
Физика горения и взрыва, 2024, т. 60, N-◦ 4 63

УДК 621.45.022.5

ВЛИЯНИЕ СОСТАВА ТОПЛИВА НА ОБРАЗОВАНИЕ САЖИ

В ДВИГАТЕЛЯХ И ЭНЕРГОУСТАНОВКАХ

К. Д. Цапенков, Ю. Г. Кураева, Е. И. Сидорова, А. Е. Штырлов,
И. А. Зубрилин

Самарский национальный исследовательский университет им. акад. С. П. Королева, 443086 Самара,
tsapenkov@inbox.ru

Представлен обзор литературы по теме образования сажи при сжигании топлив из биокомпо-
нентов. В обзоре содержатся краткие сведения о механизмах образования сажи, этапах ее об-
разования и факторах, влияющих на этот процесс. Проведен анализ представителей различных
групп оксигенированных биотоплив с точки зрения их влияния на уровень сажеобразования.
Приведены общепринятые характеристики уровня выбросов сажи для углеводородных топлив,
представлены их преимущества и недостатки.
Ключевые слова: выбросы сажи, образование сажи, биотопливо, оксигенаты, индекс сажеоб-

разования.

DOI 10.15372/FGV2023.9430
EDN UQFFEZ

ВВЕДЕНИЕ

В настоящее время биотопливо становит-
ся всё более востребованным из-за стремле-
ния сократить выбросы СО2 и частиц са-
жи. По данным Международной организации

гражданской авиации (ICAO), Международной
ассоциации воздушного транспорта (IATA) и
Группы действий по воздушному транспорту

(ATAG) на авиацию приходится 13 % выбро-
сов CO2 во всех транспортных секторах, что
составляет 2 ÷ 3 % от общего объема выбро-
сов парниковых газов [2]. Авиационные дви-
гатели, помимо CO2, вырабатывают и дру-
гие опасные загрязнители, такие как несгорев-
шие углеводороды, CO, NOx, SOx, сажа. Сажа,
являющаяся неизбежным побочным продуктом

процесса сгорания углеводородного топлива в

двигателях и разнообразных печах, оказыва-
ет негативное влияние на здоровье человека

и окружающую среду. Микро- и ультрадис-
персные размеры частиц сажи позволяют ей

проникать в дыхательную систему и накап-
ливаться в организме человека. Химическими
предшественниками (прекурсорами) сажи яв-
ляются полициклические ароматические угле-
водороды (ПАУ), которые обладают доказан-
ным, ярко выраженным канцерогенным эффек-
том [1].

c©Цапенков К. Д., Кураева Ю. Г., Сидорова Е. И.,
Штырлов А. Е., Зубрилин И. А., 2024.

Проведенные исследования показывают,
что применение альтернативных видов топли-
ва для реактивных двигателей может суще-
ственно снизить вредные выбросы.

1. МЕХАНИЗМ ОБРАЗОВАНИЯ САЖИ

Элементный анализ сажи показывает, что
в основном она состоит из углерода, в неболь-
ших количествах присутствуют сера, кисло-
род, водород и металлы. Основными форма-
ми углерода являются элементарный углерод

(ЭУ) и органический углерод (ОУ), который
входит в состав органических соединений топ-
лива. Первичные углеродистые частицы состо-
ят из упорядоченного и аморфного углерода.
Что касается внутренней структуры первич-
ных частиц сажи, то основными компонента-
ми являются упорядоченные пластины графе-
на. Кроме того, ЭУ имеет графитоподобную

микрокристаллическую структуру [3].
Образование сажи двигателями включает

в себя ряд сложных физических и химических

процессов. Анализ структуры частиц сажи с

помощью микроскопических методов позволил

выделить следующие стадии сажеобразования

[1, 4–8]: пиролиз топлива; нуклеация; поверх-
ностный рост сажи; агломерация частиц сажи;
окисление сажи.

Схематически процесс сажеообразования

показан на рис. 1. Рассмотрим подробнее эти
стадии.
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Рис. 1. Схематическое изображение стадий сажеобразования [5]

1.1. Пиролиз топлива

Первый этап процесса образования сажи

включает в себя разложение исходного топли-
ва с образованием более мелких молекул угле-
водородов и радикалов, с последующим образо-
ванием предшественников сажи в газовой фазе

[9]. Молекулярные предшественники сажи яв-
ляются строительными блоками частиц сажи,
они играют решающую роль в зарождении и

росте сажи. Стоит отметить, что в ряде ис-
следований в качестве предшественников сажи

предлагаются другие структуры, например по-
лиацетилены и ионные частицы, однако ПАУ в
наибольшей степени признаны предшественни-
ками сажи [8, 9].

Общепринятая картина образования сажи

в углеводородном пламени состоит в том, что
небольшие ароматические соединения, такие
как бензол (C6H6) и толуол (C7H8), вплоть
до ПАУ с высокой молекулярной массой, флу-
орен (C13H10) и фенантрен (C14H10), обра-
зуются из более мелких частиц ненасыщен-
ных углеводородов — ацетилена, этена, про-
пена, аллена, пропина и циклопентадиена. В
процессе формирования ароматической кольце-
вой структуры также участвуют резонансно-
стабилизированные углеводородные радикалы,
такие как пропаргил и аллил. На рис. 2 по-
казаны возможные пути образования первого

ароматического кольца из различных структур

при горении топлива, содержащего алифатиче-
ские углеводороды [9]. Кроме того, ароматиче-
ские соединения, уже содержащиеся в топливе,
действуют непосредственно как предшествен-
ники сажи [7]. Дальнейшее образование арома-
тических циклов происходит путем повторяю-
щейся последовательности реакций активации

(отрыва атома H от стабильных молекул) и
присоединения молекулы ацетилена [10].

1.2. Нуклеация

Нуклеация сажи относится к процессу пе-
рехода от предшественников газовой фазы к за-

рождающимся частицам конденсированной фа-
зы. В настоящее время обычно предполагают-
ся два концептуальных пути образования са-
жи из ПАУ. Первый — это химический путь,
который заключается в химическом взаимодей-
ствии между ПАУ и алифатическими струк-
турами с образованием перекрестно-связанных
трехмерных структур [11]; второй путь — фи-
зический, предполагающий физическую агло-
мерацию молекул ПАУ в стопку кластеров,
связанных силами Ван-дер-Ваальса [7, 8]. На
данной стадии образуются ядра сажи диамет-
ром 1.5 ÷ 3 нм [5].

1.3. Поверхностный рост сажи

После нуклеации вновь образовавшиеся

частицы сажи увеличиваются в массе/размере
за счет реакций поверхностного роста в резуль-
тате взаимодействия между частицами газовой

фазы и частицами сажи [1, 8]. Четкого разли-
чия между окончанием зародышеобразования и

началом поверхностного роста нет, и эти два
процесса протекают одновременно. В условиях
горения горячая реакционноспособная поверх-
ность частиц сажи взаимодействует с углево-
дородами из газовой фазы. Это приводит к уве-
личению массы частиц сажи, без изменения их
количества [5].

1.4. Агломерация сажи

На данной стадии продолжается рост ча-
стиц сажи в результате процессов коагуляции

и коалесценции. Коалесценция заключается в
столкновении частиц и слиянии их в одну но-
вую, большего размера частицу [5]. Агломе-
рация происходит, когда отдельные или пер-
вичные частицы слипаются и образуют боль-
шие агломераты. Первичные частицы сохра-
няют свою форму, между ними остаются тон-
кие прослойки газовой фазы. Данная стадия не
только определяет размер и морфологию сажи,
но сильно влияет на скорость роста поверхно-
сти и, наконец, на количество выделяемой при
горении сажи [8].
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Рис. 2. Основные пути образования первого ароматического кольца [9]

1.5. Окисление сажи

Как только углерод частично окисляется

до CO, он больше не превращается в частицы
сажи, даже если попадает в зону, богатую топ-
ливом. Окисление может происходить в любой
момент процесса образования сажи, от пироли-
за до агломерации [5], и протекать как внутри,
так и на поверхности первичных частиц сажи.
На начальной стадии частицы сажи сгорают

с высокой скоростью, потребляя почти 20 %
углерода в частицах, а на второй стадии го-
рение протекает внутри этих сферических ча-
стиц, что приводит к образованию пористых

сфер. Внутреннее горение и окисление внеш-
ней поверхности частиц могут вызвать фраг-
ментацию агрегатов сажи и тем самым увели-
чить общую ее концентрацию. Мелкие части-
цы, образующиеся в результате фрагментации,
вызванной окислением, при понижении темпе-
ратуры окисляются полностью, а при повыше-
нии температуры не только процесс окисления

становится более полным, но и снижается воз-
можность внутреннего сгорания, что сокраща-
ет количество частиц. На поздней стадии сго-
рания процесс окисления доминирует из-за низ-
кой температуры горения и недостаточного ко-
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личества кислорода. Уменьшение скорости об-
разования сажи уменьшает количество частиц

и увеличивает их средний диаметр, что приво-
дит к уменьшению поверхности сажи, доступ-
ной для окисления при той же массе сажи, из-за
чего снижается скорость окисления [1].

Различные стадии образования сажи про-
исходят на разных участках пламени. В за-
висимости от места и рассматриваемого про-
цесса вклад одних и тех же реакций будет

различным, как, например, в случае реакции
окисления, которая существует на каждой ста-
дии процесса образования сажи — образование

ПАУ, нуклеация и поверхностный рост.

2. ОСНОВНЫЕ ФАКТОРЫ,
ВЛИЯЮЩИЕ НА ОБРАЗОВАНИЕ САЖИ

Следует отметить, что стадии образова-
ния сажи схожи для различных топлив в ав-
томобильных двигателях [1, 4, 7], в газотур-
бинных двигателях [12, 13], а также в котель-
ных установках и при газификации биомассы

[14]. На процессы образования и окисления са-
жи влияют многие факторы. Помимо особенно-
стей конструкции камеры сгорания и парамет-
ров рабочего процесса в ней, к внешним воз-
действиям относятся температура, давление и
концентрация кислорода, а также свойства и
состав топлива. Морфологические характери-
стики, массовая концентрация и численная кон-
центрация частиц сажи являются результатом

конкуренции механизмов окисления.

2.1. Физико-химические свойства топлива

Вязкость топлива влияет на характери-
стики его распыления. Топлива с высокой вяз-
костью распыляются хуже, что приводит к

большим размерам капель топлива и неравно-
мерному смешиванию с воздухом и, как след-
ствие, к увеличению содержания частиц сажи.
Для улучшения качества смеси часто требует-
ся увеличивать давление впрыска, чтобы избе-
жать ухудшения распыления, вызванного вы-
сокой вязкостью [1].

Цетановое число отражает тенденцию са-
мовоспламенения топлива. Установлено, что
при одинаковом содержании кислорода в топ-
ливных смесях существует корреляция между

цетановым числом топлива и концентрацией

выбросов ЭУ, а также соотношением ЭУ/ОУ
в частицах сажи [15]. При одинаковом содер-
жании кислорода в смесях оксигенаты с более

низким цетановым числом снижают содержа-
ние ЭУ и, соответственно, повышают содер-
жание OУ в частицах сажи. С одной стороны,
при более низком цетановом числе топлива уве-
личивается задержка его воспламенения, что
сокращает время окисления сажи при сохра-
нении суммарного времени нахождения смеси

в камере сгорания. При этом возрастают вре-
мя смешения топлива с окислителем и коли-
чество топлива, сгорающего в предваритель-
но подготовленной смеси, что снижает коли-
чество образующейся сажи. С другой стороны,
при увеличении цетанового числа повышаются

скорость воспламенения и, следовательно, пол-
нота сгорания, а также снижается сажеобра-
зование. Таким образом, изменение цетанового
числа влияет на особенности рабочего процесса

конкретной камеры сгорания.
Теплотворная способность и теплота паро-

образования топлива являются важными фак-
торами, влияющими на температуру горения.
Топливо с более низкой теплотворной способ-
ностью (например, ацетон) выделяет меньше
тепла при сгорании, что приводит к более низ-
кой температуре горения. Аналогичным обра-
зом увеличение теплоты парообразования мо-
жет вызвать охлаждающий эффект, который
способствует образованию сажи из-за сниже-
ния температуры. Однако такие соединения,
как этанол, которые имеют низкую теплоту па-
рообразования, испаряются легче, поэтому ча-
сто сгорают в режиме предварительно подго-
товленной смеси, что уменьшает количество

частиц сажи [1].

2.2. Состав топлива

В настоящее время большое развитие по-
лучило применение альтернативных топлив,
полученных из возобновляемого сырья или яв-
ляющихся смесью классических топлив с био-
компонентами. Подобные топлива по сравне-
нию с ископаемыми топливами (нефть, газ,
сланец, уголь) содержат кислородсодержащие
соединения различных классов. В работе [12]
выполнено сопоставление сажеобразования для

авиационного керосина Jet-A и биотоплива

(рис. 3). Основное различие в составе био-
топлива и топлива Jet-A заключается в от-
сутствии/дефиците ароматических соединений
вследствие каталитической гидроочистки. В
составах обычных реактивных топлив их со-
держится около 20 % (массовая доля), из-за че-
го при горении выделяется больше сажи [16].
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Рис. 3. Сопоставление процессов образования
сажи в керосине и биотопливе [12]

Исследования показали, что в целом кислород-
содержащие топлива менее склонны к сажеоб-
разованию по сравнению с аналогичными им

по структуре углеводородами. Данные резуль-
таты объясняются тем, что кислородные груп-
пы в топливе имеют тенденцию к образованию

CO2 и CO, что уменьшает число атомов угле-
рода для синтеза ПАУ [13]. Однако увеличение
доли некоторых кислородсодержащих веществ

ухудшает характеристики сгорания. Поэтому
необходимо подбирать оптимальное соотноше-
ние компонентов в топливных смесях для до-
стижения наилучших характеристик двигате-
ля, которые зависят от системы впрыска топ-
лива, системы сгорания, а также физических и
химических свойств топлива.

Влияние кислородсодержащих топлив с

одинаковым содержанием кислорода на выбро-
сы сажи также различно.Молекулярная струк-
тура кислородсодержащих добавок оказывает

существенное влияние на образование ПАУ и

сажи. Различным кислородсодержащим топли-
вам соответствуют разные размеры частиц са-
жи, фрактальные размеры и наноструктура,
что указывает на решающую роль функцио-
нальных групп, содержащих кислород, в обра-
зовании и окислении сажи. Склонность к са-
жеобразованию кислородсодержащих функцио-

нальных групп снижается в следующем поряд-
ке: спирт > кетон > альдегид > сложный эфир.
Двойная связь >C O карбонильной группы

достаточно стабильна, чтобы выдерживать вы-
сокую температуру и генерировать CO, то-
гда как связь C O в сложноэфирной группе

легко разрывается с образованием CO2. Нали-
чие гидроксильных групп ( ОН) в структу-
ре компонента топлива существенно снижает

образование сажи. При этом функциональная

группа OH обладает более сильной способно-
стью к окислительно-восстановительному воз-
действию на ПАУ по сравнению со слож-
ноэфирной группой O C O в биодизельном

топливе [1].

2.2.1. Топливо, содержащее спирты

Одним из способов сокращения выбросов

твердых частиц является использование аль-
тернативного топлива (биодизель, пиролизное
топливо из биомассы, спиртовое топливо и

т. д.). Такие виды топлива содержат значи-
тельные количества кислородсодержащих со-
единений, что приводит к снижению выбросов
сажи по сравнению с традиционными углево-
дородными топливами. Добавление спиртов в
топливо существенно влияет на микро- и нано-
структуру, летучесть и окислительную актив-
ность частиц. Как правило, чем больше кисло-
рода в топливе, тем меньше выбросы сажи. Так
как частицы сажи образуются из-за бескисло-
родного неполного сгорания, то увеличение до-
ли кислорода в топливных смесях обеспечивает

дополнительный кислород. Строение кислород-
содержащих функциональных групп компонен-
тов топлива также играет немаловажную роль.
Однако нельзя пренебрегать тем, что охлажда-
ющий эффект топливной смеси с добавлением

спирта обусловлен более высокой скрытой теп-
лотой испарения, что облегчает окисление са-
жи и приводит к увеличению ее выбросов [1].

Спирты, имеющие общую формулу

R OH, долгое время использовались в каче-
стве альтернативного биотоплива. Во всем

мире наиболее популярным выбором явля-
ются метанол, этанол и бутанол. Метанол
можно производить как из возобновляемых,
так и из невозобновляемых ископаемых видов

топлива, таких как уголь, природный газ и

биомасса [8]. Метанол имеет низкое цетановое
число (DCN = 5) [17] и высокую теплоту

парообразования. По сравнению с другими
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первичными спиртами (этанолом и бутано-
лом) смесь метанола и дизельного топлива

характеризуется большей теплотой парообра-
зования, меньшей теплотворной способностью,
более низкой температурой горения и более

высокой степенью использования кислорода в

процессе сгорания, что приводит к наимень-
шему количеству частиц сажи. Более того,
метанол из-за отсутствия связей C C больше

способствует образованию CO, а не сажи и ее
предшественников [1]. В целом использование

метанола имеет преимущества, заключающи-
еся в повышении топливной эффективности

и сокращении выбросов, но также можно

столкнуться с определенными проблемами,
такими как холодный запуск из-за низкого

давления пара.
Более распространенным кислородсодер-

жащим биотопливом для транспорта является

этанол. Его можно производить путем фермен-
тации сахарной свеклы, крахмалистых мате-
риалов и целлюлозной биомассы. Подобно ме-
танолу, этанол имеет низкое цетановое чис-
ло (DCN = 6.5) [18]. С увеличением содержа-
ния этанола в топливе уменьшаются соотно-
шения C/H и C/O, что замедляет скорость ро-
ста сажи, и ее масса значительно уменьшает-
ся. Однако применение этанола имеет и свои
недостатки. Хотя этанол способствует образо-
ванию CO и CH4, а не ПАУ, при горении он
может образовывать ацетилен, который в неко-
торой степени ускоряет образование предше-
ственника сажи. Исследования показали, что
добавление 20 % (об.) этанола к изооктану при-
водит к увеличению образования сажи.

Еще одно популярное спиртовое топли-
во — бутанол, который можно производить по-
средством ацетон-бутилового брожения (из во-
зобновляемого сырья) и по многим другим тех-
нологиям. Бутанол (или спирты с большим ко-
личеством атомов углерода), по сравнению с

легкими спиртами — метанолом и этанолом,
обладает рядом особых свойств. Например, он
имеет более высокое цетановое число (DCN =
17) [19], чем метанол и этанол, что ускоряет
воспламенение. Кроме того, теплотворная спо-
собность бутанола выше, а теплота парообра-
зования меньше, что облегчает испарение и,
таким образом, смягчает проблему холодного
запуска [8].

В последние годы достигнут большой

прогресс в исследовании биобутанола и его

применении в двигателях [20]. По сравнению

с другими короткоцепочечными спиртами

теплота сгорания бутанола выше, и он может
смешиваться с дизельным топливом в любых

пропорциях. Топливо, содержащее бутанол,
имеет более низкое цетановое число, чем

классическое топливо, и более длительный

период задержки воспламенения, что улучша-
ет качество смешивания воздуха и топлива.
Высокое содержание кислорода в нем не только

повышает скорость окисления сажи при высо-
ких температурах, но и ингибирует скорость
образования сажи. В целом это приводит к

снижению выбросов сажи. Среди четырех

изомеров бутанола количество образующейся

сажи убывает в следующей последователь-
ности: трет-бутанол (2-метилпропан-2-ол);
н-бутанол; вторичный бутанол (бутан-2-ол);
изобутанол (2-метилпропанол-1). Такая за-
кономерность обусловлена различиями в

свойствах изомеров, таких как цетановое чис-
ло и летучесть. В качестве альтернативного

топлива не рекомендуется трет-бутанол.

2.2.2. Топливо, содержащее сложные эфиры

Среди сложных эфиров, имеющих общую
формулу R C( O) O R, можно выделить
группы эфиров короткоцепочечных карбоно-
вых кислот и высших карбоновых кислот, по-
следние являются компонентами биодизеля, по-
лучаемого из растительных масел. Также к
этой группе топлив относят эфиры угольной

кислоты (карбонаты).
Среди топлив на основе сложных эфи-

ров угольной кислоты длительное сниже-
ние сажеобразования показал диметилкарбо-
нат OC(OCH3)2 (ДМК). ДМК отличается

нетоксичностью, хорошей смешиваемостью с

дизельным топливом и высоким содержанием

кислорода (53 % по массе) [21], что делает его
менее склонным к образованию сажи по сравне-
нию с традиционным ископаемым топливом и

другими кислородсодержащими соединениями.
При разложении ДМК почти напрямую обра-
зуются CO и CO2, поскольку в молекулярной
структуре ДМК нет связи С С и молярное со-
отношение О/С равно 1 [1]. Многие исследова-
ния показали, что добавление ДМК к дизель-
ному топливу значительно снижает массовую

и количественную концентрацию твердых ча-
стиц, а также размер частиц.

Сопоставление склонности к сажеобра-
зованию метиловых и этиловых эфиров ко-
роткоцепочечных кислот проведено в работе
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[22]. Установлено, что при одинаковом числе

атомов углерода склонность к сажеобразова-
нию этилацетата (C4H8O2) и этилпропиона-
та (C5H10O2) выше, чем у метилпропионата

(C4H8O2) и метилбутаноата (C5H10O2) соот-
ветственно. Проведенные исследования показа-
ли, что по сравнению с метиловыми эфирами

этиловые эфиры могут разлагаться непосред-
ственно на соответствующую кислоту и эти-
лен C2H4. Более высокое образование C2H4 в

процессе расхода этилового эфира может объ-
яснить его более высокую склонность к саже-
образованию.

В настоящее время в качестве топлива всё

чаще предлагается использовать биотоплива,
получаемые из различных растительных масел

(соевое, рапсовое и др.) и содержащие мети-
ловые и этиловые эфиры высших карбоновых

кислот с различной длиной углеродной цепи

(C14 ÷ C24) и разной степенью ненасыщенно-
сти [23, 24]. Биодизельное топливо имеет мно-
го схожих свойств с нефтяным дизельным топ-
ливом и поэтому может использоваться либо

в качестве альтернативного топлива, либо в
качестве добавки к обычным дизельным дви-
гателям. Так, исследования показали, что ме-
тиловый эфир рапсового масла снижает вы-
брос твердых частиц по сравнению с дизель-
ным топливом. Однако при этом образуется

большое количество жидких частиц, что уве-
личивает концентрацию растворимых органи-
ческих соединений в общих выбросах [1].Мети-
ловые эфиры жирных кислот в ненасыщенном

биодизельном топливе имеют высокое содержа-
ние двойных связей C C, что способствует
образованию ацетилена и тем самым ускоря-
ет процессы нуклеации и поверхностного роста

[16, 22, 25, 26].
Ввиду распространенности практического

применения биодизельного топлива было про-
ведено множество исследований по изучению

сажеобразования смесей биодизель/дизельное
топливо с использованием конфигураций

пламени без предварительного смешивания

[27–29].

2.2.3. Топливо, содержащее простые эфиры

Эфиры имеют общую формулу R O R,
первый представитель данного класса — диме-
тиловый эфир СН3 О СН3 (ДМЭ). ДМЭ мо-
жет быть получен путем межмолекулярной де-
гидратации метанола или из множества других

видов сырья, таких как природный газ, уголь

и биомасса. С середины 1990-х годов ДМЭ ис-
пользовался в качестве альтернативного ди-
зельного топлива из-за его высокого цетаново-
го числа (DCN > 50) [30]. Высокое содержание
кислорода (≈ 35 %) и отсутствие связи C C
позволяют одновременно достигать высокой

производительности и низкого уровня выбро-
сов сажи [31]. Однако в стандартных условиях
газообразный ДМЭ обладает низкой теплотой

сгорания (30 МДж/кг) и другими нежелатель-
ными свойствами, что ограничивает его при-
менение. Использование чистого ДМЭ в каче-
стве топлива не приводит к образованию сажи

независимо от условий работы двигателя. Од-
нако из-за высокого цетанового числа (DCN =
55) [32] и лучших свойств самовоспламенения
ДМЭ склонен к преждевременному сгоранию

и взрыву в автомобильных двигателях. Что-
бы избежать этой проблемы, к ДМЭ в качестве
ингибиторов воспламенения обычно добавляют

сжиженный нефтяной газ [1].
Полиоксиметилендиметиловые эфиры

(ПОДЭ) являются еще одним перспектив-
ным эфирным топливом. Коммерческий

ПОДЭ обычно содержит смесь эфиров

(CH3O(CH2O)nCH3) со степенью полиме-
ризации n = 3 ÷ 8. В зависимости от степени
полимеризации свойства ПОДЭ (такие, как
цетановое число, содержание кислорода,
плотность и вязкость) будут соответственно
различаться [8]. По сравнению с газообраз-
ным ДМЭ жидкий ПОДЭ обладает такими

преимуществами, как высокое содержание

кислорода (> 40 %) и высокое цетановое число
(DCN > 60). И эти соединения не содержат

связей C C, что помогает контролировать

выбросы сажи. Для этих эфиров способность
ингибировать сажу обратно пропорциональна

длине их цепи. Снижение сажеобразова-
ния происходит даже при незначительном

обогащении топлива [33].
Поскольку большинство молекул эфира со-

держат несколько звеньев CH2O, содержание
кислорода в них намного выше, чем в других
биодизелях. Простые эфиры могут быть луч-
шим выбором, чем альтернативные виды топ-
лива на основе спиртов и сложных эфиров.

2.2.4. Топливо, содержащее кетоны

К перспективным биотопливам относятся

кетоны (R C(O) R), такие как циклопента-
нон. Циклопентанон устойчив к самовоспламе-
нению и обладает относительно высокой тепло-
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творной способностью, что позволяет рассмат-
ривать кетоны в качестве топлива. Их можно
производить из растительных остатков, содер-
жащих лигноцеллюлозу [8].

3. ИНДЕКСЫ САЖЕОБРАЗОВАНИЯ

Для описания склонности топлива к об-
разованию сажи в различных условиях горе-
ния используют различные «индексы сажи» [7,
34–39].

Например, индекс твердых частиц

(particulate matter index — PMI), предложен-
ный в [40], рассчитывается по уравнению

PMI =
∑
i

( IHDi + 1

VP(443 K)i
ωi

)
,

где ω — массовая доля, IHD — индекс дефицита

водорода, VP(443 K) — давление насыщенных

паров (VP) при 443 К. Кислород, связанный в
молекуле топлива, и его влияние на образова-
ние сажи явно не учитываются в PMI.

Для определения склонности углеводород-
ного топлива к сажеобразованию широко ис-
пользуется метод измерения максимальной вы-
соты некоптящего пламени (SP), который

предписан в качестве параметра специфика-
ции для сертификации авиационного топлива

(ГОСТ 10227-86 или ASTM D1655) [41, 42].
SP определяется как самая большая высота

Рис. 4. Корреляция порогового индекса сажеобразования с другими свойствами топлив

(в миллиметрах) пламени, образующегося без
формирования сажи, когда топливо сгорает в
специальной контрольной лампе с фитильным

питанием. Склонность топлива к сажеобразо-
ванию обратно пропорциональна SP (чем ни-
же максимальная высота некоптящего пламе-
ни, тем больше топливо образует сажи). Следу-
ет отметить, что при экспериментальном опре-
делении SP человеческий фактор вносит значи-
тельную погрешность из-за особенностей мето-
дики (ГОСТ 4338-91) [43].

Для сопоставления результатов, получен-
ных в разных лабораториях на разных прибо-
рах Calcote и Manos, был введен пороговый ин-
декс сажеобразования TSI [37, 39]:

TSI = a
MW

SP
+ b,

где a и b — константы экспериментальной

установки, используемые для масштабирова-
ния TSI от 0 до 100, MW — молярная масса.

На рис. 4 представлены корреляции

между до́лей ароматических углеводородов

и TSI, а также между отношением H/C и

TSI модельных топлив — суррогатов авиаци-
онного керосина [44–55]. Получено, что при

увеличении молярного отношения H/C индекс

TSI снижается, что обусловлено уменьше-
нием количества углерода. Также продемон-
стрировано влияние объемного содержания

ароматических углеводородов на индекс TSI,
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приведенная зависимость соответствует выво-
дам о влиянии содержания ароматических со-
единений на увеличение выбросов сажи [7, 9].
Помимо представленных, существуют корре-
ляционные зависимости между индексом TSI
и индексом дефицита водорода, теплотворной
способностью и плотностью, но они все могут
быть сведены к корреляции с H/C.

Величина TSI хорошо работает для угле-
водородных топлив, тогда как в случае топ-
лив, содержащих оксигенаты, наблюдаются

расхождения: TSI завышает или снижает их
склонность к сажеобразованию в зависимости

от химической структуры. Установлено, что
TSI не учитывает стехиометрическую потреб-
ность топлива в воздухе, а также из-за раз-
личий в массе атомов кислорода и углерода

неправильно учитывает молярную массу топ-
лива [35]. Авторами [35] предложен новый ин-
декс сажеобразования — расширенный кисло-
родный индекс сажи (OESI), который учитыва-
ет влияние содержащегося в топливе кислоро-
да путем нормализации по стехиометрической

потребности горения в кислороде из воздуха.
OESI рассчитывается следующим образом:

OESIi = a′
(z + m/4 − p/2

SP
+ b′

)
,

где a′ и b′ — константы экспериментальной

установки, z, m и p — число атомов соответ-
ственно углерода, водорода и кислорода в мо-
лекуле.

Для бескислородного топлива индексы

OESI и TSI дают эквивалентные результа-
ты по расчету тенденции к сажеобразованию.
Для кислородсодержащих топлив необходимо

использовать OESI. Результаты [35] показали,
что на склонность к сажеобразованию влияет

не только наличие кислорода в молекуле, но
и природа функциональной группы, в которую
входит кислород. Показано, что склонность к
сажеобразованию в среднем снижается с уве-
личением содержания кислорода: монооксиге-
нированные < диоксигенированные < триокси-
генированные группы. В общем, эффекты как
ненасыщенности, так и разветвления приводят
к увеличению склонности к сажеобразованию.

В работе [36] разработан индекс выхода
сажи (YSI), экспериментально определяемый
по максимальной объемной концентрации сажи

вдоль центральной линии диффузионного пла-
мени:

YSI = cfv,max + d,

где c и d — константы, специфичные для обору-
дования, на котором происходит определение,
fv,max — максимальная объемная концентра-
ция сажи. Данные константы позволяют обес-
печить диапазон шкалыYSI от 0 до 100. YSI яв-
ляется характеристической мерой склонности

чистого соединения или смеси к образованию

сажи.
В работе [39] для применения метода

структурных групп при оценке склонности к

сажеобразованию результаты определения раз-
личных индексов сажеобразования SI (поро-
говый индекс сажеобразования TSI, расши-
ренный кислородный индекс сажеобразования

OESI, индекс выхода сажи YSI) из 15 исследо-
ваний, в которых представлено более 700 экс-
периментальных точек, были унифицированы
в одной числовой шкале. Это позволило оха-
рактеризовать склонность к сажеобразованию

93 структурных групп, входящих в состав ос-
новных классов соединений, встречающихся в
различных реальных топливах.Модель удовле-
творительно воспроизводит значения SI из ба-
зы данных, но также хорошо отражает влия-
ние количества атомов C, степени ненасыщен-
ности, разветвленности цепи или присутствия
кислородсодержащих групп на образование са-
жи. Установлено, что склонность к сажеобра-
зованию некислородных соединений возраста-
ет в следующем порядке (для углеводородов):
алканы < алкены < алкины < ароматические

соединения. Расчет индекса сажеобразования
проводится по формуле

SIi =
∑
j

NjiCj ,

где Nji — количество групп типа j, составляю-
щих соединение i, Cj — удельный вклад груп-
пы j, значение которого можно оценить с по-
мощью процедуры оптимизации, направленной
на уменьшение среднеквадратической ошибки

между измеренными и прогнозируемыми зна-
чениями SI.

ЗАКЛЮЧЕНИЕ

В работе представлен обзор исследований

процесса формирования сажи при сгорании

различных видов топлив. Показано, что стадии
данного процесса не зависят от типа топлива и

характеристик процесса сгорания и вида дви-
гателя. Сажеобразование начинается со ста-
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дии образования предшественников сажи (пре-
имущественно ПАУ), затем происходят нукле-
ация сажи, ее поверхностный рост и агломера-
ция, все эти стадии сопровождаются процесса-
ми окисления. Свойства и состав топлива ока-
зывают влияние на морфологические характе-
ристики частиц сажи и общее количество са-
жи, вырабатываемой при горении топлива. От-
дельное внимание в работе уделено оксигени-
рованным видам топлива, применение которых
существенно снижает уровень сажи. Это обу-
словлено, в первую очередь, дополнительным
кислородом, который способствует процессам
окисления. Потенциал снижения уровня сажи
зависит не только от количественного содер-
жания кислорода в молекуле топлива, но так-
же от строения функциональной кислородсо-
держащей группы. Так, установлено, что слож-
ные эфиры менее эффективны, чем спирты или
простые эфиры, в снижении выбросов сажи при
сопоставимой массовой доле кислорода.

Из представленных индексов сажеобразо-
вания самые доступные с точки зрения экс-
периментального определения — это индексы

TSI и OESI, так как не требуют применения
дорогостоящего оборудования. Индекс YSI бо-
лее точный, так как для определения тенден-
ции к сажеобразованию применяются методы

лазерно-индуцированной инканденсации (или
аналог).

Метод, описанный в [39], является од-
ним из немногих методов, позволяющих опре-
делить любой из представленных индексов са-
жеобразования полностью расчетным путем.
Его недостатком является база данных, с по-
мощью которой проводилась оптимизация зна-
чений структурных групп, — использовалось

недостаточно литературных источников. Так
как погрешность при определении SP высо-
ка, необходимо ссылаться на как можно боль-
шее количество справочных источников для

минимизации погрешности для индексов TSI и
OESI.
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