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Представлены результаты экспериментальных измерений температуры пламени при
наличии импактной поверхности и жидкой фазы, добавленной в поток. Для измерения
температуры использовались методы на основе лазерно-индуцированной флюоресцен-
ции. Для пламени предварительно перемешанной метановоздушной смеси при значениях
стехиометрического коэффициента Φ = 0,92 и числа Рейнольдса Re = 1000 обнаружена
зона обратного течения вблизи импактной поверхности в случае, когда эта поверхность
расположена на расстоянии от среза сопла, равном трем калибрам. С использовани-
ем метода лазерно-индуцированной флюоресценции измерено поле температуры газо-
капельного пламени.
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Введение. Использование современных оптических методов, с помощью которых вы-
полняются одновременные измерения температуры, скорости и концентрации веществ,
позволяет проводить подробный анализ локального теплопереноса и особенностей химиче-
ских реакций в турбулентных, часто нестационарных, трехмерных потоках. Такие экспе-
риментальные данные необходимы для оптимизации конструкций горелочных устройств и

камер сгорания, повышения эффективности их работы и уменьшения объемов вредных вы-
бросов [1, 2]. Температура пламени является важным параметром физико-химических про-
цессов, протекающих при горении в сложных горелочных устройствах. Обширная экспе-
риментальная база данных, содержащая информацию о пространственном распределении
компонентов смеси, положении фронта пламени, областях максимального тепловыделения
и температуре продуктов горения, ежегодно пополняется, причем особую ценность имеют
измерения, проведенные с использованием бесконтактных оптических методов измерений.
Применение таких методов позволяет получать мгновенные двумерные распределения ве-
личин, представляющих интерес при исследовании процессов горения.

Несмотря на то что интрузивные методы измерения температуры просты в использо-
вании, их применение в сложных технических устройствах затруднено по нескольким при-
чинам. Во-первых, интрузивные датчики могут повреждаться в условиях экстремальных
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температур (1100÷2500 К). Во-вторых, контактные датчики могут существенно искажать
исследуемое течение. Наконец, интрузивные датчики выполняют дискретные точечные
измерения с низким пространственным разрешением, которые не являются измерениями
температуры самого потока. Неинтрузивные оптические методы измерения температуры
более актуальны для измерения температуры пламени. Наиболее распространенными яв-
ляются методы, основанные на рэлеевском [3] и комбинационном [4] рассеянии, а также
на когерентной антистоксовой рамановской спектроскопии [5, 6]. Широкую известность

получили методы на основе лазерно-индуцированной флюоресценции [7–9].
Плоскостная лазерно-индуцированная флюоресценция (planar laser induced fluorescence

(PLIF)) является эффективным методом проведения мгновенных измерений простран-
ственной структуры течений и исследования распределений присутствующих в потоке

радикалов, которые характеризуют области максимального тепловыделения и положения
фронта пламени [10–13]. Кроме того, метод PLIF применяется для измерения температу-
ры газа как в реагирующих, так и в изотермических потоках. Также данный метод может
использоваться при исследовании высокоскоростных [14] и высокотемпературных [15] те-
чений.

Измерения температуры методом LIF основаны на регистрации изображений интен-
сивности флюоресценции молекул, переведенных в более высокое энергетическое состояние
с помощью лазерного излучения. В данной работе применяется метод two-line LIF, деталь-
ное описание которого приведено в [16]. Основной принцип этого метода заключается в
возбуждении молекул гидроксильного радикала из двух различных нижних энергетиче-
ских состояний в один вышележащий энергетический уровень с последующей регистра-
цией сигналов флюоресценции. Альтернативным подходом для измерения температуры
на основе лазерно-индуцированной флюоресценции является метод thermally-assisted LIF.
Как в методе two-line LIF, так и в методе thermally-assisted LIF измеряется интенсивность
флюоресценции в возбужденном состоянии, но первый метод связывает флюоресценцию с
температурой через распределение Больцмана заселенностей основного состояния, а вто-
рой связывает распределение возбужденных квантовых состояний с температурой [17].
При реализации метода thermally-assisted LIF используется один лазерный источник для
заполнения возбужденного состояния, затем молекулы перераспределяются среди других
возбужденных энергетических состояний; распределение происходит между вращательны-
ми состояниями внутри колебательного уровня и между другими колебательными уровня-
ми в пределах электронно-возбужденного состояния. После перераспределения спонтанное
излучение с двух или более энергетических уровней может быть вызвано воздействием

температуры. Реализация метода thermally-assisted LIF достаточно проста ввиду исполь-
зования одного лазера на красителях, что упрощает оптическую часть измерительной

системы. Данный метод позволяет проводить измерение мгновенных распределений тем-
пературы пламени за одну вспышку лазера, в том числе в турбулентных пламенах.

Целью данной работы является комплексное экспериментальное исследование полей

температуры пламени при наличии импактной поверхности и жидкой фазы, добавленной
в поток, с использованием современных оптических методов измерения температуры на
основе лазерно-индуцированной флюоресценции. Полученные результаты могут быть ис-
пользованы при исследовании физико-химических особенностей горения, развитии методов
оптической диагностики, а также при проверке результатов численного моделирования по-
токов с горением.

1. Экспериментальный стенд. Горелочное устройство, которое использовалось во
всех экспериментах по измерению температуры в пламени, представляет собой осесиммет-
ричное сужающееся сопло с внутренним диаметром, равным d = 15 мм (рис. 1). С помо-
щью трубы смешения предварительно перемешанная смесь топливо — воздух подавалась
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Рис. 1. Схема сопла с лопастным завихрителем внутри (а) и фотография сопла
и импактной поверхности (б)

в сопло, с помощью массовых расходомеров Bronkhorst El-Flow осуществлялся контроль

расходов компонентов смеси. Число Рейнольдса для всех исследуемых потоков определя-
лось по среднерасходной скорости и вязкости воздуха при комнатной температуре. В экс-
периментах, в которых исследовалось пламя, натекающее на плоскую преграду, была ис-
пользована импактная поверхность, представляющая собой цилиндрический металличе-
ский сосуд с плоским дном диаметром 300 мм, устанавливаемый над соплом. С помощью
термостата осуществлялась циркуляция воды в данном сосуде, что позволяло поддержи-
вать температуру поверхности постоянной и приближенно равной 96 ◦C. При измерении
поля температуры в газокапельном пламени в качестве топлива использовались пары и

капли спирта. В качестве генератора капель применялся промышленный ультразвуковой
атомизатор KERI M1009-2, расположенный в герметичном сосуде со спиртом. Данный ато-
мизатор создавал мелкие капли спирта размером 4 ÷ 14 мкм, которые уносились в сопло
потоком воздуха.

Для реализации метода thermally-assisted LIF были использованы импульсный ла-
зер накачки Nd:YAG QuantaRay (длина волны 532 нм) и перестраиваемый импульсный
лазер на красителе Sirah Precision Scan. С помощью лазера на красителях происходи-
ло возбуждение флюоресценции молекул ОН на длине волны перехода Q1(8) (283,55 нм)
полосы 1–0 электронной системы A2Σ+ − X2Π. Выбор перехода Q1(8) в качестве линии
возбуждения обусловлен его высокой чувствительностью к температуре и незначитель-
ному влиянию затухания флюоресценции. Подробнее выбор линии возбуждения описан в
[18, 19]. С помощью интенсифицированной КМОП-камеры (КМОП — комплементарная

структура металл — оксид — полупроводник) LaVision Imager sCMOS, подключенной к
усилителю на основе электронно-оптического преобразователя LaVision IRO, проводилась
регистрация сигнала флюоресценции для полосы 2–0 в диапазоне длин волн 260÷ 270 нм.
На усилитель камеры были установлены УФ-объектив и полосовой оптический фильтр
(длина волны (265± 5) нм). С помощью интенсифицированной ПЗС-камеры (ПЗС — при-
бор с зарядовой связью) с электронно-оптическим преобразователем Princeton Instruments
PI-MAX-4 (с установленными УФ-объективом и полосовым оптическим фильтром (дли-
на волны (310 ± 10) нм)) регистрировался сигнал флюоресценции для полос 0–0 и 1–1 в
диапазоне длин волн 300÷ 320 нм.
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Для реализации метода two-line LIF были использованы две независимые лазерные

системы. Первая система, с помощью которой возбуждалась флюоресценция ОН на длине
волны перехода Q1(14), состояла из перестраиваемого лазера на красителях Sirah Precision
Scan и импульсного лазера накачки Nd:YAG QuantaRay. Вторая система, необходимая для
возбуждения флюоресценции ОН на длине волны перехода Q1(5), состояла из перестра-
иваемого лазера на красителях Quantel TDL+ и лазера накачки Nd:YAG Quantel YG980
(длина волны 532 нм). Для перехода Q1(14) средняя энергия импульсов лазера после прохо-
ждения оптических элементов составляла приблизительно 15 мДж, для перехода Q1(5) —
приблизительно 3 мДж. С помощью интенсифицированных ПЗС-камеры PCO Dicam Pro
и КМОП-камеры LaVision Imager sCMOS, подключенной к усилителю LaVision IRO, про-
водилась регистрация сигнала флюоресценции переходов 1–1 и 0–0 в диапазоне длин волн
300÷320 нм. Обе камеры были оснащены УФ-объективами LaVision и полосовыми оптиче-
скими фильтрами. Таким образом осуществлялось возбуждение линий Q1(5) (282,67 нм)
и Q1(14) (286,37 нм) для перехода 1–0 электронной системы A2Σ+−X2Π (согласно [19]
данная пара линий является наиболее эффективной). Сканирование спектра возбуждения
радикала ОН и проведение калибровки путем сравнения с результатами моделирования с

использованием программного обеспечения LifBase [20] позволило осуществлять контроль
соответствия длины волны лазеров длинам волн возбуждения.

Время экспозиции кадра для каждого LIF-изображения составляло 200 нс. Применение
оптических фильтров позволило уменьшить влияние нежелательного фона вследствие рас-
сеяния лазерного излучения, собственного излучения пламени, а также переотражений от
сопла. Лазерный луч независимо от типа лазера разворачивался в лазерный нож с исполь-
зованием коллимирующей оптики (LaVision) и освещал центральное сечение исследуемого
потока. Поскольку при данной конфигурации экспериментальной установки практически
все элементы регистрирующей аппаратуры и оптики взаимозаменяемы (положение ла-
зеров оставалось неизменным), все описанные конфигурации экспериментального стенда
могут быть представлены на одной схеме (рис. 2).

2. Результаты исследований. С помощью методов thermally-assisted LIF и two-line
LIF были получены поля средней температуры для пламени импактной предварительно

перемешанной метановоздушной смеси при значениях стехиометрического коэффициента

Φ = 0,92, числа Рейнольдса Re = 1000 и расстояния от среза сопла до импактной поверх-
ности, отнесенного к диаметру сопла, H/d = 1, 2, 3 (рис. 3, 4).

Расходы воздуха и топлива при нормальных условиях составляли Qair = 10,84 л/мин
и Qfuel = 1 л/мин. Для определения температуры в методе thermally-assisted LIF с по-
мощью колибровки измерительной системы термопарой типа В было вычислено соотно-
шение между отношением сигналов флюоресценции с двух различных участков спектра

и температурой. Данная калибровка включала построение калибровочной кривой путем
измерения температуры в пламени с помощью термопары в нескольких горизонтальных

сечениях и на различных расстояниях от среза сопла. Результаты анализа данной ка-
либровочной кривой позволили соотнести значения отношения интенсивности сигналов

флюоресценции на двух участках спектра к температуре в пламени. В работе [18] пока-
зано, что соотношение сигналов флюоресценции, полученных с помощью двух камер на

двух участках спектра (2–0 к 0–0 и 1–1), практически линейно зависит от температуры в
диапазоне T = 1200÷ 2200 К.

В методе two-line LIF отношение интенсивностей сигналов флюоресценции, получен-
ных при возбуждении двух разных линий перехода из основного состояния с последующей

регистрацией их камерой в диапазоне длин волн 300÷320 нм, соотносится с температурой
в соответствии с населенностью основных состояний по распределению Больцмана [21, 22].
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Рис. 2. Схема экспериментальной установки:
1 — лазер на красителе, 2 — поворотная призма, 3 — призма Глана, 4 — коллиматор, 5 —
камера для кюветы, 6 — кювета, 7 — ловушка для лазерного излучения, 8 — делитель пучка,
9 — полосовые фильтры, 10 — импактная поверхность, 11 — сопло, 12 — PLIF-камера

Сигнал флюоресценции, регистрируемый в диапазоне длин волн 260÷270 нм (переход
2–0), слабее сигнала, регистрируемого в диапазоне 300 ÷ 320 нм (переходы 1–1 и 0–0), в
частности вследствие влияния рассеянного лазерного излучения (данный эффект описан
подробно в [18]), поэтому изображениям, полученным методом thermally-assisted LIF, соот-
ветствует меньшее значение соотношения сигнала и шума по сравнению с изображениями,
полученными с помощью метода two-line LIF. С использованием пространственного осред-
нения полученный сигнал LIF был сглажен. Для каждого отдельно взятого среднего поля
температуры в данной работе выборка составляла 500 мгновенных изображений. Значения
температуры определены лишь в тех областях, где регистрируется сигнал флюоресцен-
ции OH. Отсутствие значений температуры вблизи сопла объясняется тем, что в этой
области температура меньше ввиду наличия теплоотвода на поверхность сопла. При по-
нижении температуры интенсивность сигнала флюоресценции OH уменьшается, поэтому
при построении поля температуры области с низкой интенсивностью сигнала были от-
фильтрованы.

Результаты, полученные в данной работе, показывают, что в случае H/d = 3 вблизи
импактной поверхности возникает зона обратного течения с холодными продуктами го-
рения вследствие появления препятствия на пути распространения пламени. О наличии

зоны рециркуляции свидетельствуют также данные работы [23]. В случае H/d = 1 наблю-
дается пониженная температура вследствие отвода тепла к поверхности и уменьшения

площади фронта пламени. Ввиду охлаждения продуктов горения поверхностью получе-
ние данных вблизи нее затруднено. Максимальная температура в пламени наблюдается в
зоне за его фронтом в области горячих продуктов горения. Значения температуры вбли-
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Рис. 3 Рис. 4

Рис. 3. Поля средней температуры импактного конусного пламени, полученные с помощью
метода thermally-assisted LIF при Φ = 0,92, Re = 1000 и различных значениях H/d:
а — H/d = 1, б — H/d = 2, в — H/d = 3; штриховые линии— T = 1500 К, сплошные— T = 1800 К

Рис. 4. Поля средней температуры импактного конусного пламени, полученные с помощью
метода two-line LIF при Φ = 0,92, Re = 1000 и различных значениях H/d:
а — H/d = 1, б — H/d = 2, в — H/d = 3; штриховые линии— T = 1500 К, сплошные— T = 1800 К

зи фронта пламени для всех представленных значений H/d сопоставимы со значениями
температуры фронта свободного бунзеновского пламени [18]. Результирующие поля тем-
пературы, полученные двумя различными методами, хорошо согласуются между собой и
с полями, полученными ранее [18].

С использованием метода two-line LIF определены поля средней температуры (рис. 5)
в газокапельном пламени с параметрами Φ = 1,20; 1,48, Re = 1000.

Подача топлива осуществлялась путем пропускания воздуха через резервуар с этано-
лом и ультразвуковым атомизатором. Расход воздуха равен Qair = 10,84 л/мин, полный
расход спирта (в двух фазах) для двух режимов составлял 1,7 и 2,1 г/мин и соответство-
вал значениям Φ = 1,20; 1,48. Концентрация паров этанола в газовой фазе оценивалась по
парциальному давлению насыщенного пара [24].
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Рис. 5. Осредненные распределения температуры, полученные с помощью ме-
тода two-line LIF при Re = 1000 и различных значениях Φ:
а — Φ = 1,2, б — Φ = 1,48; штриховые линии — T = 1700 К, сплошные — T = 2000 К

Отсутствие результатов измерения температуры методом thermally-assisted LIF обу-
словлено тем, что сигнал рассеянного лазерного излучения на каплях жидкости принимает
большие значения, особенно в области регистрации на длинах волн 260÷ 270 нм (переход
2–0), где, как отмечалось выше, регистрируется слабый собственный сигнал. Кроме того,
высокая интенсивность сигнала рассеянного лазерного излучения на каплях топлива спо-
собна повредить матрицу регистрирующей камеры. Из представленных данных следует,
что поглощение лазерного излучения каплями вдоль оси распространения лазерного ножа

не оказывает значительного влияния на распределение температуры. Также установле-
но, что для режима горения богатой топливно-воздушной смеси область регистрируемого
сигнала в пламени шире вследствие наличия дополнительной зоны реакции вблизи внешне-
го слоя смешения, где окисляется несгоревшее избыточное топливо. Среднеквадратичные
пульсации температуры за фронтом пламени составляют 100÷150 К и вызваны, главным
образом, шумом регистрирующей системы.

Заключение. В работе представлены результаты экспериментального исследования
влияния наличия импактной поверхности и добавленной жидкой фазы на распределение

температуры в пламени, полученные с помощью оптических методов, основанных на PLIF
радикала ОН.

С использованием представленных в работе методов thermally-assisted LIF и two-line
LIF получены средние поля температуры пламени, натекающего на плоскую поверхность.
Показано, что максимальные значения температуры достигаются за фронтом пламени на
границе внешнего слоя смешения. При всех рассмотренных значениях H/d температура
вблизи фронта импактного пламени сопоставима с температурой вблизи фронта свобод-
ного конического пламени. Установлено, что в случае H/d = 1 вследствие уменьшения
площади фронта пламени и отвода тепла к импактной поверхности появляется зона пони-
женной температуры, а в случае H/d = 3 возникает зона обратного течения с холодными
продуктами горения.

Анализ полей температуры газокапельного конического пламени (полученных с помо-
щью метода two-line LIF) показал, что за фронтом пламени возникают флуктуации темпе-
ратуры, которые могут достигать 150 К. Однако их можно уменьшить без существенного
уменьшения пространственного разрешения путем объединения пикселей матрицы в груп-
пы с единым накоплением заряда на аппаратном уровне.
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