2010. Том 51, № 5

Сентябрь – октябрь

C. 976 – 981

УДК 541.49:548.736:539.19

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СОЕДИНЕНИЯ Sm(Phen)(*i*-Bu₂PS₂)₃·MeCN И ФОТОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА SmL(*i*-Bu₂PS₂)₃ (L = Phen, 2,2'-Bipy)

© 2010 Т.Е. Кокина^{1,2}*, Р.Ф. Клевцова¹, Е.М. Усков¹, Л.А. Глинская¹, Ю.А. Брылева², С.В. Ларионов¹

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

Статья поступила 16 октября 2009 г.

Найдено, что комплексы Sm(Phen)(*i*-Bu₂PS₂)₃ (**I**) и Sm(2,2'-Bipy)(*i*-Bu₂PS₂)₃ (**II**) обладают фотолюминесценцией при 300 K, характерной для иона Sm³⁺. В спектрах наблюдаются три полосы с $\lambda_{\text{max}} = 564$, 600 и 645 нм. Выращены монокристаллы соединения Sm(Phen)(*i*-Bu₂PS₂)₃·MeCN (**III**) и по дифракционным рентгеновским данным (дифрактометр X8 Арех, Мо K_{α} -излучение, 7685 F_{hkl} , R = 0,0258) определена его структура. Кристаллы **III** триклинные, размеры элементарной ячейки: a = 11,0554(3), b = 15,0446(3), c = 15,4849(4) Å; $\alpha = 89,218(1)$, $\beta = 75,555(1)$, $\gamma = 73,484(1)^{\circ}$, V = 2386,6(1) Å³, Z = 2, $\rho_{выч} = 1,391$ г/см³, пр. гр. $P \overline{1}$. Структура **III** построена из молекул одноядерного комплекса **I** и молекул MeCN. Координационный полиэдр атома Sm — тетрагональная антипризма N₂S₆. Показано, что в структуре **III** имеются димерные ансамбли из молекул комплекса **I**.

Ключевые слова: разнолигандный комплекс, диизобутилдитиофосфинат, Sm, Phen, 2,2'-Віру, кристаллическая и молекулярная структура, фотолюминесценция.

Синтез и исследование структуры люминесцирующих комплексов лантаноидов с органическими лигандами — актуальное направление координационной химии [1—3]. По принципу жестких, мягких кислот и оснований ионы лантаноидов относятся к жестким кислотам. Синтезированные люминесцирующие комплексы лантаноидов обычно содержат лиганды — жесткие основания, имеющие донорные атомы азота и кислорода. В связи с этим большой интерес вызывает возможность получения люминесцирующих комплексов лантаноидов с серосодержащими лигандами — мягкими основаниями и исследования их структуры. В обзоре [1] приведены комплексы лантаноидов с монотио-β-дикетоном. В число перспективных серосодержащих лигандов для синтеза люминесцирующих комплексов лантаноидов следует включить органические анионы, имеющие группы CS₂⁻ и PS₂⁻. Так, синтезированы комплексы Ln(Phen)× \times (Et₂NCS₂)₃ (Ln = La, Pr, Nd, Sm—Lu) [4—6] и Ln(Phen)(C₄H₈NCS₂)₃ (Ln = La, Pr, Nd, Sm) [7]. Получены данные PCA для Eu(Phen)(Et₂NCS₂)₃ [8] и Er(2,2'-Bipy)(Et₂NCS₂)₃ [9]. Нами синтезированы и структурно охарактеризованы методом РСА разнолигандные соединения LnL(Et₂NCS₂)₃ (Ln = Eu, Sm; L = Phen, 2,2'-Bipy) [10, 11]. Показано, что эти комплексы и аналогичные соединения La, Pr, Gd, Tb и Dy обладают фотолюминесценцией [12]. Определена кристаллическая структура комплекса Yb(Phen)(Et₂NCS₂)₃ [13]. Кроме того, синтезированы комплексы $LnL(i-Bu_2PS_2)_3$ (Ln = Pr, Nd, Sm, Eu; L = Phen, 2,2'-Bipy), причем структуры соединений европия(III) были определены методом РСА [14]. Позднее исследована структура

^{*} E-mail: kokina@niic.nsc.ru

 $Nd(Phen)(i-Bu_2PS_2)_3$ [15]. Найдено, что этот комплекс и новые разнолигандные соединения $LnL(i-Bu_2PS_2)_2NO_3$ (Ln = Nd, Eu; L = Phen, 2,2'-Bipy) обладают фотолюминесценцией [15, 16].

Цель данной работы — определение структуры соединения $Sm(Phen)(i-Bu_2PS_2)_3 \cdot MeCN$ и изучение фотолюминесценции комплексов $SmL(i-Bu_2PS_2)_3$ (L = Phen, 2,2'-Bipy).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексы Sm(Phen)(*i*-Bu₂PS₂)₃ (I) и Sm(2,2'-Bipy)(*i*-Bu₂PS₂)₃ (II) получали по известным методикам [14]. Данные элементного анализа (С, Н, N) для I и II соответствуют вычисленным значениям для соединений указанного состава. Микроанализы выполнены на анализаторе Euro EA 3000.

Монокристаллы соединения Sm(Phen)(*i*-Bu₂PS₂)₃·MeCN (III) выращены при медленном испарении раствора комплекса I в ацетонитриле.

Для РСА отобрали прозрачный кристалл в форме призмы. Параметры элементарной ячейки и интенсивности рефлексов измеряли при низкой температуре (150 K) на автодифрактометре "Bruker X8 Арех ССD", оснащенном двухкоординатным детектором, по стандартной методике (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Кристаллографические характеристики, детали рентгеновского дифракционного эксперимента и уточнения структуры приведены в табл. 1.

Структура решена прямым методом и уточнена полноматричным МНК по F^2 в анизотропном для неводородных атомов приближении по комплексу программ SHELXL-97 [17]. Позиции атомов водорода при атоме C(1S) молекулы MeCN выявлены из разностного синтеза электронной плотности и уточнены изотропно. Остальные атомы Н рассчитаны геометрически и включены в уточнение в изотропном приближении совместно с неводородными атомами.

Таблица 1

Кристаллографические характеристики, детали эксперимента и уточнения структуры соединения Ш

Эмпирическая формула	$C_{38}H_{65}N_3P_3S_6Sm$
Молекулярный вес	999,55
Сингония	Триклинная
Пространственная группа	$P\overline{1}$
<i>a</i> , <i>b</i> , <i>c</i> , Å	11,0554(3), 15,0446(3), 15,4849(4)
α , β , γ , град.	89,218(1), 75,555(1), 73,484(1)
V, Å ³	2386,64(10)
Z; $ρ_{\rm BhP}$, Γ/cm ³	2; 1,391
μ , мм ⁻¹	1,622
Размеры кристалла, мм	0,32×0,28×0,15
Область сканирования, θ, град.	1,90—25,50
Число измерен. / независ. отражений, R(int)	16358 / 8708, 0,0236
Число отражений с $I > 2\sigma(I)$	7685
Число уточняемых параметров	510
GOOF по F^2	1,044
R -фактор, $I > 2\sigma(I)$	
R_1	0,0258
wR_2	0,0537
<i>R</i> -фактор (по всем <i>I</i> _{<i>hkl</i>})	
R_1	0,0326
wR_2	0,0555
Остаточная электронная плотность (max / min), e/Å ³	0,707 / -0,331

Таблица 2

Связь	d	Связь	d	Связь	d
Sm(1)—N(1f)	2.611(2)	P(2) - C(21)	1.821(3)	C(9f)—C(10f)	1.398(4)
Sm(1)—N(2f)	2.640(2)	P(2) - C(25)	1.822(3)	C(11f) - C(12f)	1.349(4)
Sm(1) - S(3)	2,8620(7)	S(5) - P(3)	2,0034(9)	C(1f)— $C(2f)$	1,397(4)
Sm(1) - S(6)	2,8876(7)	S(6)—P(3)	2,012(1)	C(2f) - C(3f)	1,364(4)
Sm(1)— $S(2)$	2,8896(7)	P(3)—C(35)	1,811(3)	C(3f)—C(4f)	1,406(4)
Sm(1)— $S(5)$	2,9059(7)	P(3)—C(31)	1,821(3)	C(4f)— $C(5f)$	1,411(4)
Sm(1)— $S(1)$	2,9094(7)	N(1f)—C(1f)	1,333(3)	C(4f)—C(11f)	1,431(4)
Sm(1)— $S(4)$	2,9377(7)	N(1f)—C(5f)	1,359(3)	C(5f)—C(6f)	1,450(4)
S(1) - P(1)	2,0129(9)	N(2f)—C(10f)	1,327(3)	N(1S)—C(2S)	1,131(5)
S(2)—P(1)	2,0092(9)	N(2f)—C(6f)	1,367(3)	C(1S)—C(2S)	1,442(7)
P(1)—C(11)	1,822(2)	C(6f)—C(7f)	1,404(4)	C(1S)—H(1S)	0,96(5)
P(1)—C(15)	1,825(3)	C(7f)—C(8f)	1,407(4)	C(1S)—H(2S)	1,04(4)
S(3)—P(2)	2,015(1)	C(7f)—C(12f)	1,432(4)	C(1S)—H(3S)	0,94(5)
S(4)—P(2)	2,012(1)	C(8f)—C(9f)	1,361(4)		
Угол	ω	Угол	ω	Угол	ω
N(1F) - Sm(1) - N(2F)	62.80(6)	C(35) - P(3) - C(31)	105.9(1)	C(3f) - C(4f) - C(11f)	122.8(3)
S(6) - Sm(1) - S(5)	69,42(2)	C(35) - P(3) - S(5)	109,53(9)	C(5f) - C(4f) - C(11f)	120,0(2)
S(2) - Sm(1) - S(1)	69,77(2)	C(31) - P(3) - S(5)	113,5(1)	N(1f) - C(5f) - C(4f)	122,8(2)
S(3) - Sm(1) - S(4)	70,31(2)	C(35) - P(3) - S(6)	111,3(1)	N(1f)—C(5f)—C(6f)	118,2(2)
C(11) - P(1) - C(15)	100,8(1)	C(31)—P(3)—S(6)	106,0(1)	C(4f) - C(5f) - C(6f)	119,0(2)
C(11) - P(1) - S(2)	112,55(9)	S(5)—P(3)—S(6)	110,49(4)	N(2f) - C(6f) - C(7f)	122,8(2)
C(15) - P(1) - S(2)	110,48(9)	C(1f)— $N(1f)$ — $C(5f)$	117,7(2)	N(2f) - C(6f) - C(5f)	118,1(2)
C(11) - P(1) - S(1)	108,78(9)	C(1f)— $N(1f)$ — $Sm(1)$	121,4(2)	C(7f)-C(6f)-C(5f)	119,0(2)
C(15) - P(1) - S(1)	112,7(1)	C(5f)— $N(1f)$ — $Sm(1)$	120,42(16)	C(6f) - C(7f) - C(8f)	117,8(2)
S(2) - P(1) - S(1)	111,10(4)	C(10f) - N(2f) - C(6f)	117,2(2)	C(6f) - C(7f) - C(12f)	120,4(2)
C(21)—P(2)—C(25)	106,5(1)	C(10f) - N(2f) - Sm(1)	123,1(2)	C(8f) - C(7f) - C(12f)	121,9(3)
C(21) - P(2) - S(4)	109,9(1)	C(6f)— $N(2f)$ — $Sm(1)$	119,1(2)	C(9f) - C(8f) - C(7f)	119,1(3)
C(25)—P(2)—S(4)	110,7(1)	N(1f)— $C(1f)$ — $C(2f)$	123,4(3)	C(8f) - C(9f) - C(10f)	119,5(2)
C(21)—P(2)—S(3)	109,5(1)	C(3f) - C(2f) - C(1f)	119,0(3)	N(2f) - C(10f) - C(9f)	123,5(2)
C(25)—P(2)—S(3)	107,9(1)	C(2f)— $C(3f)$ — $C(4f)$	119,9(3)	C(12f)-C(11f)-C(4f)	121,0(3)
S(4) - P(2) - S(3)	112,10(4)	C(3f) - C(4f) - C(5f)	117,2(3)	C(11f)-C(12f)-C(7f)	120,6(3)

Основные межатомные расстояния d (Å) и валентные углы ω (град.) в структуре соединения III

Примечание: Длины связей С—С в i-Bu₂PS₂⁻-ионах изменяются в интервале 1,501(4)—1,548(4) Å, f —атомы Phen.

Окончательные значения основных межатомных расстояний и валентных углов приведены в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (ССDC 748114) и могут быть получены у авторов.

Спектры фотолюминесценции (ФЛМ) снимали на спектрометре СДЛ-1. Для возбуждения ФЛМ применяли ртутную лампу типа ДРШ-250 с фильтром на 365 нм. Возбуждение осуществляли под углом 35—40° к площади образца. Спектры записывали с помощью фотоэлектронного умножителя ФЭУ-62 и самописца КСП-4. Образцы готовили в виде таблеток одинаковой площади, используя поликристаллы *i*-Bu₂PS₂Na·3H₂O и комплексов I, II. Спектры записывали при комнатной температуре в стандартных условиях.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Основу кристаллической структуры соединения ІІІ составляют молекулы одноядерного комплекса I и молекулы MeCN, все атомы которых расположены в общих позициях (рис. 1, a). Атом Sm координирует два атома N бидентатного хелатообразующего лиганда Phen на расстояниях Sm—N, равных 2,611(2) и 2,640(2) Å, а также шесть атомов S трех бидентатных хелатообразующих лигандов *i*-Bu₂PS₂⁻ на различающихся расстояниях Sm—S, лежащих в интервале 2,8620(7)—2,9377(7) Å. Координация приводит к замыканию трех хелатных циклов SmS₂C и цикла SmN₂C₂. Координационный полиэдр N₂S₆ можно представить в форме искаженной тетрагональной антипризмы. Четырехугольные грани призмы, образованные атомами S(1)S(2)S(5)S(6) и N(1f)N(2f)S(3)S(4), расположены под углом 6,3° друг к другу. Среднее отклонение атомов в этих гранях равно 0,0107(3) и 0,2690(8) Å соответственно. В антипризме грань N(1f)N(2f)S(3)S(4) имеет перегиб по ребру N(1f)S(3) с образованием двугранного угла 25,51(8)°. Длины связей и величины валентных углов координационного узла SmN₂S₆ близки значениям в комплексах Ln(Phen)(i-Bu₂PS₂)₃ (Ln = Eu, Nd) [14, 15]. Атомы Р имеют слегка искаженное тетраэдрическое окружение: среднее значение величины валентных углов при атомах Р близко к идеальному тетраэдрическому 109,5°. Плоскости, проходящие через атомы трех четырехчленных хелатных циклов SmS₂P, имеют практически плоское строение со средним отклонением атомов от их плоскостей 0,0207(3), 0,0416(3), 0,0897(3) А. Пятичленный хелатный цикл SmN₂C₂ слегка деформирован и имеет конформацию конверта с отклонением атома Sm от плоскости N₂C₂ в 0,374(5) Å.

Две параллельные плоскости Phen соседних молекул комплекса I, размноженных центром симметрии, расположены на расстоянии d = 3,38 Å, а центры колец Phen — на расстоянии r, равном 5,45 Å (см. рис. 1, б). Вследствие большого значения r локализация перекрывания молекул Phen происходит лишь на их периферии. Поэтому имеются лишь контакты (на уровне вандер-ваальсовых взаимодействий) между атомами С...С, кратчайшие из которых C(6f)...C(8f)' 3,432(3), C(7f)...C(9f) 3,451(3), C(10f)...C(12f) 3,484(4) Å. Наличие этих контактов и слабой во-

дородной связи S(1)...H(8f) 2,867 Å приводят к образованию димерного ансамбля (см. рис. 1, а). Существование подобных "димеров" для комплекса Eu(Phen)(*i*-Bu₂PS₂)₃ обнаружено в [14]. Аналогичное взаимодействие отмечали также в структурах разнолигандных координационных соединений диалкилдитиокарбаматов и алкилксантогенатов металлов с азотистыми гетероциклами [18, 19].

Молекулы MeCN размещаются в полостях между молекулами комплекса I. Молекулы MeCN слабо связаны с атомами молекул комплекса: минимальные расстояния C(1S)...S(5) 3,502(6), C(2S)...C(33) 3,588(5) Å. Это позволяет отнести соединение III

Рис. 1. Димерный ансамбль в кристаллической структуре III — а; степень перекрывания параллельных фенантролиновых циклов молекул Sm(Phen)(*i*-Bu₂PS₂)₃ на их среднестатистическую плоскость б

Рис. 2. (слева) Упаковка молекул соединения III в проекции вдоль оси а — а; проекция одного слоя молекул Sm(Phen)(*i*-Bu₂PS₂)₃ в структуре соединения III вдоль оси *b* и расположение молекул MeCN в образовавшихся полостях — б

Рис. 3 (справа). Спектр фотолюминесценции комплекса I при 300 К и $\lambda_{возб} = 365$ нм

к клатратному типу. Характер упаковки молекул в структуре III представлен на рис. 2, *а* в проекции вдоль короткой оси *а*. Поскольку атомы Sm располагаются на двух уровнях вдоль оси *b*: $y \approx 0,24$ и $\approx 0,76$, можно выделить два уровня молекул комплекса I, которые связаны центром симметрии. Расположение молекул

в одном из этих уровней приведено на рис. 2, *б*. На этом же рисунке отмечено положение молекул MeCN.

Сравнение ранее структурно изученных клатратов, образованных комплексными соединениями с бидентатными серосодержащими лигандами и молекулами органических соединений, показало, что некоторые из них имеют аналогичное с III строение. В структурах клатратных соединений Ni(2,2'-Bipy)(EtOCS₂)₂·C₆H₆ [19], Zn₂(4,4'-Bipy)(*i*-Pr₂NCS₂)₄·2C₆H₅CH₃ [20], Zn₂(4,4'-Bipy)(*i*-PrOCS₂)₄·CH₂Cl₂ [21] молекулы бензола, толуола и хлористого метилена располагаются также в замкнутых полостях.

Можно предположить, что структура комплекса II подобна структуре I.

В соли *i*-Bu₂PS₂Na·3H₂O при 300 K и $\lambda_{B036} = 365$ нм в видимой области спектра ФЛМ не обнаружена. Комплекс I при тех же условиях наблюдения обладает ФЛМ, характерной для иона Sm³⁺. В спектре наблюдали три полосы, соответствующие переходам ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2} \rightarrow {}^{6}H_{7/2} \rightarrow {}^{6}H_{9/2}$ с $\lambda_{max} = 564$, 600, 645 нм соответственно (рис. 3). Наибольшей интенсивностью

(*I*) обладает полоса с $\lambda_{\text{max}} = 645$ нм. Комплекс II также обладает ФЛМ при 300 К и $\lambda_{\text{возб}} = 365$ нм. Спектр ФЛМ II аналогичен спектру комплекса I, однако *I* всех трех полос приблизительно в 4 раза слабее. По-видимому, Phen в комплексе I обладает сенсибилизирующим эффектом по отношению к иону Sm³⁺. Триплетный уровень Phen по энергии приблизительно равен первому возбужденному уровню ${}^{4}G_{5/2}$ иона Sm³⁺ [22]. Поэтому возможен перенос энергии от молекул Phen к ионам Sm³⁺, что усиливает ФЛМ Sm³⁺. Тот факт, что спектральные полосы комплекса I в 4 раза интенсивнее полос комплекса II, свидетельствуют в пользу этого предположения. То, что Phen усиливает ФЛМ ионов Sm³⁺, отмечено в [23]. Аналогичную картину по сенсибилизирующему влиянию Phen на ФЛМ ионов Eu³⁺ мы наблюдали, изучая ФЛМ комплексов EuL(*i*-Bu₂PS₂)₂NO₃ (L = Phen, 2,2'-Bipy) [16]. Однако следует отметить, что *I* спектральных линий иона Eu³⁺ в этих комплексах выше *I* спектральных полос иона Sm³⁺ в соединениях I и II при тех же условиях наблюдения.

Полученные данные свидетельствуют о перспективности дальнейшего синтеза, исследования структуры и ФЛМ комплексов лантоноидов с серосодержащими лигандами, имеющими донорную группировку PS₂, и азотистыми гетероциклами.

Авторы выражают благодарность к.х.н. Д.Ю. Наумову за проведение рентгеноструктурного эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. Каткова М.А., Витухновский А.Г., Бочкарев М.Н. // Успехи химии. 2005. 74, № 12. С. 1193 1215.
- 2. Bünzli J.-C. G. // Acc. Chem. Res. 2006. 39. P. 53 61.
- 3. *Метелица А.В., Бурлов А.С., Безуглый С.О. и др. //* Координац. химия. 2006. **32**, № 12. С. 894 905.
- 4. Горшков Н.Н., Сидоренко Г.В., Суглобов Д.И. // Радиохимия. 1994. 36, № 2. С. 154 156.
- 5. Fan X.-Z., Chen S.-P., Xie G. et al. // Acta Chim. Sinica. 2006. 64, N 10. P. 1022 1030.
- 6. Домрачев Г.А., Завьялова Л.В., Свечников Г.С. и др. // Журн. общ. химии. 2003. **73**, № 4. С. 593 599.
- 7. Meng X.-X., Gao S.-L., Chen S.-P. et al. // Acta Chim. Sinica. 2004. 62, N 22. P. 2233 2238.
- 8. Su C.G., Tan M.Y., Tang N. et al. // J. Coord. Chem. 1996. 38, N 3. P. 207 218.
- 9. Su C., Tang N., Tan M., Yu K. // Polyhedron. 1996. 15, N 2. P. 233 239.
- 10. Варанд В.Л., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Журн. структур. химии. 1998. **39**, № 2. – С. 300 – 309.
- 11. Варанд В.Л., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Журн. структур. химии. 2000. **41**, № 3. С. 663 668.
- 12. Regulacio M.D., Publico M.H., Vasquez J.A. et al. // Inorg. Chem. 2008. 47, N 5. P. 1512 1523.
- 13. *Кузьмина Н.П., Иванов Р.А., Илюхин А.Б., Парамонов С.Е. //* Координац. химия. 1999. **25**, № 8. С. 635 638.
- 14. Варанд В.Л., Клевцова Р.Ф., Глинская Л.А., Ларионов С.В. // Координац. химия. 2000. **26**, № 11. С. 869 877.
- 15. *Ларионов С.В., Варанд В.Л., Клевцова Р.Ф. и др. //* Координац. химия. 2008. **34**, № 12. С. 944 950.
- 16. Варанд В.Л., Усков Е.М., Корольков И.В., Ларионов С.В. // Журн. общ. химии. 2009. **79**, № 2. С. 240 243.
- 17. Sheldrick G.M. SHELXL-97, release 97-2. Germany: University of Göttingen, 1998.
- 18. *Ларионов С.В., Клевцова Р.Ф., Земскова С.М., Глинская Л.А.* // Химия в интересах устойчивого развития. – 1999. – 7, № 4. – С. 451 – 461.
- 19. Gable R.W., Hoskins B.F., Winter G. // Inorg. Chim. Acta. 1985. 96. P. 151 159.
- 20. Ларионов С.В., Клевцова Р.Ф., Щукин В.Г. и др. // Координац. химия. 1999. **25**, № 10. С. 743 749.
- 21. Клевцова Р.Ф., Леонова Т.Г., Глинская Л.А., Ларионов С.В. // Координац. химия. 2000. **26**, № 3. С. 179 184.
- 22. Полуэктов Н.С., Кононенко Л.И., Ефрюшина Н.П., Бельтюкова С.В. Спектрофотометрические и люминесцентные методы определения лантаноидов. – Киев.: Наукова думка, 1989.
- 23. Севченко А.Н., Кузнецова В.В. Редкоземельные элементы. М.: Изд-во АН СССР, 1963. С. 358 361.