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Рассмотрены нестационарные одномерные сдвиговые течения вязкоупругой среды. Для
сред с несколькими временами релаксации сформулирован общий подход, позволяю-
щий представить известные модели вязкоупругих течений в виде эволюционных систем
уравнений первого порядка. Для моделей Джонсона — Сигалмана, Гизекуса и роли-
поли найдены условия гиперболичности рассматриваемых классов течений. Уравнения
движения вязкоупругой среды представлены в виде полной нелинейной системы законов
сохранения. Предложен способ расчета нестационарных разрывных течений в рамках
рассматриваемых моделей. Численно исследован класс нестационарных течений Куэт-
та в зазоре между цилиндрами, используемых в реологических тестах, изучен процесс
сдвигового расслоения и его влияние на структуру стационарных течений. Проведено
сравнение результатов численных расчетов с экспериментальными данными.
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Введение. Многие жидкости, которые встречаются в природе или используются в
технологических процессах, обладают сложной неньютоновской реологией. Одним из важ-
нейших свойств таких сред является вязкоупругость. В зависимости от условий нагруже-
ния жидкости, обладающие этим свойством, имеют характеристики как вязкой жидкости,
так и упругого тела (полимерные жидкости, гели, пасты). Сложная реология таких ма-
териалов обеспечивается молекулярной структурой [1]. При течении вязкоупругих сред
может происходить сдвиговое расслоение — возникновение в течении областей, в кото-
рых деформация среды γ значительно больше, чем в остальной части образца. Экспери-
ментальному и теоретическому исследованию процесса сдвигового расслоения посвящено

большое число работ, обзор которых приведен в [2]. В частности, в работах [3–5] экспери-
ментально получен профиль скорости, который реализуется в течении Куэтта — Тейлора

между двумя соосными цилиндрами, и подтверждено возникновение сдвигового расслое-
ния.

Для описания течений вязкоупругих сред разработано большое количество моделей,
каждая из которых имеет свои особенности и область применимости, их описание приве-
дено, например, в [6]. Численные методы для решения уравнений вязкоупругой жидкости
в двух- и трехмерных областях были разработаны сравнительно недавно. Обзор совре-
менных численных методов приведен в работе [7]. Следует отметить, что большинство
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рассматриваемых в [7] методов основаны на регуляризации определяющего соотношения
путем добавления диффузионных слагаемых как в закон сохранения импульса, так и в
определяющие соотношения, что позволяет обобщить их на многомерный случай.

Результаты систематического исследования вязкоупругой среды Максвелла в сжимае-
мом случае приведены в монографии [8]. Для моделей сжимаемых сред характерно распро-
странение возмущений с конечной скоростью (гиперболический тип движения). В случае
многомерных движений несжимаемой жидкости система уравнений, как правило, не явля-
ется гиперболической. Исключение составляют модели стационарных течений вязкоупру-
гой жидкости [9]. Однако для некоторых важных классов одномерных нестационарных
движений сплошной среды удается исключить неэволюционные переменные из базисной

системы уравнений и показать гиперболический характер распространения возмущений.
Так, для случая несжимаемой среды Максвелла были найдены подмодели одномерных

нестационарных движений вязкоупругой среды, имеющие гиперболический или составной
тип, построены точные решения и исследованы групповые свойства уравнений [10–13].

Включение в уравнения движения вязкоупругой среды нескольких времен релаксации

для основных типов одномерных течений также приводит к гиперболическим моделям.
Такой подход был предложен в работах [12, 14, 15], в которых рассматривались сдвиго-
вые течения вязкоупругой среды в рамках модели Джонсона — Сигалмана [16]. В ука-
занных работах в систему уравнений Джонсона — Сигалмана для сдвиговых течений не

добавляется дополнительная вязкость, что позволят найти условия ее гиперболичности и
исследовать структуру решений. В [17] рассмотрены разрывные решения уравнений жид-
кости Максвелла и предложена классификация возможных разрывов. В [14] показано, что
в рамках модели Джонсона — Сигалмана разрывы в течении могут возникать даже при

гладких начальных данных.
Для интерпретации реологических измерений важным является класс сдвиговых те-

чений, поскольку такие течения наблюдаются в измерительных системах реометров и
вискозиметров. В частности, представляет интерес задача о поведении среды в области
нелинейной вязкоупругости. Для корректного моделирования данных экспериментов необ-
ходимо предложить метод расчета сдвиговых течений в рамках нелинейных моделей.

В настоящей работе рассматриваются сдвиговые течения вязкоупругой среды в рам-
ках моделей Джонсона — Сигалмана [16], Гизекуса [18] и роли-поли [19]. Для рассмат-
риваемых моделей предложен способ регуляризации системы, обеспечивающий ее гипер-
боличность. Данный подход позволяет исследовать структуру решений, а также точно
оценивать положение и толщину высокоградиентных прослоек в сдвиговых течениях вяз-
коупругих сред. Предложен численный метод расчета нестационарных сдвиговых течений,
основанный на представлении уравнений движения в виде нелинейной системы законов со-
хранения, и исследован процесс сдвигового расслоения в таких течениях. Проведено срав-
нение результатов расчетов с экспериментальными данными.

1. Математическая модель. Ниже формулируются различные модели сдвигового
течения жидкости и приводятся соответствующие уравнения в дивергентном виде.

1.1. Модель несжимаемой вязкоупругой жидкости. Рассматривается общая модель
несжимаемой вязкоупругой жидкости

ρ(vt + (v · ∇)v) = −∇p + div σ + ηs∆v + ρf ,

∇ · v = 0,

где ρ — плотность; v — скорость; p — давление; σ — “вязкая” часть тензора напря-
жений; f — вектор массовых сил; ηs — вязкость растворителя. Следует отметить, что
в рассматриваемых моделях вязкость ηs добавляется для регуляризации модели. Обыч-
но реальные значения ηs на 2–3 порядка меньше значений, используемых в большинстве
расчетов. В данной работе модель рассматривается в случае ηs = 0.
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В общем случае исследуется многомодовая модель, при этом тензор напряжений пред-
ставляется в виде суммы

σ =
n∑

i=1

τi,

а компоненты тензора напряжений, соответствующие i-й моде, связаны с тензором скоро-
стей деформаций через определяющее соотношение

λiτ̃i + τi + hi(τi) = 2ηiD, D =
1

2
(∇v + (∇v)т), (1)

где λi — время релаксации, соответствующее i-й моде; ηi — динамическая вязкость i-й
моды; D — тензор скоростей деформации; hi(τi) — некоторая функция тензора τi; τ̃i —
производная Джонсона — Сигалмана:

τ̃i =
∂τi

∂t
+ v · ∇τi +

1 + αi

2
(−∇v · τi − τi · (∇v)т) +

1− αi

2
((∇v)т · τi + τi · ∇v),

αi ∈ [−1, 1], причем при αi = 1 производная Джонсона — Сигалмана сводится к верхней

конвективной производной, при αi = −1 — к нижней конвективной производной, а при
αi = 0 — к вращательной производной Яумана.

В случае одномодовой модели (n = 1) выделим следующие частные случаи:
1) если h = 0, то уравнение (1) сводится к определяющему уравнению модели Джон-

сона — Сигалмана [16], если, кроме того, α = 1, то модель сводится к модели Максвелла
с верхней конвективной производной;

2) если

h = βG
λ

η
τ · τ,

то имеем модель Гизекуса [18];
3) если

h = 6Z(1− χ)[A + χβR(A− I)], τ = G(A− I), G =
η

λ
, χ =

√
3

Tr A
, 3Z =

λd

λR
,

то имеет место модель роли-поли [19], где G — модуль упругости; A — тензор конформа-
ций; βR, Z — параметры модели [20].

1.2. Сдвиговые течения. Рассматривается класс сдвиговых течений между двумя ко-
аксиальными цилиндрами с размером зазора l = R2 − R1, где R2 — радиус внешнего

цилиндра; R1 — радиус внутреннего цилиндра. Предполагается, что градиент давления
отсутствует, т. е. ∇p = 0. Вектор скорости и ненулевые компоненты тензора скоростей
деформации в полярных координатах (r, ϕ) имеют вид

v = (0, u(r)), 2Drϕ = 2Dϕr = γ̇ = r
(u

r

)
r
.

Введем следующие обозначения:

τi =

(
ξi πi

πi ζi

)
, ∇v =

(
0 −u/r
ur 0

)
, D =

1

2

(
0 γ̇
γ̇ 0

)
, h(τi) =

(
hrr hrϕ

hϕr hϕϕ

)
.

Запишем в явном виде выражения для компонент производной Джонсона — Сигалмана:

v · ∇τi =
u

r

( −2πi ξi − ζi

ξi − ζi 2πi

)
,

∂τi

∂t
=

(
∂ξi/∂t ∂πi/∂t

∂πi/∂t ∂ζi/∂t

)
,
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∇v · τi =

( −πiu/r −ζiu/r

ξiur πiur

)
, τi · (∇v)т =

( −πiu/r ξiur

−ζiu/r πiur

)
,

(∇v)т · τi =

(
πiur ζiur

−ξiu/r −πiu/r

)
, τi · ∇v =

(
πiur −ξiu/r

ζiur −πiu/r

)
.

Тогда система уравнений для компонент тензора напряжений принимает вид

λi

(∂ξi

∂t
+ πi(1− αi)γ̇

)
+ ξi + hrr

i = 0,

λi

[∂πi

∂t
+

(1− αi

2
ζi −

1 + αi

2
ξi

)
γ̇
]

+ πi + hrϕ
i = ηiγ̇, (2)

λi

(∂ζi

∂t
− πi(1 + αi)γ̇

)
+ ζi + hϕϕ

i = 0.

Уравнения (2) дополняются законом сохранения импульса

ρut =
∂σrϕ

∂r
+

2σrϕ

r
, σrϕ =

n∑
i=1

πi. (3)

В случае плоского течения Куэтта вектор скорости в декартовых координатах (x, y)
представляется в виде

v = (0, u(x)).

В этом случае закон сохранения импульса имеет вид

ρut =
∂σxy

∂x
, σxy =

n∑
i=1

πi.

Компоненты тензора напряжений удовлетворяют уравнениям (2), в которых следует по-
ложить γ̇ = ux.

1.3. Безразмерные уравнения. Перейдем к безразмерным переменным:

t = λ1t
′, r = R1 + (R2 −R1)r

′ = R1 + lr′, u =
l

λ1
u′, σ = G1σ

′, h = G1h
′,

∂

∂r
=

1

l

∂

∂r′
,

1

r
=

1

l

q

1 + qr′
, q =

l

R1
.

Вводятся следующие безразмерные параметры:

Re =
ρl2

G1λ2
1

, We =
v0λ1

l
, κi =

ηi

η1
, βi =

Gi

G1

(ρ — плотность жидкости; l — размер зазора между цилиндрами; Gi = ηi/λi — модуль

упругости i-й моды; v0 — скорость движущейся стенки цилиндра).
Следует отметить, что параметры βi могут быть исключены путем замены перемен-

ных

u = u′, τi = βiτ
′
i .

В этом случае система (2), (3) принимает вид (далее штрихи опускаются)

Re ut =
∂σrϕ

∂r
+

2q

1 + qr
σrϕ, γ̇ = ur −

q

1 + qr
u,
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∂ξi

∂t
+ πi(1− αi)γ̇ +

1

κi
ξi +

1

κi
hrr

i = 0,

∂πi

∂t
+

(1− αi

2
ζi −

1 + αi

2
ξi

)
γ̇ +

1

κi
πi +

1

κi
hrϕ

i = γ̇,

∂ζi

∂t
− πi(1 + αi)γ̇ +

1

κi
ζi +

1

κi
hϕϕ

i = 0.

1.4. Гиперболические модели. В данной работе рассматриваются только модели с дву-
мя временами релаксации. Следует отметить, что предложенный метод может быть есте-
ственным образом обобщен на случай произвольного числа времен релаксации. Далее рас-
сматриваются модели двух типов с уравнением (1).

В случае модели Джонсона — Сигалмана параметр α1 ∈ (−1, 1) остается произволь-
ным, а α2 выбирается равным единице для регуляризации данной модели. Для моделей
Гизекуса и роли-поли для каждой моды выбирается верхняя конвективная производная

α1,2 = 1. Для первой моды функция h1 не равна тождественно нулю и задается по форму-
лам, приведенным в подп. 1.1. Вторая мода выбирается с целью регуляризовать систему,
т. е. h2 = 0. Как показано ниже, в случае стационарной модели этот метод не отличает-
ся от стандартного метода регуляризации с помощью вязкости растворителя ηs. Однако
в нестационарном случае предложенный метод позволяет получить гиперболическую си-
стему уравнений.

В рамках модели Джонсона — Сигалмана с одним и двумя временами релаксации

плоские сдвиговые течения рассматривались в работах [15, 21]. В случае двух времен

релаксации α1 ∈ (−1, 1), α2 = 1 уравнения модели Джонсона — Сигалмана принимают

вид

Re ut − (π1 + π2)r =
2q

1 + qr
(π1 + π2), γ̇ = ur −

q

1 + qr
u,

(ξ1)t + π1(1− α1)γ̇ + ξ1 = 0, (π1)t +
(1− α1

2
ζ1 −

1 + α1

2
ξ1

)
γ̇ + π1 = γ̇,

(ζ1)t − π1(1 + α1)γ̇ + ζ1 = 0, (ξ2)t +
1

κ2
ξ2 = 0,

(4)

(π2)t +
1

κ2
π2 = (ξ2 + 1)γ̇, (ζ2)t − 2π2γ̇ + ζ2 = 0.

Как показано в работах [15, 21], выполняя замену переменных

z1 =
1 + α1

2
ξ1 −

1− α1

2
ζ1, w1 = −1 + α1

2
ξ1 −

1− α1

2
ζ1,

можно исключить одно уравнение из системы (4). В этом случае переменная w1 удовле-
творяет уравнению ∂w1/∂t + w1 = 0 и w1 ≡ 0 является решением системы. Аналогичным
образом можно исключить уравнение для переменной ξ2 и уравнение для переменной ζ2.
Таким образом, для второй моды остается только одно дополнительное уравнение для π2.

В результате для модели Джонсона — Сигалмана получаем систему регуляризован-
ных уравнений

ut −
(π1 + π2

Re

)
r

= fJS
1 , (π1)t − (z1 + 1)ur = fJS

2 ,

(5)
(z1)t + (1− α2

1)π1ur = fJS
3 , (π2)t − ur = fJS

4 ,

где

fJS
1 =

2q

Re (1 + qr)
(π1 + π2), fJS

2 = −π1 − (z1 + 1)
qu

1 + qr
, (6)
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fJS
3 = −z1 + (1 + α2

1)π1
qu

1 + qr
, fJS

4 = −π2

κ
− qu

1 + qr
.

Плоскому течению Куэтта соответствует предельный случай q = 0.
Следует отметить, что в случае α1 ∈ (−1, 1) путем растяжения переменных π1, π2, u:

π′
i = (1− α2

1)
1/2πi, u′ = (1− α2

1)
1/2u, i = 1, 2 (7)

можно исключить параметр скольжения α1 из системы (5).
Правые части системы уравнений (5) задаются по формулам (6) с учетом растяже-

ния (7).
Различие моделей Гизекуса и роли-поли состоит только в способе выбора правой ча-

сти h в определяющем соотношении (1). Поэтому систему уравнений для сдвиговых тече-
ний можно записать в общем для обеих моделей виде.

Рассматривается случай, когда правые части системы уравнений, соответствующие
первой моде, не равны нулю тождественно: h1 6= 0. При этом оба параметра скольжения
полагаются равными единице: α1,2 = 1, что соответствует использованию верхней конвек-
тивной производной в уравнениях для первой и второй мод. В дополнение к конкретному
представлению правой части уравнений для первой моды в моделях Гизекуса и роли-поли
(см. подп. 1.1) правая часть уравнений для второй моды выбирается равной нулю.

Следовательно, система уравнений принимает вид

ut −
(π1 + π2

Re

)
r

= f1,

(ξ1)t = f2, (π1)t − (ξ1 + 1)ur = f3, (8)

(ζ1)t − 2π1ur = f4, (π2)t − ur = f5.

Заметим, что в моделях Гизекуса и роли-поли различаются только правые части уравне-
ний, которые в случае модели Гизекуса имеют вид

fG
1 =

2q

Re (1 + qr)
(π1 + π2), fG

2 = −ξ1 − βGG1(ξ
2
1 + π2

1),

fG
3 = −π1 − (ξ1 + 1)

q

1 + qr
u− βGG1π1(ξ1 + ζ1), (9)

fG
4 = −ζ1 − 2π1

q

1 + qr
u− βGG1(ζ

2
1 + π2

1), fG
5 = − 1

κ2
π2 −

q

1 + qr
u.

Для модели роли-поли правые части системы уравнений принимают вид

fRP
1 =

2q

Re (1 + qr)
(π1 + π2), fRP

2 = −ξ1 − 6Z(1− χ)(1 + βRχ)π1,

fRP
3 = −π1 − 6Z(1− χ)[(1 + βRχ)ζ1 + 1]− (ξ1 + 1)

q

1 + qr
u,

(10)

fRP
4 = −ζ1 − 6Z(1− χ)[(1 + βRχ)ξ1 + 2]− 2π1

q

1 + qr
u,

fRP
5 = − 1

κ2
π2 −

q

1 + qr
u,

где χ =
√

3G1/(3G1 + tr τ1); G1 — модуль упругости первой моды.
2. Дивергентный вид уравнений. Для численного исследования нестационарных

решений рассматриваемых моделей соответствующие системы уравнений необходимо при-
вести к дивергентному виду.
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Будем рассматривать систему уравнений в векторной форме

Ut + (F (U ))r = G(U ). (11)

Выражения для векторов U , F и G для каждой рассматриваемой модели приведены ниже.
2.1. Модель Джонсона — Сигалмана. При Re > 0 система (5) может быть записана в

виде законов сохранения, аналогичных уравнениям газовой динамики [15]:

ut + Pr = G1, ϕt − ur = G2,

gt = G3, st = G4,

где

ϕ = arctg
π1

z1 + 1
, g =

√
π2

1 + (z1 + 1)2, P = −π1 + π2

Re
, s = π2 − ϕ.

Выполним замену правых частей системы уравнений:

GJS
1 = fJS

1 , GJS
2 =

fJS
2 −GJS

3 sin ϕ

q cos ϕ
,

GJS
3 = fJS

2 sin ϕ + fJS
3 cos ϕ, GJS

4 = fJS
4 −GJS

2

(fJS
i определяются по формулам (6)).
Таким образом, систему Джонсона — Сигалмана можно записать в общем векторном

виде (11), где

U = (u, ϕ, g, s)т, F (U ) = (P,−u, 0, 0)т, G(U ) = (GJS
1 , GJS

2 , GJS
3 , GJS

4 )т.

Если характеристики системы

dr

dt
= li, l1,2 = ±

√
g cos ϕ + 1

Re
, l3,4 = 0

вещественны, то модель Джонсона — Сигалмана представляется в виде нелинейной ги-
перболической системы уравнений.

2.2. Модели Гизекуса и роли-поли. Выше было показано, что модели Гизекуса и роли-
поли различаются только правыми частями. Следовательно, при Re > 0 обе системы
уравнений можно записать в общем виде

ut + Pr = G1, wt − ur = G2, gt = G3,

(ξ1)t = G4, st = G5,

где

w =
π1

ξ1 + 1
, g = π2

1 + ζ1(ξ1 + 1), P = −π1 + π2

Re
, s = π2 − w.

Выполним замену правых частей системы уравнений:

G1 = f1, G2 =
f3 − wf2

ξ1 + 1
,

G3 = 2π1f3 − f4(ξ1 + 1)− f2ζ1, G4 = f2, G5 = f5 −G2,

где функции fi в случае модели Гизекуса задаются формулами (9), а в случае модели
роли-поли — формулами (10).

Таким образом, системы уравнений Гизекуса и роли-поли можно записать в общем
векторном виде (11), где

U = (u, w, g, ξ1, s)
т, F (U ) = (P,−u, 0, 0, 0)т, G(U ) = (G1, G2, G3, G4, G5)

т.
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Так же как и в случае модели Джонсона— Сигалмана, условием гиперболичности системы
является вещественность характеристик

dr

dt
= li, l1,2 = ±

√
ξ1 + 2

Re
, l3,4,5 = 0.

3. Результаты расчетов. В области гиперболичности система (11) может быть
численно проанализирована c помощью известных методов решения систем нелинейных

гиперболических уравнений. Далее в работе используется вариация метода Годунова.
Ниже рассмотрено несколько классических задач, связанных с реометрическими те-

чениями. Гиперболичность рассматриваемых систем позволяет строить нестационарные
численные решения с учетом нелинейных слагаемых. Эти решения соответствуют экспе-
риментальным данным в области нелинейной вязкоупругости.

3.1. Задача о разгоне цилиндра. Рассматривается одномерное сдвиговое течение меж-
ду двумя коаксиальными цилиндрами. Ставится задача о разгоне одного из цилиндров.
Начальные и граничные условия выбираются следующим образом. В начальный момент
времени скорость и все компоненты напряжений в жидкости задаются равными нулю. За-
тем внутренний цилиндр равномерно разгоняется до заданной угловой скорости, которая
удерживается постоянной до конца расчета. На рис. 1 приведена зависимость напряжений
на внутреннем и внешнем цилиндрах от времени, расcчитанная по моделям Джонсона —
Сигалмана и Гизекуса, а также результаты решения задачи о разгоне пластины в плоском
случае (q = (R2−R1)/R1 = 0). В расчетах были выбраны следующие значения безразмер-
ных параметров: в случае модели Джонсона — Сигалмана Re = 0,001, κ2 = 10−4, q = 0;
0,07, в случае модели Гизекуса Re = 0,001, κ2 = 10−4, βG = 0,83, q = 0; 0,07. Размерные
параметры задачи имели следующие значения: G1 = 33 Па, λ1 = 3 с, l = 0,7 мм.

На рис. 1 видно, что при t < 1 зависимость сдвигового напряжения от времени ка-
чественно согласуется с соответствующей зависимостью в случае линейной вязкоупруго-
сти [6]. Однако при t > 1 напряжение претерпевает скачок, что соответствует переходу к
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Рис. 1. Зависимость напряжений на внутреннем и внешнем цилиндрах от вре-
мени:
а — расчет по модели Джонсона — Сигалмана, б — расчет по модели Гизекуса; 1, 2 —
q = 0 (1 — левая граница, 2 — правая граница), 3, 4 — q = 0,067 (3 — левая граница,
4 — правая граница)
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течению со сдвиговым расслоением. Заметим, что время формирования стационарного те-
чения со сдвиговым расслоением зависит как от параметров модели, так и от диаметров
внешнего и внутреннего цилиндров. При проведении реологических тестов оно являет-
ся важным фактором при определении зависимости напряжения на стенках от скорости

сдвига.
3.2. Задача определения зависимости напряжения от скорости сдвига. С использо-

ванием стандартных методов интерпретации реологических измерений рассматривается

только случай стационарных течений. Как показано ниже, в случае отчетливо выражен-
ных упругих свойств среды решение, полученное по нестационарной модели при тех же
параметрах, может значительно отличаться от стационарного. Различие проявляется в
режиме течения со сдвиговым расслоением.

Рассматривается задача определения зависимости напряжения от скорости сдвига при

сдвиговом течении Куэтта — Тейлора между двумя цилиндрами. На рис. 2, 3 приведены
результаты расчетов по моделям Джонсона — Сигалмана и Гизекуса, а также экспери-
ментальные данные [22] (параметры моделей Джонсона— Сигалмана и Гизекуса, которые
были подобраны по этим экспериментальным данным, указаны в работе [23]). На рис. 2, 3
показана также зависимость напряжения от скорости сдвига, полученная с использовани-
ем стационарной модели в плоском канале. В расчетах по нестационарной модели Джон-
сона — Сигалмана были выбраны следующие параметры: Re = 0,001, κ2 = 10−4, q = 0,07,
в расчетах по модели Гизекуса — параметры Re = 0,001, κ2 = 10−4, βG = 0,83, q = 0;
0,07. Размерные параметры задачи имели следующие значения: G1 = 33 Па, λ1 = 3 с,
l = 0,7 мм.

На рис. 2 видно, что результаты расчета по модели Гизекуса хорошо согласуются с
экспериментальными данными даже в стационарном случае, однако учет нестационарно-
сти и кривизны канала позволяет значительно уменьшить их различие.

В случае модели Джонсона — Сигалмана результаты расчетов по стационарной и

нестационарной моделям значительно различаются. Из рис. 3 следует, что зависимость,
полученная с использованием стационарной модели, значительно отличается от экспери-
ментальной зависимости. Это различие объясняется тем, что в данном диапазоне скоро-
стей сдвига в среде реализуется течение со сдвиговым расслоением. Заметим, что кри-
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Рис. 2 Рис. 3
Рис. 2. Зависимость напряжения от скорости сдвига при G1 = 33 Па, λ1 = 3 с:
1, 2 — результаты расчета (1 — по стационарной модели Гизекуса (q = 0), 2 — по

нестационарной модели Гизекуса (q = 0,07), 3 — данные эксперимента [22]

Рис. 3. Зависимость напряжения от скорости сдвига при G1 = 33 Па, λ1 = 3 с:
1, 2 — результаты расчета (1 — по стационарной модели Джонсона — Сигалмана, 2 —
по нестационарной модели Джонсона — Сигалмана), 3 — данные эксперимента [22];
q = 0,07
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вая, соответствующая стационарным течениям, получена для гладкого профиля скорости
без сдвигового расслоения потока [21]. В расчетах по нестационарной модели реализуется
течение со сдвиговым расслоением, что приводит к лучшему согласованию полученных

результатов с экспериментальными данными при указанных скоростях сдвига.
3.3. Сдвиговое течение. В работах [3, 5] представлены экспериментально полученные

профили скорости при сдвиговых течениях вязкоупругих сред. Результаты, полученные
в [3, 5], свидетельствуют о наличии сдвигового расслоения в течении.

Для сравнения с экспериментальными данными в численных расчетах задаются ну-
левые начальные условия для скорости и напряжений, затем внутренний цилиндр рав-
номерно разгоняется до заданной угловой скорости. Далее угловая скорость внутреннего
цилиндра фиксируется и расчет проводится в промежутке времени, равном нескольким
десяткам времен релаксации вплоть до момента установления стационарного состояния.
Полученный в результате расчета профиль скорости сравнивается с экспериментальными

данными.
На рис. 4 точками показаны экспериментальные зависимости сдвигового напряжения

от скорости сдвига [3]. Эксперимент проводился для системы цилиндр— цилиндр, радиус
внешнего цилиндра равен R2 = 25 мм, размер зазора между цилиндрами R2 −R1 = 1 мм.
Различие результатов, полученных по стационарной и нестационарной моделям, объясня-
ется различием структуры решения. Полная нестационарная модель допускает наличие
сдвигового расслоения.

На рис. 5 представлена зависимость скорости внутреннего цилиндра от поперечного
расстояния при различных значениях характерной скорости сдвига. Видно, что при безраз-
мерной скорости левой стенки, превышающей единицу, вблизи нее формируется сдвиговый
пристенный слой, ширина которого увеличивается при увеличении скорости границы.

На рис. 5 показаны профили скорости, полученные в результате расчета по нестаци-
онарной модели роли-поли (8) (x = (r − R1)/(R2 − R1) — безразмерная ширина канала).
В расчете были выбраны следующие параметры модели: Re = 0,001, κ2 = 0,009, Z = 8,25,
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Рис. 4. Зависимость напряжения от скорости сдвига при η1 = 42,5 Па · с, η2 =
1,8 Па · с, λ1 = 0,35 c:
1 — экспериментальные данные [3], 2 — степенная модель (K = 35,9 Па · сn, n =
0,19), 3 — результаты расчета по стационарной модели Джонсона — Сигалмана, 4 —
результаты расчета по нестационарной модели Джонсона — Сигалмана

Рис. 5. Распределение безразмерной скорости vϕ приG1 = 121,43 Па, λ1 = 0,35 с,
R1 = 24 мм, R2 = 25 мм:
точки — данные эксперимента [3], линии — результаты расчета по модели роли-поли
при различных значениях характерной скорости сдвига; 1 — γ̇ = 1 1/c, 2 — γ̇ = 5 1/c,
3 — γ̇ = 12 1/c
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Рис. 6. Распределение безразмерной скорости vϕ при G1 = 108,3 Па, λ1 = 0,82 с,
R1 = 17 мм, R2 = 17,5 мм:
точки — данные эксперимента [5], линии — результаты расчета по нестационарным

моделям Джонсона — Сигалмана (а) и Гизекуса (б); 1 — vϕ(0) = 13,12, 2 — vϕ(0) =
11,48, 3 — vϕ(0) = 9,84, 4 — vϕ(0) = 8,20, 5 — vϕ(0) = 6,56, 6 — vϕ(0) = 4,92, 7 —
vϕ(0) = 3,28

q = 0,04, βR = 0,001. Размерные параметры имели следующие значения: G1 = 121,43 Па,
λ1 = 0,35 с, R1 = 24 мм, R2 = 25 мм. Расчетные профили скорости хорошо согласуются
с экспериментальными данными. Следует отметить, что модель позволяет точно опреде-
лить положение сдвигового расслоения, так как в рассматриваемом диапазоне скоростей
она является гиперболической.

На рис. 6 точками показаны профили скорости, полученные экспериментально в ра-
боте [5]. В данном случае также наблюдается сдвиговое расслоение, при значениях без-
размерной скорости внутреннего цилиндра vϕ ∈ (1, 12) образуются два слоя с различной
скоростью сдвига. На рис. 6 приведены также результаты нестационарных расчетов по
моделям Джонсона — Сигалмана и Гизекуса. В расчете были выбраны следующие без-
размерные параметры: в случае модели Джонсона — Сигалмана Re = 0,001, κ2 = 0,042,
q = 0,0294, в случае модели Гизекуса Re = 0,001, κ2 = 0,009, βG = 0,94, q = 0,0294. Раз-
мерные параметры имели следующие значения: G1 = 108,3 Па, λ1 = 0,82 с, R1 = 17 мм,
R2 = 17,5 мм.

Все рассматриваемые модели описывают сдвиговое расслоение, результаты расчетов
по этим моделям удовлетворительно согласуются с экспериментальными данными.

Заключение. В работе рассмотрен класс одномерных нестационарных сдвиговых те-
чений вязкоупругой жидкости в рамках трех моделей: Джонсона — Сигалмана, Гизекуса
и роли-поли. Предложен способ регуляризации уравнений движения, при использовании
которого в уравнения не добавляется искусственная диффузия, вместо этого используются
модели с двумя временами релаксации. Данный подход позволяет представить известные
реологические модели движения вязкоупругой жидкости в виде нелинейных гиперболиче-
ских систем уравнений.

Для трех указанных выше моделей получены условия гиперболичности, найдены ха-
рактеристики и уравнения в дивергентном виде, что позволяет рассматривать обобщенные
разрывные решения. Предложен численный метод получения нестационарных одномерных
разрывных решений. Численно решена нестационарная задача о течении Куэтта— Тейло-
ра с переменной скоростью движения одной из границ. Исследовано влияние возникающих
нелинейных эффектов на зависимость напряжения от скорости сдвига.

Проведено сравнение результатов расчетов по указанным нелинейным моделям с экс-
периментальными данными.
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