2012. Том 53, № 2

Март – апрель

C. 348 – 353

УДК 544.35:547.112.3:547.495.2:547.42

ОБЕЗВОЖИВАНИЕ ГЛИЦИНА В СМЕШАННЫХ РАСТВОРИТЕЛЯХ

© 2012 В.П. Королёв*

Институт химии растворов РАН, Иваново

Статья поступила 1 апреля 2011 г.

Проведен анализ изменений парциального объема глицина $\Delta \overline{V}^0$ в растворах веществ, оказывающих различное влияние на структуру воды. Для глицина в смесях воды с глицерином и этиленгликолем получено единое уравнение зависимости $\Delta \overline{V}^0$ от объемной доли спирта. При добавлении к воде *трет*-бутилового спирта, этиленгликоля, глицерина и мочевины гидратное число аминокислоты уменьшается (глицин обезвоживается). В 1*m* растворах потери гидратной воды составляют в указанном ряду 3,2, 4,5, 5,7 и 7,6 %. В 4*m* растворе *трет*-бутилового спирта глицин теряет 44 % гидратной воды, — столько же, сколько в 15*m* растворе мочевины и 20*m* растворе глицерина. В разбавленных растворах *t*-ВиOH имеет место вклад от структурной дегидратации глицина. Для более концентрированных растворов межмолекулярные взаимодействия в бинарном смешанном растворителе противодействуют обезвоживанию. Эти взаимодействия компенсируют 15—22 % воды, теряемой глицином в 20*m* растворе мочевины, глицерина и этиленгликоля и 4*m* растворе *t*-ВиOH. Проведено также обсуждение парциальных объемов в рамках представлений о предпочтительной сольватации.

Ключевые слова: парциальные объемы, гидратные числа, водные растворы, глицин, *трет*-бутиловый спирт, этиленгликоль, глицерин, мочевина.

Гидратные числа веществ являются важными характеристиками водных растворов [1—9]. Их можно рассматривать как связующее звено между элементами триады: термодинамическое свойство, гидратация растворенного вещества, структура раствора. В этом контексте гидратное число есть "термодинамическое гидратное (hydration) число" [10]**.

Настоящая работа посвящена исследованию гидратных чисел глицина в растворах веществ, оказывающих различное действие на структуру воды. Сам глицин является разрушителем структуры воды [11]. Интересующие нас характеристики можно найти, в том числе используя парциальные мольные объемы. Для стандартного парциального объема аминокислоты в водном растворе \overline{V}_{W}^{0} можно записать [3]

$$\overline{V}_{W}^{0} = V_{in} + n_{W}(V_{h} - V_{W}), \tag{1}$$

где V_{in} — объем (эффективный) частицы в растворе; n_W — гидратное число аминокислоты в воде; V_h — молярный объем воды в гидратной оболочке частицы; V_W — молярный объем воды вне гидратной оболочке (in bulk).

Перепишем (1) применительно к парциальному объему аминокислоты в смешанном растворителе [12]

$$\overline{V}^0 = V_{\rm in} + n(V_h - \overline{V}_{\rm W}),\tag{2}$$

^{*} E-mail: korolev@isuct.ru

^{**} По нашему мнению, для величины, получаемой из термодинамических характеристик, наиболее соответствует по смыслу название "водное (aquation, aquatic) число".

Рис. 1. Изменения парциального объема воды при добавлении к воде мочевины (символы — [14]), *трет*-бутилового спирта (1), глицерина (2) и этиленгликоля (3).

Линии — наши уравнения для данных: *1* — [11], *2* — [16], *3* — [15]

Рис. 2. Изменения парциального объема глицина при добавлении к воде мочевины (линия [12]), *трет*-бутилового спирта (1), глицерина (2) и этиленгликоля (3).

Символы — эксперимент: *I* — [11], *2* — [18], *3* — [17]

где n — гидратное число частицы в смешанном растворителе; \overline{V}_{W} можно принять равным парциальному объему воды в двухкомпонентном растворителе [13]*.

Имеет смысл перейти к такой характеристике, как изменение гидратного числа Δn при добавлении к воде неводного компонента. Из (1), (2) после несложных преобразований получаем

$$\Delta n = n = n_{\rm W} = (V^0 - V_{\rm W}^0 + n_{\rm W}(V_{\rm W} - V_{\rm W})) / ((V_{\rm W}^0 - V_{\rm in}) / n_{\rm W} - (V_{\rm W} - V_{\rm W})) = = (\Delta \overline{V}^0 + n_{\rm W} \Delta \overline{V}_{\rm W}) / (\overline{V}_{\rm W}^0 - V_{\rm in}) / n_{\rm W} - \Delta \overline{V}_{\rm W}).$$
(3)

 $= (\Delta V^{-} + n_{W} \Delta V_{W}) / (V_{W} - v_{in}) / n_{W} - \Delta V_{W}).$ Из (3) видно, что $\Delta n = n - n_{W}$ зависит от разностей $\Delta \overline{V}_{W} = \overline{V}_{W} - V_{W}$ и $\Delta \overline{V}^{0} = \overline{V}^{0} - \overline{V}_{W}^{0}$. Эти разности для интересующих нас систем по данным работ [11, 14—16] для $\Delta \overline{V}_{W}$ и [11, 12, 17, 18] для $\Delta \overline{V}^{0}$ показаны на рис. 1, 2**. Представленные характеристики обнаруживают поведение, различающееся для разных концентрационных областей. Так при m > 9,5 парциальный объем воды в системе вода—глицерин становится меньше, чем в системе вода—мочевина. Для 20*m* растворов (в случае мочевины это насыщенный раствор [19, 20]) величина парциального объема воды по нашим расчетам уменьшается в ряду (см³/моль): 17,903 (вода—этиленгликоль), 17,887 (вода—мочевина) и 17,837 (вода—глицерин), тогда как молярный объем чистой воды составляет 18,069 см³/моль.

Следует отметить, что анализ [21] на основе критерия [22] позволил охарактеризовать и мочевину, и исследование в [21] аминокислоты, включая глицин, как разрушители структуры воды. По классификации [23], мочевину относят к гидрофильным разрушителям структуры воды, а этиленгликоль и глицерин – к гидрофильным стабилизаторам структуры. В отличие от этих спиртов, *трет*-бутиловый спирт является гидрофобным стабилизатором структуры. Поскольку более структурированная вода должна иметь больший объем, именно с гидрофобными эффектами можно связать положительные значения ΔV_W на рис. 1 в области небольших концентраций *трет*-бутиловый спирт при m > 2 на рис. 1 соответствует резкое возрастание функции для тройной системы вода—*трет*-бутиловый спирт при m > 2 на рис. 2 (точка

^{*} Здесь мы используем двухслойную модель гидратации, тогда как в работах [8, 13] рассматривали более сложную трехслойную модель.

^{**} Температура здесь и далее стандартная 298,15 К.

Рис. 3. Изменения парциального объема глицина при добавлении к воде глицерина (1) или этиленгликоля (2).

Символы — эксперимент: *I*— [18], *2* — [17]. Линия — уравнение (4)

для 8m раствора находится еще выше и на рис. 2 не показана). Ниже мы рассмотрим, имеет ли место указанное соответствие для концентрированных (20m) растворов глицерина, этиленгликоля и мочевины.

Таким образом, нас будут интересовать и разбавленные, и концентрированные растворы. Однако система вода—глицерин—глицин была изучена [18] в сравнительно узком интервале моляльностей ($m \le 5$). Нелинейность функции $\Delta \overline{V}^0 = f(m)$ на рис. 2 делает экстраполяцию затруднительной. Зависимость становится линейной, если

перейти к такому аргументу как объемная доля. Оказалось, что в этом случае системы, содержащие этиленгликоль и глицерин, описываются *единым уравнением*

$$\Delta V^0 = (7,25\pm0,16)\varphi, \quad s = 0,12 \text{ см}^3/\text{моль},$$
(4)

где ф — объемная доля спирта.

Зависимость (4) показана на рис. 3. Следует сказать, что при расчете ф объем смеси принимали аддитивным по мольной доле. Молярный объем этиленгликоля принимали равным 55,9 [15], глицерина 73,2 см³/моль [24].

На основе данных [12] для глицина в 1—13*т* растворах мочевины получено уравнение

$$\Delta \overline{V}^0 = 0,25 \pm 0,06 + (9,34 \pm 0,29)\phi, \quad s = 0,11 \text{ cm}^3/\text{моль.}$$
 (5)

Молярный объем гипотетической жидкой переохлажденной мочевины при 298 K был принят равным 46,2 см³/моль ($\rho = 1,3$ г/см³ [8]).

Недавно парциальные объемы глицина были заново определены при концентрациях мочевины (в пересчете на моляльность) до 12,6*m* [25]. Данные [25] в виде ΔV^0 (см³/моль) сопоставлены ниже с рассчитанными по уравнению (5):

т	2,2	4,9	8,2	12,6
Опыт [25]	1,1	2,1	3,0	3,6
Расчет (5)	1,11	1,97	2,81	3,68

Учитывая, что измерения [25] были проведены при весьма малых концентрациях аминокислоты, опытные и расчетные величины согласуются удивительно хорошо.

Выше было обращено внимание на поведение величин $\Delta \overline{V}_W$ и $\Delta \overline{V}^0$ для систем, содержащих *t*-BuOH (см. рис. 1 и 2). В табл. 1 приведены $\Delta \overline{V}_W$ и $\Delta \overline{V}^0$ для 20*m* растворов этиленгликоля, глицерина и мочевины. Видно, что мочевина со спиртами не образует единого ряда.

Перейдем к обсуждению собственно гидратных чисел. Знаменатель в (3) является функцией $h(\Delta \overline{V}_{W})$. Числитель в этом уравнении есть сумма двух слагаемых, поэтому можно записать

$$\Delta n = n - n_{\rm W} = f(\Delta \overline{V}^0) / h(\Delta \overline{V}_{\rm W}) + g(\Delta \overline{V}_{\rm W}) / h(\Delta \overline{V}_{\rm W}) = \Delta n_{\rm t} + \Delta n_{\rm b}.$$
(6)

Здесь первое слагаемое зависит от взаимодействий в двух- и трехкомпонентной системе, а второе — только от взаимодействий в бинарном растворителе.

Расчеты проводили при следующих значениях постоянных в уравнении (3): $n_{\rm W} = 4$ [3, 10], $\Delta V_{\rm W} = 43,28 \text{ см}^3/\text{моль}$ [12], $V_{\rm in} = 51,9 \text{ см}^3/\text{моль}$ [12], $V_{\rm W} = 18,069 \text{ см}^3/\text{моль}$. Результаты расчетов приведены в табл. 2 и 3 для различных концентраций спиртов и мочевины. Для всех изученных концентраций $\Delta n < 0$, гидратные числа глицина в смешанных растворителях меньше, чем в воде. С ростом концентрации гидратные числа уменьшаются. В этом смысле Δn можно рассматривать как параметр дегидратации. Во всех случаях $\Delta n_t < 0$, и в большинстве случаев $\Delta n_b > 0$. В более концентрированных растворах всегда $\Delta n_b > 0$, т.е. эта составляющая, зависящая от

350

Таблица 2

Изменения объемов (см³/моль) воды ($\Delta \overline{V}_W$) и глицина ($\Delta \overline{V}^0$) при переходе от воды к 20т растворам этиленгликоля, глицерина или мочевины

Система	$\Delta \overline{V}_W$	$\Delta \overline{V}^0$
Вода—этиленгликоль	-0,166	3,82
Вода—глицерин	-0,232	4,30
Вода—мочевина	-0,182	4,73

Таблица З

Таблица 1

Параметр дегидратации и его составляющие для глицина в смешанном растворителе вода—трет-бутиловый спирт

x	0,018	0,035	0,051	0,067	0,083
т	1	2	3	4	5
Δn $\Delta n_{\rm t}$ $\Delta n_{\rm b}$	-0,127 -0,083 -0,044	-0,473 -0,452 -0,021	-0,900 -1,182 0,282	-1,758 -2,242 0,484	-2,496 -3,158 0,662

Параметр	дегидратации и его составляющие для
глицина	в двухкомпонентных растворителях

x	0,018	0,083	0,153	0,213	0,265				
т	1	5	10	15	20				
Вола—мочевина									
Δn	-0,302	-0,875	-1,379	-1,747	-2,028				
$\Delta n_{\rm t}$	-0,307	-0,943	-1,543	-2,012	-2,397				
$\Delta n_{\rm b}$	0,005	0,068	0,164	0,265	0,369				
Вода—глицерин									
Δn	-0,228	-0,862	-1,306	-1,568	-1,755				
$\Delta n_{\rm t}$	-0,229	-0,909	-1,482	-1,907	-2,237				
$\Delta n_{\rm b}$	0,001	0,047	0,176	0,339	0,482				
Вода—этиленгликоль									
Δn	-0,179	-0,738	-1,147	-1,421	-1,588				
$\Delta n_{\rm t}$	-0,178	-0,732	-1,229	-1,601	-1,922				
$\Delta n_{\rm b,}$	-0,001	-0,006	0,082	0,180	0,334				
Π римечание. $\Delta n = n - n_{\rm W} = \Delta n_{\rm t} + \Delta n_{\rm b}$, $x - n_{\rm W} = \Delta n_{\rm t} + \Delta n_{\rm b}$									

мольная доля.

взаимодействий только в двухкомпонентном растворителе, противодействует дегидратации глицина. Стабилизация структуры воды в разбавленных растворах *t*-BuOH ($\Delta \overline{V}_W > 0$) приводит к $\Delta n_b < 0$, т.е. способствует обезвоживанию глицина. Этот эффект можно назвать структурной дегидратацией.

В случае 1*m* растворов дегидратирующее действие добавки усиливается в ряду: *трет*бутиловый спирт, этиленгликоль, глицерин, мочевина. Раствор *t*-BuOH при концентрации 5*m* оказывает уже большее дегидратирующее воздействие, чем 20*m* растворы других исследованных в этой работе добавок.

Сравним концентрации добавок, приводящие к одинаковой дегидратации глицина. Если величины Δn — одинаковые, то и значения *n* будут одинаковыми. Одинаковая степень дегидратации глицина (см. табл. 2 и 3) имеет место в растворах: *t*-BuOH (3*m*), глицерина (5*m*) и мочевины (5*m*); *t*-BuOH (4*m*), мочевины (15*m*) и глицерина (20*m*); глицерина (15*m*) и этиленгликоля (20*m*).

Для объяснения термодинамических, спектральных и кинетических данных широко привлекают представления о предпочтительной сольватации веществ, растворенных в смешанных растворителях (см. [26] и ссылки в ней). Полученные в настоящем исследовании соотношения (4) и (5) позволяют перевести проблему сольватации глицина в водных растворах мочевины, глицерина и этиленгликоля в эту плоскость.

Считают, что если анализируемая характеристика аддитивна по составу двухкомпонентного растворителя, то состав сольватной оболочки растворенного вещества равен составу смеси. Это означает, что предпочтительной сольватации нет. Обычно состав выражают в мольных долях. Отклонение анализируемой характеристики от аддитивной прямой связывают с предпочтительной сольватацией — обогащением сольватной оболочки одним из компонентов. Состав сольватной оболочки определяют из соотношения, которое для нашего случая можно записать*

$$x_{\rm s}(x) = \Delta \overline{V}_x^0 / \Delta \overline{V}_{x=1}^0, \tag{7}$$

где $x_s(x)$ — состав сольватной оболочки при составе смеси x.

^{*} Графический метод решения задачи можно найти в [27].

Таблица 4

x	0,018	0,083	0,153	0,213	0,265	x	0,018	0,083	0,153	0,213	0,265
N	55	11	5,5	3,7	2,8	N	55	11	5,5	3,7	2,8
Вода—мочевина					Во	да—эти	ленглик	оль			
$x_{\rm s}(x)$	0,069	0,208	0,333	0,424	0,493	$x_{\rm s}(x)$	0,053	0,218	0,358	0,455	0,527
$N_{\rm s}(x)$	13	3,8	2,0	1,4	1,0	$N_{\rm s}(x)$	18	3,6	1,8	1,2	0,90
$x_{\rm s}(\phi)$	0,028	0,093	0,163	0,224	0,276						
$N_{\rm s}(\phi)$	35	10	5,1	3,5	2,6						
Вода—глицерин											
$x_{\rm s}(x)$	0,068	0,267	0,422	0,523	0,593	Π p u u u u u u u u u u					
$N_{\rm s}(x)$	14	2,7	1,4	0,91	0,69	111	PHMCI	a 11 fl C. 1	1 (1	л ј/л.	

Составы двухкомпонентного растворителя, сольватной оболочки глицина и величины мольного отношения

Величины, рассчитанные по уравнениям (4)—(6) приведены в табл. 4. Видно, что имеет место сильное 2—3-кратное обогащение сольватной оболочки глицина неводным компонентом. Выше отмечалось, что 20*m* раствор мочевины соответствует насыщенному. В сольватной оболочке глицина концентрация мочевины значительно превышает эту величину.

В табл. 4 приведены также величины мольного отношения N = (1-x)/x для двухкомпонентного растворителя и для сольватной оболочки глицина $N_s = (1-x_s)/x_s$. Мольное отношение равно количеству воды, приходящемуся на 1 моль неводного компонента. Видно, что мольное отношение в сольватной оболочке N_s значительно меньше, чем в объеме N. В 20*m* растворе глицерина (x = 0,265, N = 2,8) в сольватной оболочке глицина на 1 моль глицерина приходится всего 0,7 молей воды.

Однако есть другой, альтернативный вариант расчета. Зададимся вопросом: что может означать линейность в шкале объемных долей соотношения (4) для глицина в смесях воды с глицерином и этиленгликолем (см. рис. 3)? Это может означать, что в указанных смесях состав сольватной оболочки глицина равен составу смеси. Именно в случае парциального объема, который мы в данной работе обсуждаем, такое допущение выглядит естественным. Тогда можно записать уравнение, аналогичное (6)

$$\varphi_{\rm s}(\varphi) = \Delta \overline{V}_{\varphi}^0 / \Delta \overline{V}_{\varphi=1}^0. \tag{8}$$

Легко убедиться, что если $\Delta V_{\phi}^{0} = \text{const}\phi$, то $\phi_{s} = \phi$ и $x_{s} = x$. Значит глицин в смесях воды с глицерином и этиленгликолем предпочтительно не сольватирован.

В случае водного раствора мочевины уравнение (5) получено для $m \ge 1$, а мы ведем отсчет $\Delta \overline{V}^0$ от нуля, т.е. зависимость $\Delta \overline{V}^0(\varphi)$ не аддитивна. Расчет φ_s для глицина в водном растворе мочевины был проведен по (7); объемные доли для удобства сравнения пересчитаны в мольные доли (обозначено $x_s(\varphi)$) и полученные величины также приведены в табл. 4. Видно, что $x_s(\varphi) > x$, так как $\varphi_s > \varphi$, но можно, учитывая погрешность $\Delta \overline{V}^0$, говорить лишь о незначительном обогащении сольватной оболочки глицина мочевиной.

Таким образом два сценария сольватационного процесса, которым соответствуют уравнения (6), (7) сходны в одном: уменьшение содержания воды в двухкомпонентном растворителе приводит к уменьшению ее содержания в сольватной оболочке глицина (см. табл. 4). Но с каким темпом это происходит? "Предпочитает" ли вода находиться в объеме раствора, а не в сольватной оболочке, т.е. выполняются ли неравенства $x_s > x$ и $1-x > 1-x_s$? Автор склонен думать, что ответ на этот вопрос скорее отрицательный.

СПИСОК ЛИТЕРАТУРЫ

- 1. Conway B.E., Verrall R.E., Desnoyers J.E. // Z. Phys. Chem. Leipzig. 1965. 230. S. 157 178.
- 2. Millero F.J., Ward G.K., Lepple F.K., Hoff E.V. // J. Phys. Chem. 1974. 78. P. 1636 1643.
- 3. Millero F.J., Lo Surdo A., Shin C. // J. Phys. Chem. 1978. 82. P. 784 792.
- 4. Zavitsas A.A. // J. Phys. Chem. B. 2001. 105. P. 7805 7817.
- 5. Rempe S.B., Pratt L.R. // Fluid Phase Equilib. 2001. 183-184. P. 121 132.
- 6. Афанасьев В.Н., Устинов А.М. // Журн. структур. химии. 2005. **46**. С. 459 467.
- 7. Marcus Y. // J. Phys. Chem. B. 2005. 109. P. 18541 18549.
- 8. *Королёв В.П.* // Журн. структур. химии. 2011. **52**. С. 101 109.
- Рудаков М.В., Сергиевский В.В. Описание термодинамических свойств растворов на основе кластерной модели самоорганизации // Структурная самоорганизация в растворах и на границе раздела фаз ("Проблемы химии растворов")/ Отв. ред. А.Ю. Цивадзе. М.: Изд-во ЛКИ, 2008.
- 10. Rösgen J., Pettitt B.M., Perkyns J., Bolen D.W. // J. Phys. Chem. B. 2004. 108. P. 2048 2055.
- 11. Mishra A.K., Ahluwalia J.C. // J. Chem. Soc. Faraday Trans. I. 1981. 77. P. 1469 1483.
- 12. Королёв В.П., Серебрякова А.Л. // Журн. структур. химии. 2011. (в печати).
- 13. Desroisiers N., Perron G., Mathieson J.G. et al. // J. Sol. Chem. 1974. 3. P. 789 806.
- 14. Gucker F.T. Jr., Gage F.W., Moser C.E. // J. Amer. Chem. Soc. 1938. 60. P. 2582 2588.
- 15. Huot J.-Y., Battistel E., Lumry R. et al. // J. Sol. Chem. 1988. 17. P. 601 636.
- 16. Xu L., Hu X., Lin R. // J. Sol. Chem. 2003. 32. P. 363 370.
- 17. Liu Q., Hu X., Lin R. et al. // J. Chem. Eng. Data. 2001. 46. P. 522 525.
- 18. Banipal T.S., Singh G., Lark B.S. // J. Sol. Chem. 2001. 30. P. 657 670.
- 19. Scatchard G., Hamer W.J., Wood S.E. // J. Amer. Chem. Soc. 1938. 60. P. 3061 3070.
- 20. Ellerton H.D., Dunlop P.J. // J. Phys. Chem. 1966. 70. P. 1831 1837.
- 21. *Королёв В.П.* // Журн. структур. химии. 2010. **51**. С. 509 517.
- 22. Hepler L.G. // Can. J. Chem. 1969. 47. P. 4613 4617.
- 23. Castronuovo G., Elia V., Niccoli M., Velleca F. // Thermochim. Acta. 2002. 389. P. 1 9.
- 24. To E.C.H., Davies J.V., Tucker M. et al. // J. Sol. Chem. 1999. 28. P. 1137 1157.
- 25. Lee S., Chalikian T.V. // J. Phys.Chem.B. 2009. 113. P. 2443 2450.
- 26. Королёв В.П. // Журн. общей химии. 2000. 70. С. 1976 1984.
- 27. Dowber J.G., Ward J., Williams R.A. // J. Chem. Soc. Faraday Trans. I. 1988. 84. P. 713 727.