2009. Том 50, № 3 Май – июнь C. 587 – 590

КРАТКИЕ СООБЩЕНИЯ

УДК 546.35.65.832.776

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ДВОЙНОГО МОЛИБДАТА Pr₂Hf₃(M₀O₄)₉

© 2009 Б.Г. Базаров¹, В.Г. Гроссман¹*, Р.Ф. Клевцова², А.Г. Аншиц³, Т.А. Верещагина³, Л.А. Глинская², Ю.Л. Тушинова¹, К.Н. Федоров¹, Ж.Г. Базарова¹

Статья поступила 5 августа 2008 г.

Раствор-расплавной кристаллизацией при спонтанном зародышеобразовании выращены кристаллы двойного молибдата празеодима и гафния состава $\Pr_2\mathrm{Hf_3(MoO_4)_9}$. По дифракционным рентгеновским данным (автоматический дифрактометр X8 Apex, $\mathrm{Mo}K_{\alpha}$ -излучение, $2262\ F(hkl)$, R=0,0170) уточнены его состав и кристаллическая структура. Размеры тригональной элементарной ячейки: a=b=9,8001(1), c=58,7095(8) Å, V=4883,15(10) Å 3 , Z=6, пр. гр. $R\ \overline{3}\ c$. Кристаллическая структура составлена из полиэдров трех видов: тетраэдров $\mathrm{MoO_4}$, октаэдров $\mathrm{HfO_6}$ и девятивершинников $\mathrm{PrO_9}$. Все три вида полиэдров связаны между собой через общие кислородные вершины мостиковых $\mathrm{MoO_4}$ -тетраэдров в ажурный трехмерный каркас.

Ключевые слова: таллий, празеодим, гафний, двойные молибдаты, коснарит, кристаллическая структура.

Соединения, являющиеся структурными аналогами природного минерала коснарита (тригональная сингония, пр. гр. $R\,\overline{3}\,c$), показали свою перспективность в качестве экологически безопасной керамической матрицы. Одной из особенностей структуры этих соединений является большая изоморфная емкость к катионам и анионам, различным по своей природе. Широкие вариации замещений в этих соединениях определяют возможность их использования в качестве матриц для фиксации ядерных и других токсичных отходов. Подлежащие отвердению отходы многообразны, они могут содержать различные катионы и анионы в разнообразных сочетаниях и количественных соотношениях. Разработка материалов на основе молибдатов, по структуре родственных коснариту, актуальна для решения экологических проблем атомных технологий.

При изучении фазового равновесия в субсолидусной области систем Ln_2O_3 — ZrO_2 — MoO_3 (Ln = La—Lu, Y, Sc) была выявлена большая группа новых двойных молибдатов редкоземельных элементов и циркония $Ln_2Zr_3(MoO_4)_9$, кристаллизующихся в тригональной сингонии с пространственной группой $R\overline{3}c$ [1]. К настоящему времени данная группа соединений расширена за счет получения двойных молибдатов РЗЭ и гафния, в разрезах $Ln_2(MoO_4)_3$ — $Hf(MoO_4)_2$ [2].

В настоящей работе описано получение кристаллов $Pr_2Hf_3(MoO_4)_9$ и их структура.

Кристаллы двойного молибдата празеодима и гафния получены спонтанной кристаллизацией из раствора в расплаве MoO_3 при весовом соотношении шихта—растворитель 1:2. В качестве шихты использовали синтезированное соединение. Зародышеобразование и рост кристаллов происходили при понижении температуры раствора-расплава от 800 (время гомогенизации 4 ч) до 700 °C со скоростью 2 град./ч.

_

 $^{^{1}}$ Байкальский институт природопользования СО РАН, Улан-Удэ

²Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

³Институт химии и химической технологии СО РАН, Красноярск

^{*} E-mail: GrossmanV@mail.ru

 $T\ a\ б\ л\ u\ ц\ a\ 1$ Кристаллографические характеристики, детали эксперимента и уточнения структуры $Pr_2Hf_3(MoO_4)_9$

Молекулярная масса	2256,75
Сингония	Тригональная
Пространственная группа	$R\overline{3}c$
$a,b,c, ext{\AA}$	9,8001(1), 9,8001(1), 58,7095(8)
V, Å ³	4883,15(10)
Z	6
$\rho_{\text{выч}}, \Gamma/\text{cm}^3$	4,605
$\mu(\text{Mo}K_{\alpha}), \text{ mm}^{-1}$	15,896
Размер кристалла, мм	0,10×0,08×0,04
Область сканирования θ , град.	2,08—35,00
Число измерен. / независ. отражений	22137 / 2399
[<i>R</i> (int)]	[0,0260]
Число отражений с $I > 2\sigma(I)$	2262
Число уточняемых параметров	77
GOOF no F^2	1,135
R -фактор, $I > 2\sigma(I)$	$R_1 = 0.0170, \ wR_2 = 0.0383$
R -фактор (по всем I_{hkl})	$R_1 = 0.0189, \ wR_2 = 0.0387$
Остаточная электронная плотность (max/min), $e \cdot \mathring{A}^{-3}$	1,503 /-2,056

Для рентгеноструктурного анализа (PCA) отобрали светло-зеленый монокристалл призматической формы. Параметры элементарной ячейки и интенсивности рефлексов измерили при комнатной температуре на автодифрактометре Bruker X8 Apex CCD, оснащенном двухкоординатным детектором, по стандартной методике (MoK_{α} -излучение, графитовый монохроматор). Кристаллографические характеристики, детали рентгеновского дифракционного эксперимента и уточнения структуры приведены в табл. 1.

Симметрия и размеры элементарной ячейки указывали на изоструктурность кристаллов исследованному ранее двойному молибдату $Nd_2Zr_3(MoO_4)_9$ [3]. Поэтому в качестве исходных при уточнении были взяты координаты этой структуры. Уточнение провели полноматричным МНК по F^2 в анизотропном приближении для всех атомов по комплексу программ SHELXL-97 [4]. Полученное при этом значение R=0,0170 подтвердило принятую модель структуры. Окончательные значения позиционных и тепловых параметров базисных атомов структуры приведены в табл. 2, основные межатомные расстояния — в табл. 3.

Кристаллическая структура $Pr_2Hf_3(MoO_4)_9$ построена из трех видов полиэдров: тетраэдров MoO_4 , октаэдров HfO_6 и девятивершинников PrO_9 .

Два сорта атомов молибдена (Mo(1) — в общей позиции и Mo(2) — на поворотной оси 2) имеют средние расстояния Mo—O и средние значения углов O—Mo—O, близкие к общепринятым для KЧ (Mo) = 4 [5] (см. табл. 3).

Два независимых атома гафния занимают позиции на осях 3 внутри кислородных октаэдров, при этом один из них — Hf(1) — в центре инверсии. Расстояния Hf—O, равные 2,070(2) и 2,069(2) Å, близки между собой и расстояниям Hf—O в структурах $Cs_2Hf(MoO_4)_3$ [6], $K_8Hf(MoO_4)_6$ [7], $K_5Pb_{0,5}Hf_{1,5}(MoO_4)_6$ [8], где атом гафния находится также в октаэдрической координации.

Атом Pr, как и атомы Hf, расположен на оси 3. Девять атомов кислорода вокруг него образуют трехшапочную тригональную призму с расстояниями Pr—O, изменяющимися в узком интервале 2,445(2)—2,523(2) Å. Эти значения сравнимы с аналогичными в структурах $Pr_2Mo_6O_{21} \times H_2O$ [9], $Pr_2Mo_4O_{15}$ [10], $Pr_2W_2O_9$ [11].

На рис. 1 в проекции слоя, перпендикулярного тройной оси, хорошо видны все три типа полиэдров.

краткие сообщения 589

Таблица 2 Координаты базисных атомов ($\times 10^4$) и эквивалентные изотропные тепловые параметры ($\mathring{A}^2 \times 10^3$) в структуре $Pr_2Hf_3(MoO_4)_9$

			1 2	<i>V</i> 1		1,7.7			
Атом	x	у	Z	$U_{\scriptscriptstyle ЭKB}$ *	Атом	x	у	Z	$U_{\scriptscriptstyle ЭKB}$ *
Pr(1)	6667	3333	295(1)	8(1)	O(1)	-994(2)	5960(2)	301(1)	19(1)
Hf(1)	0	0	0	9(1)	O(2)	1558(2)	6606(2)	18(1)	22(1)
Hf(2)	3333	6667	709(1)	8(1)	O(3)	2114(3)	7368(3)	492(1)	24(1)
Mo(1)	971(1)	7271(1)	249(1)	10(1)	O(4)	1215(2)	9187(2)	193(1)	16(1)
Mo(2)	2821(1)	2821(1)	2500	10(1)	O(5)	2945(2)	4698(2)	2447(1)	17(1)
					O(6)	1644(2)	1940(2)	2733(1)	25(1)

^{*} $U_{\text{3KB}} = 1/3(U_{11} + U_{22} + U_{33}).$

 $T~a~б~\pi~u~ц~a~~3$ Основные межатомные расстояния и углы в структуре $Pr_2Hf_3(MoO_4)_9$

Тетраэдр Мо(1)		Тетраэдр Мо(2)				
Связь	d, Å	Связь	d, Å			
Mo(1)—O(2)	1,725(2)	Mo(2)—O(6)	1,718(2) × 2			
Mo(1)—O(1)	1,726(2)	Mo(2)—O(5)	$1,808(2) \times 2$			
Mo(1)—O(3)	1,788(2)					
Mo(1)—O(2)	1,783(2)	⟨Mo(2)—O⟩	1,763			
⟨Mo(1)—O⟩	1,7555					
Угол	ω, град.	Угол	ω, град.			
O(2)—Mo(1)—O(1)	108,45(9)	O(6)—Mo(2)—O(6)'	108,1(2)			
O(3)—Mo(1)—O(2)	109,3(1)	O(6)—Mo(2)—O(5)	$107,56(9) \times 2$			
O(1)—Mo(1)—O(3)	109,57(9)	O(6)— $Mo(2)$ — $O(5)'$	$109,55(9) \times 2$			
O(4)—Mo(1)—O(2)	110,80(9)	O(5)— $Mo(2)$ — $O(5)'$	114,3(1)			
O(1)—Mo(1)—O(4)	108,98(9)					
O(4)—Mo(1)—O(3)	109,72(9)	⟨O—Mo(1)—O⟩	109,44			
⟨O—Mo(1)—O⟩	109,47					
Октаэдры Hf		Полиэдр Pr				
Связь	d, Å	Связь	d, Å			
Hf(1)—O(4)	2,070(2) × 6	Pr(1)—O(1)	2,445(2) × 3			
Hf(2)-O(5)	$2,054(2) \times 3$	Pr(1)—O(2)	$2,509(2) \times 3$			
Hf(2)-O(3)	$2,083(2) \times 3$	Pr(1)—O(6)	$2,523(2) \times 3$			
Кратчайшие межкатионные расстояния, Å						
Mo(1)—Mo(1)'	4,3764	Pr(1)—Mo(1)	4,0598			
Mo(1)—Mo(1)"	4,6085	Pr(1)—Mo(1)'	4,1562			
Mo(1)—Mo(2)	4,5657	Pr(1)—Mo(2)	4,1997			
Mo(1)—Mo(2)'	4,8129	Hf(1)—Mo(1)	3,5696			
Mo(2)—Mo(2)'	4,7886	Hf(2)—Mo(1)	3,7911			
Pr(1)—Pr(1)'	6,3227	Hf(2)—Mo(2)	3,6189			
Pr(1)—Pr(1)"	6,6333					

Следует отметить, что полиэдры Pr и Hf, занимающие частные позиции на осях 3, не имеют общих структурных элементов. Полиэдры Pr и Hf образуют насаженную на ось c своеобразные

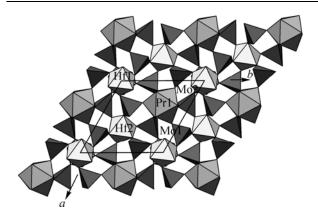
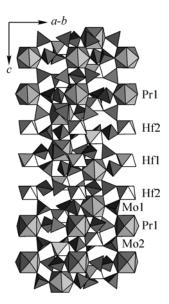



Рис. 1 (слева). Проекция слоя кристаллической структуры $Pr_2Hf_3(MoO_4)_9$ на плоскость (001)

Рис. 2 (справа). Смешанный каркас из трех видов полиэдров в кристаллической структуре $Pr_2Hf_3(MoO_4)_9$ — проекция на плоскость (110)

стержни, где "материальные" полиэдры чередуются со слегка скрученными пустыми тригональными призмами. Последовательность расположения координационных полиэдров катионов по тройной оси следующая: Hf1-Hf2-Pr-↑-Pr-Hf2-Hf1-Hf2-Pr-↑-Pr-Hf2-Hf1 (на трансляцию приходится 10 полиэдров, \uparrow — ось 2, перпендикулярная оси 3, центросимметричные полиэдры подчеркнуты). На ячейку приходится 3 симметрически эквивалентных стержня, смещенных относительно друг друга по ромбоэдрическому закону. Трехмерный каркас структуры формируется за счет общих кислородных вершин полиэдров Рг и Нf с бидентатно-мостиковыми тетраэдрами МоО₄ двух сортов (рис. 2). Возможности такой трактовки рассматривались ранее [3].

Рассматривая данную структуру более традиционно, можно выделить в ней трехмерный "подкаркас" $\{[Hf(MoO_4)_3]^{2-}\}_{3\infty}$ из соединенных общими кислородными вершинами гексадентатных октаэдров HfO₆ и бидентатно-мостиковых тетраэдров MoO₄. В обширных полостях каркаса размещаются атомы Pr, координирующие остающиеся свободными вершины тетраэдров MoO₄.

Сопоставление структур $Pr_2Hf_3(MoO_4)_9$ и $Nd_2Zr_3(MoO_4)_9$ показывает, что они отличаются очень мало. Средние расстояния в полиэдрах структуры празеодим-гафниевого молибдата близки к таковым характеристикам неодим-циркониевого молибдата. Кристаллическая структура $Pr_2Hf_3(MoO_4)_9$, как и $Nd_2Zr_3(MoO_4)_9$, представляет собой новый формульный и структурный тип двойных молибдатов, в котором отсутствуют катионы одно- и двухвалентных металлов.

Работа поддержана Российским фондом фундаментальных исследований № 04-03-32714а и № 08-08-00958а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Базарова Ж.Г., Тушинова Ю.Л., Базаров Б.Г. и др. // Журн. неорган. химии. 2001. 46, № 1. С. 146.
- 2. Базарова Ж.Г., Бадмаева Е.Ю., Солодовников С.Ф. и др. // Там же. 2004. 49, № 2. С. 324.
- 3. Клевцова Р.Ф., Солодовников С.Ф., Тушинова Ю.Л. и др. // Журн. структур. химии. 2000. 41, № 2.
- 4. Sheldrick G.M. SHELXL-97. Programs for the Refinement of Crystal Structures. Germany, University of Goettingen, 1997.
- 5. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. – Л.: Наука, 1986.
- 6. *Клевцова Р.Ф.*, Антонова А.А., Глинская Л.А. // Кристаллография. -1980. -25, № 1. -C. 161.
- 7. Клевцова Р.Ф., Глинская Л.А., Пасечнюк Н.П. // Там же. 1977. 22, № 6. С. 1191.
- 8. *Базаров Б.Г., Клевцова Р.Ф., Сарапулова А.Е. и др. //* Журн. структур. химии. 2005. **46**, № 4. С. 776. 9. *Naruke H., Yamase T. //* J. Solid State Chem. 2005. **178**, N 3. Р. 702.
- 10. Ефремов В.А., Давыдова Н.Н., Трунов В.К. // Журн. неорган. химии. 1988. 33, № 12. С. 3001.
- 11. Борисов С.В., Клевцова Р.Ф. // Кристаллография. 1970. 15, № 1. С. 38.