2011. Том 52, № 1

Январь – февраль

C. 218 – 222

КРАТКИЕ СООБЩЕНИЯ

УДК 547.539.1:548.737

ТЕМПЕРАТУРНОЕ ИССЛЕДОВАНИЕ ЕНАМИНО-ИМИННОЙ ТАУТОМЕРИИ В СОКРИСТАЛЛАХ 3-(1-АМИНО-2,2,2-ТРИФТОРЭТИЛИДЕН)-2-ИМИНО-1,1,4,5,6,7-ГЕКСАФТОРИНДАНА С ДИОКСАНОМ МЕТОДОМ РСА

© 2011 Т.В. Рыбалова*, В.М. Карпов, Ю.В. Гатилов*

Учреждение Российской академии наук Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

Статья поступила 12 марта 2010 г.

Проведено рентгеноструктурное исследование сокристаллов 3-(1-амино-2,2,2-трифторэтилиден)-2-имино-1,1,4,5,6,7-гексафториндана (1) с 1,4-диоксаном при температурах 100, 200 и 273 К. Показано, что соединение 1 находится в равновесии со своим таутомером — 2-амино-3-(1-имино-2,2,2-трифторэтил)-1,1,4,5,6,7-гексафторинденом (1а).

Ключевые слова: температурный рентгеноструктурный анализ, полифторированные енаминоимины, индан, инден, таутомеры, равновесие.

В работе [1] установлено, что в растворе 3-(1-амино-2,2,2-трифторэтилиден)-2-имино-1,1,4,5,6,7-гексафториндан (1) находится в равновесии со своим таутомером — 2-амино-3-(1имино-2,2,2-трифторэтил)-1,1,4,5,6,7-гексафторинденом (1а), а в кристалле наблюдается таутомер 1 в отсутствие 1а [2]. Согласно литературным [3] и проведенным нами модельным газофазным расчетам [2] значения барьеров внутримолекулярного таутомерного перехода атома водорода достаточно низки (<5 ккал/моль). В связи с этим не исключалась возможность такого равновесия и в кристалле [2].

Позднее методом PCA нами было показано, что в кристаллическом комплексе 2 соединения 1 с диоксаном (2:1) содержатся оба енаминоимина 1 и 1а в соотношении ~60:40 [4], что не противоречит газофазным квантово-химическим расчетам молекулярных комплексов таутомеров 1 и 1а с диоксаном [4].

Чтобы понять, является ли это соотношение енаминоиминов 1 и 1a равновесным вследствие динамического процесса внутримолекулярной миграции атома водорода в кристалле, или оно отражает статистическое соотношение изомеров, полученное в процессе кристаллизации, нами была проведена серия рентгеноструктурных экспериментов на одном и том же кристалле комплекса 2 при разных температурах, результаты которых являются предметом настоящего сообщения.

Следует отметить, что данные по температурным исследованиям енамино-иминной таутомерии в кристалле в Кембриджской базе структурных данных нами не найдены, а примеры подобных исследований иных таутомерных превращений немногочисленны [5].

^{*} E-mail: rybalova@nioch.nsc.ru, gatilov@nioch.nsc.ru

Экспериментальная часть. Монокристаллы комплекса 2 получали как описано в работе [4]. Рентгеноструктурное исследование провели на дифрактометре Bruker Kappa APEX II (Мо K_{α} -излучение, графитовый монохроматор, ССD-детектор, максимальный угол $2\theta = 55,0^{\circ}$). Эксперимент при всех температурах проводили по одинаковой стратегии с одинаковой скоростью, время эксперимента 6 ч. Процедура эксперимента: 1) в течение 1 ч образец охлаждали до 100 К и проводили эксперимент при этой температуре (100 К-1 в таблицах); 2) в течение 1,5 ч повышали температуру до 200 К и проводили эксперимент (200 К-1); 3) в течение 0,3 ч повышали температуру до 273 К, эксперимент (273 К); 4) в течение 1,5 ч понижали температуру до 200 К, эксперимент (200 К-2); 5) в течение 10 ч понижали температуру до 100 К, эксперимент (100 К-2). В интенсивности измеренных отражений ввели поправки на поглощение по программе SADABS. Структуры расшифровывали прямым методом и уточняли в анизотропноизотропном (для Н) приближении по комплексу программ SHELXTL. Положения атомов водорода локализованы из разностного синтеза. Значения параметров ячейки при разных температурах приведены в табл. 1, сюда также включены данные из работы [4]. Полученные нами соотношения таутомеров 1 и 1а, определяемые факторами занятости позиций атомов Н1В и Н2А (рис. 1), приведены в табл. 1. Расчет тензора теплового расширения и направлений главных осей тензора проводили по программе Tensor [6] по данным для 100 и 273 К. Атомные координаты, длины связей и углы депонированы в Кембриджскую базу структурных данных CCDC 768954—768958.

Таблица 1

Параметр	296 K [4]	273 K	200 K-1/200 K-2	100 K-1/100 K-2
Параметр ячейки				
a, Å	8,7162(6)	8,6864(2)	8,5989(2)/8,6032(2)	8,4899(2)/8,4913(2)
<i>b</i> , Å	8,7898(8)	8,7918(2)	8,7827(2)/8,7795(2)	8,7780(2)/8,7814(2)
<i>c</i> , Å	10,4109(8)	10,3923(3)	10,3568(3)/10,3589(3)	10,3227(3)/10,3256(3)
α, град.	77,461(7)	77,279(1)	76,893(1)/76,910(1)	76,489(1)/76,496(1)
β, град.	69,353(5)	69,503(1)	69,780(1)/69,760(1)	70,053(1)/70,049(1)
ү, град.	78,722(6)	78,546(1)	78,124(1)/78,132(1)	77,492(1)/77,499(1)
$V, Å^3$	722,4(1)	718,72(3)	707,86(3)/708,07(3)	695,20(3)/695,79(3)
ρ(расч.), г/см ³	1,739	1,748	1,774/1,774	1,807/1,805
Число измеренных отражений	2033	12742	12549/12651	12190/12423
Число независимых отражений	1882	4091	4038/4044	3948/3963
Число отражений [I > 2σ(I)]	1348	2754	3273/3183	3543/3493
Трансмиссия	0,9693—0,9450	0,8624—0,7540	0,8624—0,7575 / 0,8624—0,7594	0,8624—0,7707 / 0,8624—0,7740
R_1 для [$F > 4\sigma(F)$]	0,0326	0,0415	0,0376/0,0372	0,0327/0,0317
<i>wR</i> ₂ для всех отраже- ний	0,0882	0,1319	0,1101/0,1067	0,0929/0,0877
GOOF	1,032	1,033	1,049/1,046	1,041/1,013
Соотношение 1:1а	62(5):38(5)	64(5):36(5)	74(4):26(4)/71(4):29(4)	76(4):24(4)/76(4):24(4)

Кристаллографические данные комплекса 2^* и параметры экспериментов при различных температурах

* Химическая формула $C_{11}H_3F_9N_2+1/2(C_4H_8O_2)$, молекулярный вес 378,21, ячейка триклинная, пространственная группа *P*-1, размер кристалла $0,15\times0,20\times0,50$ мм, Z = 2, $\mu = 0,19$ мм⁻¹.

Рис. 1. Нумерация атомов в комплексе 2

Обсуждение результатов. Как видно из результатов, приведенных в табл. 1, соотношение таутомеров, полученное в экспериментах при одной температуре (при нагревании и охлаждении образца), одинаково в пределах ошибки. Зависимость этого соотношения от температуры является экспериментальным подтверждением наличия таутомерного перехода в кристалле, возможность которого предполагалась ранее [2]. Если полу-

ченные соотношения таутомеров равновесные, то свободная энергия ΔG таутомера **1a** (относительно **1**) находится в интервале 0,23—0,42 ккал/моль.

Поскольку из-за динамической разупорядоченности геометрия молекулы енаминоимина в действительности является суперпозицией молекулярных геометрий соединений 1 и 1а, то при нагревании кристалла длины связей N1—C2 и C3—C10 увеличиваются (табл. 2), так как увеличивается доля ординарных связей соединения 1а, а длины связей C2—C3 и N2—C10 уменьшаются, так как возрастает доля двойных связей соединения 1а. Причем эта закономерность прослеживается как на экспериментальных длинах связей, так и на длинах связей, рассчитанных с учетом либрационных поправок по программе PLATON.

Из данных, приведенных в табл. 1, видна анизотропия изменения параметров ячейки при изменении температуры кристалла. Значения относительного линейного расширения вдоль главных осей тензора теплового расширения и их ориентация относительно кристаллографических осей приведены в табл. 3 и на рис. 2.

Как было описано нами в работе [4], в кристалле комплекса 2 образуются молекулярные ленты посредством водородных связей енаминаимина 1 с молекулой диоксана. Если за плоскость ленты принять плоскость, проходящую через атомы C5 и C6 молекул енаминоимина в ленте, то главные оси тензора теплового расширения направлены под углами 64 (ось 1) и 18° (оси 2 и 3) к плоскости молекулярной ленты. Таким образом, можно сказать, что расширение преимущественно происходит в направлении более слабых межленточных взаимодействий.

Таблица 2

Связь	296 K [4]	273 K	200 K-1/200 K-2	100 K-1/100 K-2
N1—C2	1.286(4)	1.284(2)	1.281(2)/1.281(2)	1.280(1)/1.280(1)
	-,(-)	1,289	1,284/1,284	1,282/1,282
N1—H1B	0,82(7)	0,81(8)	0,83(9)/0,77(8)	0,82(10)/0,81(9)
N2···H1B	2,19(7)	2,14(8)	2,11(9)/2,15(8)	2,07(10)/2,08(9)
С2—С3	1,431(3)	1,440(2)	1,449(2)/1,448(2)	1,457(1)/1,459(1)
		1,446	1,452/1,451	1,459/1,461
C3—C10	1,399(4)	1,393(2)	1,385(2)/1,387(2)	1,380(1)/1,379(1)
		1,399	1,389/1,391	1,382/1,381
N2-C10	1,305(4)	1,310(2)	1,321(2)/1,322(2)	1,334(2)/1,334(2)
		1,314	1,324/1,325	1,335/1,335
N2—H2A	0,81(4)	0,85(3)	0,86(3)/0,88(3)	0,87(2)/0,88(2)
N1…H2A	2,03(4)	2,03(3)	2,00(3)/1,99(3)	1,98(2)/1,98(2)
N1…N2	2,683(4)	2,679(2)	2,683(2)/2,682(2)	2,685(1)/2,686(1)
111 112	2,005(4)	2,0,7(2)	2,005(2)/2,002(2)	2,000(1)/2,000(1)

Длины связей (Å) фрагмента N1C2C3C10N2 и параметры внутримолекулярной водородной связи при различных температурах (во вторых строках с либрационными поправками)

Рис. 2. Водородносвязанные молекулярные ленты (вид сверху *a*, вид сбоку *б*) и направление главных осей тензора теплового расширения в кристаллах комплекса **2**

Таблица З

Относительное линейное расширение кристалла вдоль главных осей тензора теплового расширения при нагревании образца от 100 до 273 K и их ориентация относительно кристаллографических осей

Главные оси	$\Delta l/l, \%$	Углы между осями тензора и кристаллографическими осями, град.		
тензора		а	b	С
1	3,028(2)	30,89(3)	105,04(3)	64,14(3)
2	0,510(2)	114,07(5)	114,05(16)	53,38(13)
3	-0,184(2)	71,83(6)	28,89(14)	47,64(14)

Действительно, расстояния между плоскостями молекулярных лент, связанными взаимодействиями перфторированных ароматических циклов $\pi(C4 \div C9)...\pi(C4 \div C9)$, увеличиваются с 3,545

Таблица 4

Параметры (Å, град.) межмолекулярных водородных связей (MBC) в кристаллах комплекса **2** при различных температурах

MBC N2—H2B…O1D						
Т, К	N2…O1D	N2—H2B	H2B…O1D	N2—H2B…O1D		
296 K [4]	3,027(4)	0,91(4)	2,16(4)	158(3)		
273 K	3,011(2)	0,81(2)	2,26(2)	154(2)		
200 K-1/200 K-2	2,969(2)/2,971(2)	0,82(2)/0,81(2)	2,21(2)/2,22(2)	155(2)/156(2)		
100 K-1/100 K-2	2,922(1)/2,924(1)	0,84(2)/0,83(2)	2,15(2)/2,15(2)	154(2)/155(2)		
MBC N1—H1A…O1D						
<i>Т</i> , К	N1…O1D	N1—H1A	H1A…O1D	N1—H1A…O1D		
296 K [4]	3,032(3)	0,84(3)	2,21(4)	164(3)		
273 K	3,033(2)	0,81(3)	2,24(3)	164(2)		
200 K-1/200 K-2	3,034(2)/3,034(2)	0,86(2)/0,87(2)	2,21(2)/2,20(2)	161(2)/161(2)		
100 K-1/100 K-2	3,032(1)/3,033(1)	0,89(2)/0,89(2)	2,18(2)/2,18(2)	161(2)/161(2)		

221

при 100 К до 3,625 Å при 273 К, а связанными взаимодействиями N1... π (C4÷C9) — с 3,274 до 3,369 Å при 100 и 273 К соответственно. Кроме того, при нагревании от 100 до 273 К происходит сдвиг плоскостей параллельных молекулярных лент относительно друг друга, что видно из изменения сдвига циклов во взаимодействии π (C4÷C9)... π (C4÷C9) с 1,527 до 1,540 Å, и проекции атома азота по отношению к центру кольца в N1... π (C4÷C9) с 0,849 до 0,941 Å. Это, а также растяжение молекулярной ленты за счет изменения параметров водородных связей (табл. 4) обуславливает угол наклона оси *1* тензора теплового расширения к плоскости молекулярных лент. По оси *3*, лежащей практически в плоскости (*bc*), наблюдается некоторое сжатие при увеличении температуры при общем объемном расширении $\Delta V/V$ 3,36(5) %.

Авторы выражают благодарность к.х.н. Т.Н. Дребущак за содействие в расчете тензора теплового расширения.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 09-03-00361).

СПИСОК ЛИТЕРАТУРЫ

- 1. Чуйков И.П., Карпов В.М., Платонов В.Е. // Изв. АН СССР. Сер. хим. 1990. № 8. С. 1856 1865.
- 2. Карпов В.М., Платонов В.Е., Рыбалова Т.В., Гатилов Ю.В. // Журн. структур. химии. 2006. 47, № 3. С. 532 539.
- 3. Mariam Y.H., Chantranupong L. // THEOCHEM. 2000. 529. P. 83 97.
- 4. Рыбалова Т.В., Карпов В.М., Платонов В.Е., Гатилов Ю.В. // Журн. структур. химии. 2007. 48, № 2. – С. 318 – 324.
- 5. (a) Ogawa K., Kasahara Y., Ohtani Y., Harada J. // J. Amer. Chem. Soc. 1998. 120. Р. 7107 7108.
 (б) Ogawa K., Fujiwara T. // Chem. Lett. 1999. Р. 657. (в) Gilli P., Bertolasi V., Pretto L. et al. // J. Amer. Chem. Soc. 2005. 127. Р. 4943 4953.
- 6. *Hazen R., Finger L.* Comparative Crystal Chemistry. Temperature, Pressure, Composition and Variation of the Crystal Structure. N. Y.: Wiley, 1982.