УДК 536.2:621.3.04

ДВОИСТВЕННАЯ ВАРИАЦИОННАЯ МОДЕЛЬ ТЕМПЕРАТУРНОГО СОСТОЯНИЯ ДИСКА УНИПОЛЯРНОГО ГЕНЕРАТОРА

В. С. Зарубин, В. Н. Зимин, Г. Н. Кувыркин, И. Ю. Савельева

Московский государственный технический университет им. Н. Э. Баумана, 105005 Москва, Россия E-mails: zarubin@bmstu.ru, zimin@bmstu.ru, fn2@bmstu.ru, inga.savelyeva@bmstu.ru

Построена двойственная вариационная форма математической модели установившегося процесса теплопроводности во вращающемся диске униполярного генератора постоянного тока. Модель содержит два альтернативных функционала, имеющих совпадающие стационарные точки, в которых эти функционалы достигают одинаковых значений экстремумов (минимума и максимума, если искомое распределение температуры в диске является единственным). Такое свойство функционалов позволяет оценивать погрешность приближенного решения рассматриваемой нелинейной задачи теплопроводности и контролировать его сходимость. Выявлены особенности радиального распределения температуры в диске и установлено влияние на это распределение теплопроводности и удельного электрического сопротивления материала диска, зависящих от температуры. Определено предельное значение температурного коэффициента удельного электрического сопротивления, при котором невозможно установившееся распределение температуры в диске гиперболического профиля.

Ключевые слова: униполярный генератор постоянного тока, температурное состояние диска, вариационная форма математической модели.

DOI: 10.15372/PMTF20220115

Введение. Униполярные генераторы являются источниками постоянного электрического тока силой порядка $10^3 \div 10^5$ A [1, 2], необходимого в некоторых технологических процессах электрометаллургического и электрохимического производства, а также для питания мощных электромагнитов электрофизической аппаратуры. Униполярный генератор постоянного тока может работать не только в стационарном режиме, но и в импульсном, создавая пиковое значение силы тока (до 10^6 A) [1, 3].

Один из возможных вариантов униполярного генератора постоянного тока представлен на рис. 1. В качестве ротора использован диск из электропроводящего материала. Этот диск вращается в постоянном магнитном поле, создаваемом статором с полюсами N и S. При вращении диска между его периферией и центральной частью возникает разность электрических потенциалов. Проходящий по диску в радиальном направлении электрический ток силой I поступает во внешнюю цепь, подключаемую к генератору через токосъемники A и B.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (код проекта 0705-2020-0047).

[©] Зарубин В. С., Зимин В. Н., Кувыркин Г. Н., Савельева И. Ю., 2022

Рис. 1. Схема униполярного генератора

При достаточно большой скорости вращения диска возникает необходимость в обеспечении надежной работы токосъемников. Наиболее распространены жидкометаллические токосъемники, в которых зазор между расположенными на роторе и статоре кольцевыми электродами заполнен легкоплавким металлом или сплавом (ртутью, сплавом натрия и калия или калия с индием и оловом [1]). Использование жидкометаллических токосъемников одновременно с передачей электрического тока позволяет в определенной степени решить проблему отвода выделяющейся в диске джоулевой теплоты. Неравномерные распределения температуры и механических напряжений, возникающие в быстровращающемся диске, оказывают существенное влияние на прочность диска. Поскольку от уровня температуры зависят термомеханические характеристики материала диска, его температурное состояние является одним из важных факторов, определяющих работоспособность, надежность и ресурс униполярного генератора.

При стационарном режиме работы униполярного генератора постоянного тока температурное состояние диска определяется при решении нелинейной задачи установившейся теплопроводности [4]. Одним из вариантов математической формулировки такой задачи является двойственная вариационная модель, включающая два альтернативных функционала, имеющих на истинном распределении температуры в диске совпадающие по значению экстремумы. Такая особенность математической формулировки позволяет по разности значений альтернативных функционалов на приближенном решении рассматриваемой нелинейной задачи оценивать погрешность этого решения, а также контролировать процесс его сходимости.

Исходные параметры и допущения. Если зависящая в общем случае от радиальной координаты r толщина h диска мала по сравнению с его диаметром, то установившееся распределение температуры в диске можно считать одномерным и представить в виде $T(r), r \in [r_1, r_2]$, где r_1, r_2 — радиусы основания диска и его контактной поверхности в токосъемнике A (см. рис. 1). Основным фактором, определяющим уровень нагрева диска униполярного генератора, является выделение джоулевой теплоты при протекании электрического тока силой I. Объемная плотность q_V мощности тепловыделения в диске в общем случае зависит от удельного электрического сопротивления ρ материала диска и плотности σ электрического тока. Для сравнительно тонкого диска плотность тока можно представить в виде $\sigma(r) = I/F(r)$, где $F(r) = 2\pi r h(r)$. При значительном изменении температуры вдоль радиуса диска необходимо учитывать зависимость $\rho(T)$, в общем случае нелинейную. В итоге согласно закону Джоуля — Ленца имеем

$$q_V(r,T) = \rho(T)(\sigma(r))^2 = \rho(T)I^2/(F(r))^2.$$
(1)

На распределение температуры в диске существенное влияние оказывает теплопроводность λ материала диска, для большинства проводящих электрический ток материалов также зависящая от T. С целью получения верхней оценки этого распределения будем пренебрегать теплообменом на боковой поверхности диска, полагая ее идеально теплоизолированной.

Температуру $T_2 = T(r_2)$ контактной поверхности, определяемую условиями работы и конструкцией токосъемника, примем заданной. При использовании жидкометаллического токосъемника в силу большой окружной скорости на периферии диска температуру T_2 можно считать равной заданной температуре жидкого металла. Пренебрегая теплопроводностью вала, т. е. принимая $dT/dr|_{r=r_1}$, получаем оценку распределения T(r) температуры в диске сверху, причем $T(r) \in [T_2, T_1]$ при $r \in [r_1, r_2]$, где $T_1 = T(r_1)$ — подлежащая определению наибольшая температура диска в его основании.

Построение двойственной вариационной модели. Установившееся одномерное распределение температуры в рассматриваемом диске униполярного генератора должно удовлетворять нелинейному обыкновенному дифференциальному уравнению

$$\frac{d}{dr}\left(\lambda(T)\frac{dT}{dr}F(r)\right) = -q_V(r,T)F(r)$$
(2)

с граничными условиями

$$\frac{dT}{dr}\Big|_{r=r_1} = 0, \qquad T(r_2) = T_2. \tag{3}$$

Умножая уравнение (2) на произведение $F(r)\lambda(T) \delta T$ (δT — вариация искомой функции T(r)) и интегрируя его по радиальной координате r на отрезке $[r_1, r_2]$, с учетом равенства (1) получаем

$$\int_{r_1}^{r_2} \frac{d}{dr} \Big(\lambda(T) \frac{dT}{dr} F(r) \Big) \lambda(T) \,\delta T \,dr = -\int_{r_1}^{r_2} \frac{I^2}{F(r)} \,\rho(T) \lambda(T) \,\delta T \,dr = 0. \tag{4}$$

Используя подстановку Кирхгофа, введем функцию

$$\psi(T) = \int_{T_2}^T \lambda(T') \, dT',$$

называемую потенциалом теплопроводности. Получаем $\delta \psi = \lambda(T) \, \delta T$, $d\psi(T) = \lambda(T) \, dT$ и с учетом граничных условий (3)

$$\left. \frac{d\psi}{dr} \right|_{r=r_1} = 0, \qquad \psi(r_2) = 0.$$

Используя эти равенства в сочетании с интегрированием по частям, преобразуем левую часть соотношения (4):

$$\int_{r_1}^{r_2} \frac{d}{dr} \left(\frac{d\psi}{dr} F(r) \right) \delta\psi \, dr = -\int_{r_1}^{r_2} \frac{d\psi}{dr} \, \delta \, \frac{d\psi}{dr} F(r) \, dr = -\delta \int_{r_1}^{r_2} \frac{1}{2} \left(\lambda(T) \, \frac{dT}{dr} \right)^2 F(r) \, dr,$$

которое принимает вид

$$\delta \int_{r_1}^{r_2} \left(\frac{1}{2} \left(\lambda(T) \, \frac{dT}{dr} \right)^2 F(r) - \frac{I^2}{F(r)} \int_{T_2}^T \rho(T') \lambda(T') \, dT' \right) dr = 0. \tag{5}$$

Равенство (5) является условием $\delta J(T,\delta T)=0$ стациона
рности функционала

$$J[T] = \int_{r_1}^{r_2} \left(\frac{1}{2} \left(\lambda(T) \frac{dT}{dr}\right)^2 F(r) - \frac{I^2}{F(r)} \int_{T_2}^T \rho(T') \lambda(T') \, dT'\right) dr.$$
(6)

Функционал (6) можно рассматривать на множестве распределений T(r) температуры, непрерывных и кусочно-дифференцируемых по r в интервале (r_1, r_2) , а также удовлетворяющих граничным условиям (3), являющимся по отношению к функционалу (6) дополнительными.

Построим функционал, альтернативный функционалу (6) и имеющий такие же значения в стационарных точках, определяемых соотношениями (2), (3). Для этого расширим область определения функционала (6) путем введения функции q(r), имеющей смысл плотности теплового потока в диске и удовлетворяющей при $r \in [r_1, r_2]$ условию

$$q(r) + \lambda(T) \frac{dT(r)}{dr} = 0.$$
(7)

С учетом равенства (7) функционал (6) принимает вид

$$J[T,q] = \int_{r_1}^{r_2} \left(\frac{(q(r))^2}{2} F(r) - \frac{I^2}{F(r)} \int_{T_2}^T \rho(T')\lambda(T') \, dT'\right) dr.$$
(8)

Используя множитель Лагранжа L(r), введем условие (7) в соотношение (8). Получаем

$$J[T,q,L] = J[T,q] - \int_{r_1}^{r_2} L(r) \left(q(r) + \lambda(T) \frac{dT(r)}{dr}\right) F(r) \, dr.$$
(9)

Приравнивая к нулю вариацию функционала (9) и преобразуя ее с использованием правила интегрирования по частям и условий (3), имеем

$$\delta J[T,q,L] = \int_{r_1}^{r_2} \left[\left(q(r) - L(r)\right) \delta q(r) - \left(q(r) + \lambda(T) \frac{dT(r)}{dr}\right) \delta L(r) \right] F(r) dr + \int_{1}^{r_2} \left(\frac{dL(r)}{dr} F(r) - \frac{I^2}{F(r)} \rho(T)\right) \lambda(T) \delta T(r) dr = 0.$$

Отсюда, полагая равным нулю множитель при каждой вариации, находим условия стационарности функционала (9), которые помимо условия (7) включают равенство L(r) = q(r)при $r \in [r_1, r_2]$ и как следствие соотношение

$$\frac{dq(r)}{dr}F(r) = \frac{I^2}{F(r)}\rho(T).$$
(10)

При выполнении условия (7) соотношение (10) эквивалентно обыкновенному дифференциальному уравнению (2). Вновь используя равенство L(r) = q(r) и проводя преобразование соотношений (8), (9), получаем функционал

$$J'[T,q] = J[T] - \frac{1}{2} \int_{r_1}^{r_2} \left(q(r) + \lambda(T) \frac{dT(r)}{dr}\right)^2 F(r) dr$$
(11)

с условиями стационарности (7), (10) и дополнительными условиями (3). Из соотношения (11) следует, что $J'[T,q] \leq J[T]$, а при выполнении условия стационарности (7) стационарные значения этих функционалов совпадают, т. е. обладают свойством альтернативности. Если наряду с условиями (3) равенство (10) считать дополнительным условием, то, преобразуя функционал (11) с учетом соотношения (6), получаем

$$J_*[T,q] = -\int_{r_1}^{r_2} \left(\frac{1}{2} \left(q(r)\right)^2 F(r) - \frac{I^2}{F(r)} \int_{T_2}^{T(r)} \frac{\rho(T)}{dT} dT \int_{T_2}^{T} \lambda(T') dT'\right) dr.$$
(12)

Функционал (12) допустимо рассматривать на множестве непрерывно дифференцируемых в интервале (r_1, r_2) функций q(r), удовлетворяющих условию (10) и равенству $q(r_1) = 0$ в силу условия идеальной теплоизоляции, определяемого первым равенством (3). Требования к функциям T(r) такие же, как и к допустимым функциям для функционала (6). Функционал (12) получен путем преобразования соотношения (11) и поэтому сохраняет свойство альтернативности по отношению к функционалу (6). Функционалы (6), (12) составляют двойственную вариационную форму математической модели процесса установившейся теплопроводности в рассматриваемом диске.

Анализ вариационной модели. Решение нелинейной задачи установившейся теплопроводности может быть не единственным или отсутствовать. При наличии решения оно должно удовлетворять условию $\delta J[T, \delta T] = 0$ стационарности функционала (6), т. е. быть стационарной точкой этого функционала. Вследствие строгой выпуклости функционала (6) вниз и функционала (12) вверх достаточным (но необязательно необходимым) условием существования минимума и максимума этих функционалов является выполнение неравенства [4]

$$\frac{\partial q_V(r,T)}{\partial T} \leqslant 0 \qquad \forall r \in (r_1, r_2).$$
(13)

В случае если это неравенство справедливо при любом допустимом для функционала (6) распределении T(r) температуры, минимум функционала является единственным, что означает единственность решения поставленной задачи.

Для чистых металлов и большинства проводящих электрический ток сплавов справедливо условие $d\rho/dT > 0$ [5]. В этом случае при заданном значении силы тока I из формулы (1) следует, что условие (13) не будет выполнено. Вместе с тем существуют сплавы, для которых $d\rho(T)/dt < 0$ [6], что обеспечивает выполнение условия (13).

Рассмотрим один из возможных вариантов профилирования осевого сечения диска, когда зависимость его толщины от радиальной координаты r определяется гиперболическим законом [7], т. е. $h(r) = F_0/(2\pi r)$, где $F(r) = F_0 = 2\pi r_2 h_2$ = const при заданных значениях r_2 и $h_2 = h(r_2)$. Введем безразмерную координату $\zeta = (r - r_1)/(r_2 - r_1)$ и безразмерную температуру $\Theta = T/T_2 - 1$. Зависимости от температуры удельного электрического сопротивления и теплопроводности примем линейными, полагая $\rho(T) = \rho_0(1 + \alpha \Theta)$, $\lambda(T) = \lambda_0(1 + b\Theta)$, где $\rho_0 = \rho(T_2)$; $\lambda_0 = \lambda(T_2)$; α , b — заданные коэффициенты. Тогда функционалы (6), (12) принимают соответственно вид

$$J_1[\Theta] = \int_0^1 \left[\frac{1}{2} \left((1+b\Theta) \frac{d\Theta(\zeta)}{d\zeta} \right)^2 - \beta \Theta(\zeta) \left(1 + \frac{(\alpha+b)\Theta(\zeta)}{2} + \frac{\alpha b\Theta^2(\zeta)}{3} \right) \right] d\zeta; \tag{14}$$

$$J_2[\Theta, Q] = -\frac{1}{2} \int_0^1 \left[Q^2(\zeta) - \beta \alpha \Theta^2(\zeta) \left(1 + \frac{b\Theta(\zeta)}{3} \right) \right] d\zeta, \tag{15}$$

где $\beta = I^2(r_2 - r_1)^2 \rho_0/(F_0^2 \lambda_0 T_2); Q = q(r_2 - r_1)/(\lambda_0 T_2).$ Из дополнительных условий (10) и $q(r_1) = 0$ получаем формулу

$$Q(\zeta) = \beta \left(\zeta + \alpha \int_{0}^{\zeta} \Theta(\zeta') \, d\zeta' \right), \tag{16}$$

задающую допустимую функцию для функционала (15). При постоянном значении удельного электрического сопротивления материала диска ($\alpha = 0$) эта функция является линейной и не зависит от $\Theta(\zeta)$. В этом случае вместо соотношения (15) имеем $J'_2[Q] = -\beta^2/6 = \text{const.}$

В качестве допустимой для функционалов (14), (15) выберем функцию $\Theta_1(\zeta) = B_1(1 - \zeta^2)$, которая удовлетворяет дополнительным условиям, следующим из граничных условий (3): обращается в нуль при $\zeta = 1$ и имеет нулевую производную при $\zeta = 0$. Подставляя эту функцию в формулу (16), получаем допустимую функцию $Q_1(\zeta) = \beta(\zeta + \alpha B_1\zeta(1 - \zeta^2/3))$ для функционала (15).

В качестве исходных используем следующие значения параметров: $I = 10^4$ A, $\rho_0 = 10^{-6}$ Ом·м, $\lambda_0 = 23,2$ Вт/(м·К), $T_2 = 323$ K, $r_1 = 0,04$ м, $r_2 = 0,2$ м, $F_0 = 0,0126$ м². Отсюда получаем $\beta \approx 2,163$. При постоянных значениях удельного электрического сопротивления и теплопроводности материала диска ($\alpha = b = 0$) решение уравнения (2) с граничными условиями (3) и с учетом равенства (1) в принятых обозначениях имеет вид $\Theta(\zeta) = \beta(1-\zeta^2)/2$. При $B_1 = \beta/2$ данная функция совпадает с функцией $\Theta_1(\zeta)$. В этом случае подстановка функции $\Theta_1(\zeta)$ в соотношение (14) минимизирует функционал J_1 (кривая 1 на рис. 2), причем ордината минимума совпадает со значением функционала J_2' , равным $J_2^* = -\beta^2/6$ (линия 2). При $B_1 = \beta/2$ температура равна $T_1 = (1 + \beta/2)T_2 \approx 673$ К. При $\alpha = 0, b \neq 0$ функционал J_2' сохраняет прежнее значение, но ординаты миниму-

При $\alpha = 0, b \neq 0$ функционал J'_2 сохраняет прежнее значение, но ординаты минимумов функционала J_1 превышают значение $\beta^2/6$ как при b > 0 (кривая 3 на рис. 2), так и при b < 0 (кривая 4). Разность каждой из этих ординат и значения $\beta^2/6$ служит мерой погрешности, возникающей при использовании функции $\Theta_1(\zeta)$ в качестве приближенного решения рассматриваемой задачи. Уменьшение теплопроводности материала диска с увеличением температуры ($b \neq 0$) приводит к увеличению абсциссы B_1 минимума функционала J_1 , пропорциональной температуре T_1 (при $b \neq 0$ возникает обратный эффект). При $\alpha \neq 0, b = 0$ вместе с функционалом (15) необходимо рассматривать функционал (16), зависящий от коэффициента B_1 (при использованном на рис. 2 масштабе по оси ординат линии 6, 8 близки к прямой, параллельной оси ординат). В этом случае ординаты минимумов функционала (15) отличаются от соответствующих ординат функционала (16) (см. выделенный фрагмент с увеличенным масштабом по осям координат на рис. 2).

На рис. 3 представлены зависимости рассматриваемых функционалов от коэффициента B_1 на большем промежутке его изменения. Видно, что функционал $J_2[\Theta, Q]$ при $\alpha < 0$ является выпуклым вверх и достигает максимума в окрестности значения $B_1 = \beta/6$, а при $\alpha > 0$ — выпуклым вниз и имеет минимум в той же области. Из соотношения (11) следует,

Рис. 2. Зависимости функционалов J_1 (1, 3, 4, 5, 7), J'_2 (2), J_2 (6, 8) от коэффициента $B_1 = 1,05 \div 1,11$ при $\beta \approx 2,163$ и различных значениях α , b: 1, 2 — $\alpha = b = 0, 3$ — $\alpha = 0, b = 0,025, 4$ — $\alpha = 0, b = -0,025, 5, 6$ — $\alpha = -0,0002, b = 0, 7, 8$ — $\alpha = 0,0002, b = 0$; выделенный фрагмент — $x_1 = 1,08167, x_2 = 1,08168$ и $y_1 = -0,779\,896\,454, y_2 = -0,779\,896\,453$

Рис. 3. Зависимости функционалов J_1 $(1, 3, 5), J'_2$ $(2), J_2$ (4, 6) от коэффициента $B_1 = 0,8 \div 1,3$ при $\beta \approx 2,163$ и различных значениях α, b : 1, 2 — $\alpha = b = 0, 3, 4$ — $\alpha = -0,0002, b = 0, 5, 6$ — $\alpha = 0,0002, b = 0$ Рис. 4. Зависимости функционалов J_1 $(1, 3, 5, 7, 9, 11), J'_2$ $(2), J_2$ (4, 6, 8, 10, 12)от коэффициента $B_1 = 1,06 \div 1,11$ при $\beta \approx 2,163$ и различных значениях α, b : 1, 2 — $\alpha = b = 0, 3, 4$ — $\alpha = -0,0002, b = 0,02, 5, 6$ — $\alpha = 0,0002, b = -0,02, 7, 8$ — $\alpha = -0,001, b = 0,02, 9, 10$ — $\alpha = -0,001, b = -0,02, 11, 12$ — $\alpha = -0,001, b = -0,005$

Рис. 5. Зависимость параметра β от коэффициента B_1^* при различных значениях коэффициентов α , b:

 $\begin{array}{l} a-\alpha=0,1\div 0,5 \ (1-\alpha=0,1, \ b=-0,1, \ 2-\alpha=0,1, \ b=-0,2, \ 3-\alpha=0,1, \ b=-0,3, \\ 4-\alpha=0,2, \ b=-0,2, \ 5-\alpha=0,2, \ b=-0,3, \ 6-\alpha=0,3, \ b=-0,2, \ 7-\alpha=0,3, \\ b=-0,3, \ 8-\alpha=0,4, \ b=-0,2, \ 9-\alpha=0,4, \ b=-0,3, \ 10-\alpha=0,5, \ b=-0,2, \ 11-\alpha=0,5, \ b=-0,2, \ b=$

что на истинном решении задачи экстремальные точки функционалов (15), (16) совпадают. Следует отметить "чувствительность" разности альтернативных функционалов к выбору допустимой функции, определяющей приближенное решение задачи. Например, если вместо использованной выше допустимой квадратичной функции $\Theta_1(\zeta)$ выбрать близкую к ней тригонометрическую функцию $\Theta_2(\zeta) = B_2 \cos(\pi \zeta/2)$, то соответствующие разности функционалов в стационарных точках увеличиваются не менее чем на порядок.

Взаимное влияние зависимостей от температуры удельного электросопротивления и теплопроводности материала диска на его температурное состояние можно определить по значениям коэффициента B_1 , определяющего абсциссу минимума функционала J_1 при выбранном сочетании значений коэффициентов α и b (рис. 4). Для сравнения на рис. 4 приведены зависимости функционалов J_1 и J'_2 от коэффициента при $\alpha = b = 0$.

Связь значений параметра β и абсциссы B_1^* минимума функционала (15) следует из равенства $\partial J_1/\partial B_1 = 0$, которое при фиксированных значениях остальных параметров является условием стационарности функционала (15). С учетом функции $\Theta_1(\zeta)$ из этого условия следует

$$\beta = B_1^* \frac{2 + bB_1^*(2, 4 + 0, 914\,25b)}{1 + 0.8(\alpha + b)B_1^* + 0.6855\alpha b(B_1^*)^2}.$$

На рис. 5, *а* представлены результаты расчетов с использованием этой формулы при значениях $\alpha > 0$, b < 0, характерных для большинства электропроводящих материалов, которые могут быть использованы в конструкции диска униполярного генератора. При температуре $T_2 > 300$ K верхняя граница возможного изменения B_1^* определяется неравенством $B_1^* \leq 3$. Сочетание значений $\alpha = 0,1$, b = -0,1 обеспечивает при $B_1^* \leq 3$ монотонное увеличение параметра β , пропорционального квадрату силы тока I.

Для остальных рассмотренных сочетаний значений коэффициентов α и *b* зависимость β от B_1^* при $0 \leq B_1^* < 3$ достигает максимального значения (см. рис. 5,*a*). Следует отметить, что нисходящие ветви кривых на рис. 5 соответствуют неустойчивым температурным состояниям [8]. При фиксированном сочетании коэффициентов α и *b* максимальное значение параметра β является предельным, при котором еще возможно существование в диске установившегося распределения температуры, предшествующего так называемому тепловому взрыву [9, 10].

В случае b < 0 можно увеличить максимальное значение β , выполнив диск из материала, удельное электрическое сопротивление которого не возрастает с увеличением температуры ($\alpha \leq 0$). На рис. 5,6 приведены результаты расчетов, которые позволяют оценить возможность компенсации уменьшения теплопроводности материала диска за счет уменьшения удельного электрического сопротивления этого материала.

Заключение. В работе представлена двойственная вариационная форма математической модели, которая наряду с построением приближенного аналитического или численного решения нелинейных стационарных задач теплопроводности предусматривает возможность оценки интегральной погрешности такого решения и контроля его сходимости. Данная модель применена для анализа установившегося температурного состояния диска униполярного генератора, выполненного из материала, удельная электропроводность и теплопроводность которого зависят от температуры. Для диска с гиперболическим профилем по разности стационарных значений альтернативных функционалов на приближенном решении в виде квадратичной функции получены оценки интегральной погрешности, возникающей при различных сочетаниях значений коэффициентов, определяющих зависимость от температуры электрического сопротивления и теплопроводности материала диска. Установлены предельные значения параметров, при превышении которых в диске возникает тепловой взрыв.

ЛИТЕРАТУРА

- 1. **Суханов Л. А.** Электрические униполярные машины / Л. А. Суханов, Р. Х. Сафиуллина, Ю. А. Бобков. М.: Всесоюз. науч.-исслед. ин-т электромеханики, 1964.
- 2. Брускин Д. Э. Электрические машины: В 2 ч. Ч. 2 / Д. Э. Брускин, А. Е. Зорохович, В. С. Хвостов. М.: Высш. шк., 1987.
- 3. Вольдек А. И. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы / А. И. Вольдек, В. В. Попов. СПб.: Питер, 2008.
- Зарубин В. С. Инженерные методы решения задач теплопроводности. М.: Энергоатомиздат, 1983.
- 5. Готман П. Е. Электротехнические материалы / П. Е. Готман, В. Б. Березин, А. М. Хайкин. М.: Энергия, 1969.
- 6. **Физические** величины: Справ. / Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.
- 7. Ванько В. И. Нестационарные температурные поля в дисках составного гиперболического профиля при отсутствии теплообмена на торцовых поверхностях // ПМТФ. 1961. № 4. С. 143–144.
- 8. Зарубин В. С., Котович А. В., Кувыркин Г. Н. Устойчивость температурного состояния диска униполярного генератора // Изв. РАН. Энергетика. 2016. № 1. С. 127–133.
- Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1967.
- 10. Kotoyori T. Critical temperatures for the thermal explosion of chemicals. Amsterdam: Elsevier Publ., 2005.

Поступила в редакцию 13/X 2020 г., после доработки — 13/X 2020 г. Принята к публикации 26/IV 2021 г.