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Для повышения эффективности бурения дегазационных скважин в угольных пластах рас-

смотрено использование винтовых забойных двигателей, обычно применяемых в нефтегазо-

вом бурении. Выявлены преимущества бурения пластов винтовыми забойными двигателями 

относительно традиционного вращательного бурения. На основании экспериментальных пла-

нов Бокса – Бенкена получено распределение основных конструкционных параметров, влияю-

щих на эффективность бурения: расход, нагнетаемое давление, усилие подачи. На угольной 

шахте Wangzhuang проведены полевые испытания винтового забойного двигателя 

с оптимальной конфигурацией параметров. В сравнении с традиционным вращательным буре-

нием эффективность винтового бурения выше на 39.08 %, вынос бурового шлама увеличился 

на 48.28 %, что позволяет значительно повысить эффективность дегазационного бурения 

угольных пластов и уменьшить вентиляционный цикл и общие затраты на отработку пласта.  

Винтовой забойный двигатель, вынос шлама, бурение дегазационной скважины, продолжитель-

ность бурения 
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Китай — крупнейший в мире производитель угля в настоящее время. Из-за увеличения глубины 

угледобычи шахтные чрезвычайные происшествия, связанные с содержащимися в угольных пластах 

газами, становятся более распространенными и катастрофическими [1 – 13]. Дегазация пластов — 

фундаментальный метод решения проблемы выбросов газа в выработку. Отвод газа осуществляется 

путем бурения в пластах скважин, что является основным способом дегазации [14 – 15].  

В угольных шахтах применяется традиционное вращательное бурение, которое характери-

зуется простотой исполнения и низкими затратами, но вместе с тем и небольшим выносом бу-

рового шлама, а также рядом конструкционных ограничений [16 – 19]. С целью повышения 

эффективности инженерных операций учеными выполнен ряд исследований по оптимизации 
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традиционного вращательного бурения. В работе [20] предложено усовершенствование долота-

расширителя вращательного бура, в результате которого эффективность бурения увеличилась 

на 20 %. Проблемы шнекового бурения сквозных скважин проанализированы в [21], здесь также 

представлены методы контроля для повышения точности бурения. В [22] обсуждался метод 

пневматического направленного бурения в рыхлых трещиноватых угольных пластах, в [23] — 

метод повышения эффективности за счет увеличения диаметра направленного бурения. Анализ 

и сравнение эффективности трех методов бурения выполнены в [24]. Оптимизация конструкции 

долота, позволила повысить эффективность бурения на 71% [25]. Новый тип буровой трубы 

с высокой жесткостью и прочностью предложен в [26], что позволило снизить удельное количе-

ство отказов буров. В [27] разработана буровая труба, с применением которой удалось увели-

чить глубину бурения и расширения.  

Большая часть данных работ рассматривает повышение эффективности бурения с точки 

зрения совершенствования долота. В настоящей работе на примере угольной шахты 

Wangzhuang, принадлежащей группе компаний Shanxi Luan, исследуется бурение дегазацион-

ных скважин винтовым забойным двигателем, которое обычно применяется в рамках нефтега-

зового бурения. Выполнен анализ трех основных параметров, влияющих на эффективность бу-

рения, и с помощью многопараметрических испытаний выявлены их оптимальные значения, 

а также проведена проверка метода в реальных условиях. 

ТЕХНОЛОГИЯ ВИНТОВОГО БУРЕНИЯ 

Метод винтового бурения угольных пластов заимствован из области нефтегазового буре-

ния. В рамках винтового бурения промывочная жидкость выполняет функцию передачи мощ-

ности для преобразования гидравлической энергии в механическую энергию вращения долота 

через трансмиссионный вал. Данный метод используется для повышения скорости буровых ра-

бот [28]. В общем виде в устройство винтового забойного двигателя (ВЗД) входят: перепуск-

ной клапан, винтовой гидромотор (ГМ), универсальный вал, приводной вал и противосбросо-

вый узел (рис. 1). Когда промывочная жидкость попадает в ВЗД, за счет разницы давления 

приводится в действие ГМ. В результате ротор начинает вращаться с высокой скоростью, ко-

торая ограничивается статором. Усилие, создаваемое универсальным валом, передается на до-

лото для повышения скорости бурения.  

 

Рис. 1. Типовое устройство винтового забойного двигателя 

Оптимизация перепускного клапана. В контексте нефтегазового бурения функция пере-

пускного клапана заключается в уравновешивании давления внутри и снаружи буровой трубы. 

Однако при бурении угольного пласта разница давления внутри и снаружи буровой трубы до-

статочно мала, поэтому необходимость в ее уравновешивании отсутствует.  
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Противосбросовый узел предотвращает падение элементов бура в скважину. Винтовой 

гидромотор — главный приводной элемент ВЗД. Он состоит из двух частей: статора и рото-

ра. Статор ГМ расположен снаружи от ротора. Действие ВЗД осуществляется за счет подачи 

промывочной жидкости под нагнетаемым гидронасосом высоким давлением на ротор, благо-

даря чему он совершает циклическое перемещение внутри статора и приводит в движение 

долото. Ротор традиционного ВЗД является сплошным. Такое исполнение ротора снижает 

влияние усилия подачи на скорость и момент вращения, что обеспечивает высокую эффек-

тивность бурения скальных пород. Значения момента и усилия подачи при бурении угольно-

го пласта значительно меньше, чем при бурении скальных пород, поэтому сплошной ротор 

можно заменить полым (рис. 2). При бурении угля такая замена не снижает скорость бурения 

и позволяет увеличить вынос бурового шлама, что в значительной мере оптимизирует про-

цесс в целом.  

 

Рис. 2. Различные исполнения ротора винтового гидромотора: а — сплошной; б — полый 

Узел универсального вала. Корпус с изогнутым универсальным валом используется для ре-

гулировки угла и траектории бурения. Бурение рассматриваемого угольного пласта является 

ненаправленным, глубина бурения и отклонение от заданной траектории небольшие, поэтому 

необходимость регулировки направления бурения отсутствует. Исходя из этого, вал выполнен 

в прямолинейной форме, которая предотвращает потерю мощности на изгибе скважины 

и обеспечивает высокое качество и скорость бурения.  

Узел приводного вала передает крутящий момент и скорость, сгенерированные ГМ, на до-

лото. При винтовом бурении происходит сложение скоростей вращения бурильной колонны 

и ВЗД, что обусловливает его высокую эффективность (рис. 3).  

 

Рис. 3. Принцип работы винтового забойного двигателя 
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Основной объект применения винтового бурения в рамках настоящей работы — угольный 

пласт. Линейный универсальный вал обеспечивает равномерное усилие на буровую трубу, 

а также суперпозицию мощности вращения ВЗД и мощности вращения буровой каретки. 

Сложное вращательное движение обеспечивает высокую эффективность бурения угля.  Полый 

ротор повышает объем выпуска бурового шлама.  

Преимущества винтового бурения дегазационных скважин в угольном пласте следующие: 

винтовой забойный двигатель обеспечивает достаточную мощность движения долота для раз-

рушения угля и сохранения высокой скорости бурения; гладкая траектория бурения решает 

проблему плохого выноса шлама, предотвращает слипание угля и породы, минимизирует риск 

заклинивания; снижается сопротивление трения, возникающего при взаимодействии бурового 

оборудования со стенкой скважины.  

Эффективность бурения — один из ключевых показателей оценки любой технологии [29 – 31]. 

Конструкционные особенности бурового оборудования напрямую влияют на эффективность 

бурения. Бурение в подземных угольных шахтах характеризуется тремя ключевыми парамет-

рами: усилием подачи, расходом жидкости и нагнетаемым давлением. Они определяются ис-

ходя из применяемой технологии бурения, геологических условий угольного пласта, использу-

емого оборудования и параметров скважины. Разные значения параметров могут привести 

к большим различиям в результате бурения [32 – 34]. 

Усилие подачи. Осевое усилие, передаваемое долоту от буровой каретки, называется усилием 

подачи, которое создает требуемые условия для проникновения резца в угольное тело [35, 36]. 

При бурении непрочных угольных пластов высокое значение усилия подачи не требуется. Од-

нако если угольный пласт имеет высокую прочность, то усилие подачи увеличивается до тре-

буемого значения [37].  

Расход промывочной жидкости. В процессе бурения промывочная жидкость выполняет 

функцию охлаждения долота, снижает его износ, а также предотвращает зашламление скважи-

ны, определяет скорость вращения долота  

Нагнетаемое давление. Разрушение угля — результат комбинированного воздействия ско-

рости и момента вращения долота в процессе бурения. Увеличение расхода повышает скорость 

вращения, тогда как момент вращения определяется нагнетаемым давлением. Давление 

не только создает момент вращения долота, но и обеспечивает равномерный вынос шлама из 

скважины и предотвращает слипание угля и породы.  

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ВИНТОВОГО БУРЕНИЯ  

ДЛЯ РАССМАТРИВАЕМОГО УГОЛЬНОГО ПЛАСТА 

Для определения оптимальной скорости бурения винтовым забойным двигателем выпол-

нен многопараметрический анализ, выявляющий оптимальные значения методом поверхности 

отклика. Исследование выполнено на примере обратной вентиляционной выработки 91 – 105 

угольной шахты Wangzhuang.  

Согласно экспериментальным планам Бокса – Бенкена, в качестве целевого критерия на по-

верхности отклика выбрана продолжительность бурения (Z). Рассмотрено влияние трех пара-

метров: нагнетаемое давление (A), расход жидкости (B) и усилие подачи (С) на продолжитель-

ность бурения дегазационной скважины винтовым забойным двигателем. Экспериментальные 

значения параметров представлены ниже:  

 

Нагнетаемое давление, МПа     4     6     5 

Расход жидкости, л/мин 180 200 220 
Усилие подачи, МПа     5     8   11 
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Результаты испытаний приведены в табл. 1. Выбраны средние значения при бурении кон-

трольной скважины в нормальных эксплуатационных условиях. Для каждой группы сочетаний 

параметров выполнены полевые испытания и получено фактическое значение продолжитель-

ности бурения Z (в минутах). Результаты обработаны в ПО Design Expert, выполнен квадратич-

ный регрессионный анализ, построена поверхность отклика и спрогнозированы значения Z1 

для каждой группы сочетаний параметров, рассчитаны значения абсолютной ошибки.  

ТАБЛИЦА 1. Схема проведения и результаты испытаний  

Группа A B C Z Z1 
Абсолютная ошибка 

(остаток) 

1 4 180 8 76.06 77.03  – 0.970 

2 8 180 8 69.84 70.37  – 0.530 

3 4 220 8 70.21 69.68 0.530 

4 8 220 8 71.31 70.34 0.970 

5 4 200 5 72.74 72.20 0.550 

6 8 200 5 68.19 68.09 0.100 

7 4 200 11 69.57 69.67  – 0.100 

8 8 200 11 67.23 67.78  – 0.540 

9 6 180 5 73.14 72.71 0.430 

10 6 220 5 67.06 68.13  – 1.070 

11 6 180 11 71.48 70.41 1.070 

12 6 220 11 67.18 67.61  – 0.430 

13 6 200 8 55.45 56.65  – 1.200 

14 6 200 8 58.34 56.65 1.690 

15 6 200 8 56.72 56.65 0.068 

16 6 200 8 55.43 56.65  – 1.220 

17 6 200 8 57.32 56.65 0.670 

 

Также в ПО Design Expert оценена значимость следующих моделей прогнозирования: ли-

нейной, 2FI, квадратичной и кубической (табл. 2). Согласно результатам анализа, наиболее 

подходящей является квадратичная модель, которая показывает наименьшее отклонение 

и наибольшее согласование данных. В то же время из табл. 1 видно, что после моделирования 

спрогнозированные значения Z1 достаточно близки к фактическим Z, а абсолютная ошибка до-

статочно мала. Это свидетельствует о том, что квадратичная модель обладает высокой стати-

стической значимостью. 

ТАБЛИЦА 2. Анализ моделей  

Модель СКО R2 Скорректированный R2 Спрогнозированный R2 PRESS 

Линейная 7.35 0.0656  – 0.1500  – 0.3494 1013.96 

2FI 8.29 0.0861  – 0.4623  – 1.1739 1633.52 

Квадратичная  1.31 0.9841 0.9636     0.8650 101.43 

Кубическая 1.25 0.9917 0.9668  
 

Примечание. СКО — среднеквадратическое отклонение; R2 — коэффициент корреляции; PRESS –– 

спрогнозированная ошибка суммы квадратов (Prediction Error of Sum of Squares). 

 

Корреляция модели, разработанной в ПО Design Expert, проверена путем построения графи-

ка нормального распределения вероятностей остатков, определенных по критерию Стьюдента. 

График позволяет выявлять выпадающие значения из массива наблюдений. Распределение то-

чек абсолютной ошибки на графике почти коллинеарно, что доказывает относительную точ-

ность и надежность модели. 
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Рис. 4. Нормальное вероятностное распределение абсолютной ошибки остатков по критерию 

Стьюдента  

Рассматриваемая квадратичная модель по результатам анализа ANOVA обладает крайне 

высокой статистической значимостью (табл. 3), так как значение F-критерия составило 48.05 

(p < 0.0001). Уровень согласованности модели, т. е. степень разницы между двумя результата-

ми, определяется P-критерием. Если значение P-критерия меньше 0.05, то параметр модели яв-

ляется значимым, как в случаях A, B, AB, A2, B2 и C2. Значение P-критерия более 0.1 указывает 

на то, что параметр модели не является значимым. Степень свободы df (Degree of Freedom) — 

это количество переменных частей в массиве данных.  

ТАБЛИЦА 3. Результаты квадратичной модели поверхности отклика и анализа ANOVA  

Объект исследования 
Сумма 

квадратов 
df 

Средний 

квадрат 
F-критерий P > F 

Модель 739.44 9 82.16 48.05 <0.0001 

A 18.03 1 18.03 10.55 0.0141 

B 27.23 1 27.23 15.93 0.0053 

C 4.02 1 4.02 2.35 0.1691 

AB 13.40 1 13.40 7.83 0.0266 

AC 1.22 1 1.22 0.71 0.4260 

BC 0.79 1 0.79 0.46 0.5180 

A2 234.34 1 234.34 137.06 < 0.0001 

B2 252.42 1 252.42 147.63 < 0.0001 

C2 119.18 1 119.18 69.70 < 0.0001 

Абсолютная ошибка 11.97 7 1.71   

Потеря данных 5.73 3 1.91 1.22 0.4097 

Чистая ошибка 6.24 4 1.56   

Итого 751.41 16    

 

Общее значение P-критерия для модели составило 0.4097, следовательно, модель не содержит 

несогласующихся параметров. Полученное уравнение регрессии можно использовать для анализа 

экспериментальных результатов вместо фактических значений. Кроме того, по результатам анали-

за ANOVA скорректированный коэффициент корреляции (Adjusted R2) равен 0.9636, коэффициент 

вариации (C. V.) составил 1.97 %, т. е. только 3.64 % данных отклоняется от модели. Таким обра-

зом, можно сделать вывод, что модель хорошо согласуется с фактическими данными.  
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Значения P-критерия для параметров A2, B2 и C2 составили менее 0.0001, что показывает 

их высокую значимость влияния на продолжительность бурения. Значение P-критерия пара-

метра A — 0.0141 (< 0.05), параметра B — 0.0053 (< 0.05), т. е. нагнетаемое давление (параметр 

A) и расход жидкости (параметр B) значительно влияют на продолжительность бурения. Одна-

ко значение P-критерия параметра С составило 0.1691 (> 0.05), следовательно, усилие подачи 

(параметр С) в значительной мере не влияет на продолжительность бурения. Анализ значимо-

сти показал следующее распределение параметров: расход жидкости > нагнетаемое давле-

ние > усилие подачи.  

Согласно квадратичной модели, в основе которой лежат мультиномиальные регрессионные 

уравнения, построены оптимизированные контуры между соответствующими переменными 

и поверхностями отклика (рис. 5).  

 

Рис. 5. Оптимизированные контуры между независимыми (а) и зависимыми (б) переменными: 

А — нагнетаемое давление, МПа; B — расход жидкости, л/мин; С — усилие подачи, МПа; Z — 

продолжительность бурения, мин 

На рис. 5б показаны поверхности отклика, построенные на основе экспериментальных пла-

нов Бокса – Бенкена для 17 групп буровых испытаний с тремя переменными параметрами, каж-

дый из которых имеет три уровня. Целью построения поверхностей является наблюдение ма-

лых изменений продолжительности бурения Z на различных уровнях параметров.  

Форма и тренд развития контура на рис. 5а отражает значимость взаимодействия двух па-

раметров между собой. Контурные графики AB, AC и BC относительно Z имеют эллиптиче-

скую форму, показывая, что все параметры оказывают влияние на продолжительность бурения. 

Изменение контура AB гораздо значительнее контуров AC и BC, изменения которых достаточ-

но малы. Однако изменение контура AC немного превышает изменение контура BC, показывая, 

что параметр A (нагнетаемое давление) и параметр B (расход жидкости) оказывают большее 

влияние на продолжительность бурения. Трехмерные поверхности отклика (рис. 5б) показыва-

ют, что поверхность AB имеет наибольшую крутизну, затем идет поверхность AC, а замыкает 

тройку поверхность BC (градиент поверхности показывает магнитуду значимости взаимодей-

ствия параметров между собой).  
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Ниже приведены результаты исследования с целью получения оптимальных параметров 

винтового бурения рассматриваемого угольного пласта: 

  Нагнетаемое давление, МПа                    6.17 

  Расход жидкости, л/мин    202.17 

  Усилие подачи, МПа         8.18 

  Продолжительность бурения, мин 

    теоретическая                56.4685 

    фактическая                56.68 

  Ошибка        0.22 

Максимальная абсолютная ошибка между спрогнозированным и фактическим значением 

крайне мала при использовании соотношений, рекомендованных ПО Design Expert 8.0.6. Сле-

довательно, разработанную модель можно считать надежной. При таких параметрах теорети-

ческая продолжительность бурения скважины длинной 100 м составила 56 мин 46 с.  

ПОЛЕВЫЕ ИСПЫТАНИЯ 

Полевые испытания выполнены в угольной шахте Wangzhuang (пров. Шаньси, Китай). Ис-

пытания винтового бурения проведены в вентиляционной выработке 91 – 105, полученные ре-

зультаты сравнены с традиционным вращательным бурением. В рамках испытаний выполнено 

бурение восьми групп скважин, каждая из которых состояла из двух (первая скважина — экс-

периментальная, вторая — контрольная). Бурение экспериментальных скважин проводилось 

при выявленных ранее оптимальных параметрах, а бурение контрольных — при обычных па-

раметрах, применяемых в шахте.  

Мониторинг процесса бурения осуществлялся каждые 10 мин. По окончании бурения вы-

полнен анализ полученных данных, результаты которого для восьми групп показаны на рис. 6. 

 

Рис. 6. Сравнение показателей винтового и вращательного бурения 

Согласно полученным данным, продолжительность бурения дегазационной скважины дли-

ной 100 м традиционным вращательным бурением составила 93.75 мин, винтовым — 

57.12 мин. Продолжительность бурения в среднем сократилась на 36.63 мин, а эффективность 

увеличилась на 39.08 %. В то же время значительно возрос объем выноса бурового шлама из 

скважин — 3.92 – 7.58 т (48.28 %). Это связано с более высокой скоростью бурения, при кото-

рой происходит постоянное разрушение породы и предотвращается аккумуляция слипшейся 

породы, снижается вероятность заклинивания бура.  
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На основе результатов полевых испытаний можно сделать вывод, что технология винтово-

го бурения обеспечивает более высокую мощность, скорость надежность и безопасность вы-

полнения буровых работ. Использование данной технологии позволит повысить эффектив-

ность бурения и выноса бурового шлама, тем самым сократить продолжительность бурения де-

газационных скважин в угольных шахтах и улучшить управление системой газоотвода.  

ВЫВОДЫ 

По результатам исследований оптимальных условий использования технологии винтового 

бурения, выполненных с применением метода ANOVA, параметры распределились по значи-

мости следующим образом: расход жидкости > нагнетаемое давление > усилие подачи. 

С помощью анализа поверхности отклика получены оптимальные параметры винтового 

бурения: нагнетаемое давление 6.17 МПа, расход жидкости 202.17 л/мин и усилие подачи 

8.18 МПа. При данных параметрах теоретическая продолжительность бурения скважины длин-

ной 100 м составила 56 мин 47 с.  

Для подтверждения эффективности технологии винтового бурения в угольной шахте 

Wangzhuang выполнены полевые испытания. По сравнению с традиционным вращательным 

бурением эффективность бурения увеличилась на 39.08 %, а вынос бурового шлама 

на 48.28 %. Таким образом, применение винтового забойного двигателя позволяет значитель-

но повысить эффективность бурения дегазационных скважин в угольном пласте и сократить 

затраты на управление системой газоотвода.  
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