружения описывается уравнением y = 0.99 – 0.89⋅(9.69·10–6)x с коэффици-
ентом корреляции 0.95. При больших значениях скорости нагружения наблюдается неполное 
развитие трещин, поэтому может быть накоплено дополнительное количество энергии. Со-
гласно кривой аппроксимации, накопленная энергия угольного компонента резко увеличивает-
ся на малых скоростях нагружения и интенсивность ее роста плавно снижается с увеличением 
скорости нагружения. Также при высокой скорости нагружения неустойчивость механических 
свойств УПТ становится более очевидной. При скорости нагружения 0.001 мм/с разница 
накопленной энергии в угольном компоненте между максимальным и минимальным значением 
составила 0.020 кДж, а при 0.1 мм/с — 0.533 кДж.  

    а      б 

 
Рис. 5. Количество (а) и доля накопленной энергии (б) в угольном компоненте  

На рис. 5б показана доля накопленной энергии в угольном компоненте при различных зна-
чениях скорости нагружения. При увеличении скорости нагружения доля накопленной энергии 
составила 60.19, 67.36, 76.08, 82.38 и 89.72 %, т. е. при всех рассматриваемых значениях скоро-
сти нагружения доля энергии в угольном компоненте превышает 50 %. Угольный компонент 
является основным телом, накапливающим энергию, и играет ключевую роль в механизме раз-
рушения УПТ. Зависимость доли накопленной энергии в угольном компоненте от скорости 
нагружения описывается уравнением y = 86.38 – 28.93(3.39·10–41)x при R2 = 0.90. В диапазоне 
скорости нагружения 0 – 0.02 мм/с наблюдается быстрое увеличение доли накопленной энергии 
в угольном компоненте, а затем интенсивность роста уменьшается.  

Увеличение скорости нагружения приводит к постепенному увеличению накопленной 
энергии в породном компоненте со средними значениями 0.05, 0.07, 0.09, 0.10 и 0.08 кДж соот-
ветственно (рис. 6а). Зависимость накопленной энергии в породном компоненте от скорости 
нагружения описывается уравнением y = 0.09 – 0.05⋅(6.51·10–73)x с коэффициентом корреляции 
0.89. При малой скорости нагружения (0 – 0.02 мм/с) происходит увеличение накопленной 
энергии, а далее она остается почти постоянной. Также при высокой скорости нагружения не-
устойчивость механических свойств УПТ становится более очевидной. При 0.1 мм/с дисперсия 
значений достигает 0.128 кДж.  

На рис. 6б приведена доля накопленной энергии в породном компоненте при различных 
значениях скорости нагружения. С увеличением скорости нагружения доля накопленной энер-
гии в породном компоненте составила 39.81, 32.64, 23.92, 17.62 и 10.28 % соответственно. 
При всех рассматриваемых значениях скорости нагружения доля накопленной энергии в по-
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родном компоненте менее 50 %. Зависимость доли накопленной энергии в породном компо-
ненте от скорости нагружения описывается уравнением y = 28.93 · e–x / 0.01 + 13.62 с точностью 
0.90. При увеличении скорости нагружения наблюдается резкое уменьшение доли энергии 
в породном компоненте, затем она стремится к постоянному значению. 

 
Рис. 6. Количество и доля накопленной энергии в породном компоненте  

Энергетический анализ компонентов УПТ. Неустойчивость системы “уголь – порода” свя-
зана не только с накопленной в ней энергией, но и с разницей накопления энергии между 
угольным и породным компонентами. В настоящей работе выполнено испытание УПТ на од-
ноосное сжатие и определены доли накопленной энергии в компонентах перед разрушением. 

На основании полученных данных можно рассчитать разницу накопленной энергии 
между компонентами (рис. 7а). С увеличением скорости нагружения постепенно увеличи-
вается разница энергии между угольным и породным компонентами, которая составила 
0.027, 0.075, 0.183, 0.367 и 0.639 кДж соответственно. Кривая аппроксимации (штриховая 
линия) показывает, что существует линейная зависимость разницы энергии между компо-
нентами от скорости нагружения, которая описывается уравнением y = 5.85x + 0.06 с коэф-
фициентом корреляции 0.97.  

 
Рис. 7. Разница количества (а) и доли накопленной энергии (б) между угольным и породным 
компонентами   
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Склонность к горному удару является неотъемлемым свойством угольно-породного мате-
риала, которое влияет на ударные характеристики системы “уголь – порода“. Энергетический 
индекс горного удара KE — общепринятый показатель оценки склонности угольно-породных 
материалов к удару, обеспечивающий простую, быструю и точную оценку. Индекс KE пред-
ставляет собой отношение предпиковой энергии упругой деформации к постпиковой энергии 
диссипации в условиях одноосного сжатия. Индекс KE ≥ 5.0 обозначает сильную склонность 
к удару; 1.5 ≤ KE < 5.0 — слабую склонность к удару; KE ≤ 1.5 — отсутствие склонности к удару.  

Полученные в экспериментах значения энергетического индекса горного удара при разных 
скоростях нагружения приведены на рис. 7a сплошной линией. С увеличением скорости 
нагружения коэффициент энергетического индекса линейно возрастает. Зависимость между 
коэффициентом энергетического индекса и скоростью нагружения составила y = 35.52x + 5.47 с 
точностью 0.98. На основании полученных прочностных свойств УПТ можно установить, что 
при увеличении скорости нагружения происходит постепенное повышение предрасположенно-
сти УПТ к удару. Добавление породного компонента повышает ударопрочность угля. Установ-
лена взаимосвязь склонности УПТ к удару с разницей накопленной энергии между компонен-
тами: чем больше разность энергии, тем более УПТ склонно к проявлению горного удара.  

На рис. 7б приведена разница доли накопления энергии между компонентами при различ-
ных значениях скорости нагружения, которая увеличивается и постепенно переходит в устой-
чивое состояние. До 0.02 мм/с происходит ее значительный рост, а после значения 0.02 мм/с 
показатель стремится к постоянному состоянию.  

Из приведенных данных видно, что чем больше скорость нагружения, тем больше разница 
накопленной энергии между компонентами и тем сильнее склонность УПТ к удару. Практика 
показывает, что скорость нагружения (или разница накопленной энергии в УПТ) оказывает 
большое влияние на характер разрушения. На рис. 8 продемонстрированы варианты характера 
разрушения и развития трещин в УПТ при различных значениях скорости нагружения.  

 
Рис. 8. Характер разрушения угольно-породного тела при различных значениях разницы накоп-
ленной энергии между компонентами 

При скорости нагружения 0.001 мм/с разница накопленной энергии между компонентами 
составляет Δ 0.027кДж и вследствие разрушения угля образуется большое количество мелко-
дисперсных угольных частиц. Это обусловлено тем, что при малой скорости нагружения обра-
зуется большое количество трещин, которые распространяются по телу угольного компонента. 
В процессе сжатия происходит трение на границе раздела между компонентами, в результате 
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которого образуются мелкодисперсные угольные частицы и небольшие кусочки угля. При ско-
рости нагружения 0.1 мм/с разность накопленной энергии между компонентами составила ∆ 
0.639 кДж. В этом случае образуется большое количество мелких частиц с неправильной гео-
метрической формой и малое количество мелкодисперсных частиц. При такой скорости нагру-
жения уголь склонен к хрупкому разрушению. При высокой скорости нагружения образуется 
малое количество трещин. Разрушение угольного компонента начинается локально по первич-
ным трещинам и постепенно заканчивается общим. 

Разница накопленной энергии между компонентами в УПТ оказывает большое влияние на 
характер и механизм разрушения. При малой разнице накопленной энергии происходит полное 
разрушение угля с большим количеством трещин. Накопленная энергия медленно рассеивается 
в виде развития трещин по слабым плоскостям; разрушение угля имеет вязкий характер. При 
большой разнице накопленной энергии наблюдается неполное разрушение образца с неполным 
развитием трещин. Особенность разрушения угля заключается в том, что локальное разруше-
ние вызывает общую неустойчивость, а накопленная до пика энергия в основном быстро вы-
свобождается в виде кинетической энергии удара. Чем больше разница накопленной энергии 
между компонентами, тем УПТ имеет более очевидные показатели хрупкого разрушения. Вли-
яние разницы накопленной энергии между компонентами на разрушение в основном проявля-
ется в шести аспектах: степень развития трещины, размер поврежденного блока, количество 
поврежденных блоков, скорость высвобождения энергии, форма разрушения и механизм поте-
ри устойчивости (таблица).  

Влияние разницы накопленной энергии между компонентами на характер разрушения  
угольно-породного тела 

Критерий Малая разница накопленной энергии  Большая разница накопленной 
энергии 

Степень развития трещин Полное развитие с большим коли-
чеством трещин  

Неполное развитие с малым коли-
чеством трещин 

Размер разрушенных блоков Небольшой размер с появлением 
мелкодисперсных частиц 

Большой размер с появлением 
мелкодисперсных частиц  

Количество разрушенных 
блоков Много Мало 

Скорость высвобождения 
энергии Медленное рассеивание Быстрое высвобождение 

ЭНЕРГЕТИЧЕСКАЯ МОДЕЛЬ УГОЛЬНО-ПОРОДНОГО ТЕЛА 

Большой объем исследований в области термодинамики необратимых процессов выполнен 
И. Пригожиным, который разработал теорию устойчивости термодинамики нелинейных необ-
ратимых процессов и предложил теорию диссипативных структур. Данная теория рассматри-
вает открытую систему, в которой поставлен акцент на процессе перехода от беспорядочного 
состояния к упорядоченному. Открытая система, далекая от состояния равновесия, может де-
монстрировать явление самоорганизации посредством внутреннего воздействия, когда внеш-
ние условия достигают определенного порога в условиях постоянного вещественного и энерге-
тического обмена с внешней средой. В этих условиях система может самопроизвольно перехо-
дить из исходного беспорядочного состояния в упорядоченное, в результате образуется новая 
устойчивая упорядоченная структура. Процесс разрушения УПТ можно рассматривать как 
процесс достижения нового устойчивого равновесного состояния путем непрерывного энерге-
тического обмена с внешней средой. 
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На основе рассмотренной теории взаимосвязи разности накопленной энергии между ком-
понентами тела и характером его разрушения построена модель, которая описывает процесс 
перехода УПТ из устойчивого равновесного состояния в неустойчивое и затем в новое устой-
чивое равновесное состояние, а также описывает механизм разрушения УПТ в результате по-
тери устойчивости (рис. 9).  

 
Рис. 9. Энергетическая модель деформирования угольно-породного тела 

Точка O: Нагрузка не приложена, разница накопленной энергии между компонентами рав-
на 0, УПТ находится в устойчивом равновесном состоянии. Малое количество собственной 
энергии компонентов в статическом состоянии не учитывается.  

Участок OM: С увеличением времени нагружения разница накопления энергии между 
компонентами постепенно увеличивается. На этом этапе происходит закрытие трещин внутри 
компонентов, что приводит к рассеиванию некоторой части энергии. Наблюдается малая раз-
ница накопленной энергии между компонентами; УПТ находится в квазиустойчивом состоя-
нии.  

Участок MN: После полного закрытия внутренних трещин в УТП, угольная порода на 
этом этапе может рассматриваться как эластомер. Происходит накопление большего количе-
ства энергии в компонентах. Очевидно, что скорость накопления энергии в угольном компо-
ненте выше, чем в породном. Следовательно, разница накопления упругой энергии постепен-
но увеличивается, и этот процесс относительно стабильный. Однако на более поздней стадии 
данного этапа это увеличение замедляется, что связано с разрушением некоторых слабых 
структур в угольном компоненте. При этом происходит поглощение части энергии и уменьше-
ние накопления энергии упругой деформации. На этой стадии УПТ находится в метаустойчи-
вом состоянии. 

Точка N: Данная точка является критической, так как разница накопления энергии упругой 
деформации между компонентами достигает максимума. Дальнейшее увеличение внешнего 
воздействия УПТ приводит к потере устойчивости равновесия образца. В этой точке УПТ 
наиболее подвержено разрушению и находится в критическом состоянии.  

Участок NP: При продолжении нагружения происходит разрушение УПТ и мгновенное 
высвобождение накопленной энергии. Разрушение УПТ на этом этапе можно разделить на два 
типа: устойчивое и неустойчивое. При малой избыточной энергии разрушение будет иметь 
устойчивый характер с малой степенью повреждений. При большой избыточной энергии раз-
рушение будет иметь неустойчивый характер со значительными повреждениями. В этом слу-
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чае происходит выброс обломков угля с определенной кинетической энергией, что показывает 
ударный характер разрушения. Отметим, что чем больше разница накопленной упругой энер-
гии между компонентами, тем сильнее ударный эффект. Независимо от того, какие поврежде-
ния возникают внутри УПТ, накопленная энергия, а также разница накопленной энергии быст-
ро уменьшаются. На данном этапе УПТ находится в неустойчивом состоянии.  

Участок PR: После прохождения этапа неустойчивого состояния происходит изменение 
УПТ за счет внутренней самоорганизации. В результате образуется новая диссипативная 
структура и УПТ принимает новое устойчивое состояние.  

Кривая “время нагружения – разница накопленной энергии между компонентами” похожа 
на кривую “напряжение – деформация”. Участки OM, MN, NP и PR соответствуют стадиям 
уплотнения, упругопластической деформации, постпикового разрушения и релаксации напря-
жений на кривой “напряжение – деформация” соответственно.  

Ударная неустойчивость системы “уголь – порода” должна описываться математическим 
выражением энергии и времени. Ударный эффект УПТ также характеризуется функциональ-
ной зависимостью между внутренней накопленной энергией и временем ее высвобождения. 
Следовательно, можно аналитически описать склонность УПТ к удару с точки зрения накоп-
ленной энергии и времени ее высвобождения. На основе ранее построенной модели, учитыва-
ющей разницу упругой энергии и времени разрушения, предложен энергетический коэффици-
ент η, определяющий склонность УПТ к ударному разрушению, представляющий собой отно-
шение разности упругой энергии к времени разрушения. В случае равного объема компонентов 
УПТ можно принять выражение энергетического коэффициента через плотности запасенной 
энергии в виде  

 
2

2 21 1 1 1 1
2 2 2

c r

c r c r

U U ση σ σ
DT E E DT E E DT

   −≈ = − = −   
   

,      (7) 

где η — энергетический коэффициент УПТ, характеризующий его склонность к удару; DT — 
время разрушения УПТ.  

Предложенный коэффициент определяется модулями упругости компонент, уровнем 
напряжений и временем разрушения УПТ. Он учитывает не только особенности внутренней 
структуры и механические свойства угля и породы, но и условия внешнего нагружения (уро-
вень напряжения) и время динамического разрушения УПТ и является многомасштабным 
определяющим параметром для точного прогнозирования склонности УПТ к удару. Коэффи-
циент η отражает разницу накопленной энергии между компонентами в единицу времени раз-
рушения. Согласно (7), чем больше разница модуля упругости между углем и породой, тем 
больше склонность к удару, что подтверждается исследованиями [25]. Кроме того, можно за-
ключить, что к большой склонности к удару приводит или увеличение напряжения, или 
уменьшение времени разрушения. Таким образом, коэффициент разности накопленной энергии 
между компонентами позволяет оценить склонность УПТ к горному удару.  

Коэффициент η также отражает механизм горного удара в условиях добычи на большой глу-
бине, когда угольный массив накапливает большее количество энергии и доля накопленной 
энергии превышает долю накопленной энергии в породном массиве. В результате увеличивается 
разность Uc – Ur и система “уголь – порода” становится менее устойчивой и более склонной 
к ударным катастрофическим явлениям. С другой стороны, при большой глубине угледобычи 
происходит быстрое увеличение напряжения в системе “уголь – порода”. Согласно результатам 
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предыдущих исследований, продолжительность горных ударов на малой глубине обычно более 
существенно, чем на большой, т. е. DT на большой глубине имеет меньшее значение. Представ-
ленный анализ показывает, что при увеличении глубины угледобычи происходит значительное 
повышение напряжения в системе “уголь – порода” и уголь накапливает большее количество 
энергии, тем самым повышая долю накопленной энергии. Угольный компонент играет главную 
роль в ударном разрушении системы. Под влиянием динамических факторов, нарушающих 
устойчивость, на большой глубине повышается вероятность горного удара и его интенсивность. 

ВЫВОДЫ 

На основе данных о распределения энергии в системе “уголь – порода” выполнен анализ 
разницы накопленной энергии между угольным и породным компонентами. Разница накоп-
ленной энергии получена экспериментально при разных значениях скорости нагружения; 
выведена расчетная формула. Согласно энергетической модели неустойчивости угольно-
породного тела, проведена оценка деформации системы “уголь – порода”, а также предло-
жен коэффициент склонности системы к горному удару. В результате настоящей работы 
получены следующие выводы:  

— при одинаковом уровне напряжений разница накопленной энергии в основном зависит 
от модуля упругости угля и породы и увеличивается с уменьшением модуля упругости угля. 
Уголь является основным компонентом, накапливающим энергию в системе “уголь – порода”; 

— построена и проанализирована механическая модель угольно-породного тела. На основе 
полученной кривой “напряжение – деформация” использован более точный метод определения 
накопленной энергии в компонентах; 

— породный компонент повышает прочность на сжатие угольно-породного тела. Проч-
ность угольно-породного тела на сжатие чувствительна к изменению скорости нагружения. 
При увеличении скорости нагружения накопленная энергия плавно увеличивается до макси-
мального значения. Чем больше скорость нагружения, тем меньше устойчивость УПТ; 

— угольный компонент является основным носителем накопленной энергии. При увеличе-
нии скорости нагружения накопленная энергия в угольном компоненте, доля накопленной 
энергии и разница накопленной энергии между компонентами увеличиваются. Разница накоп-
ленной энергии между компонентами в значительной мере влияет на характер разрушения 
УПТ; 

— согласно теории диссипативных структур, предложена энергетическая модель УПТ, 
в рамках которой рассмотрен процесс перехода УПТ от устойчивого равновесного состоя-
ния к неустойчивому равновесному состоянию, а затем к новому устойчивому равновесно-
му состоянию; 

— предложен коэффициент склонности УПТ к удару на основе разницы энергии и времени 
ее высвобождения, который не только учитывает внутренние структурные характеристики 
и механические свойства угля и породы, но и внешние условия (уровень напряжения), а также 
время разрушения УПТ. Он позволяет прогнозировать склонность угольно-породного тела 
к горному удару на разных масштабных уровнях.  
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