УДК 532.517

Интегральная модель для турбулентно-волновой пленки жидкости^{*}

П.И. Гешев

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск Новосибирский государственный университет

E-mail: geshev@itp.nsc.ru

Построена эволюционная интегральная модель для расчета толщины и расхода жидкости в турбулентно-волновой пленке, движущейся под действием силы тяжести и касательного напряжения трения газового потока. При выводе уравнений модели используются условно осредненные уравнения Навье–Стокса с турбулентной вязкостью, появляющейся при осреднении по высокочастотной (турбулентной) составляющей поля скорости. Описание турбулентной вязкости было предложено автором ранее в виде формулы с кубическим законом затухания в вязком подслое, с линейным поведением вдали от стенки и с учетом демпфирования турбулентности вблизи свободной поверхности пленки. Для линейных волн малой амплитуды выведено дисперсионное уравнение, дающее при малых числах Рейнольдса результаты, согласующиеся с известными расчетами по ламинарной интегральной модели.

Ключевые слова: стекающая пленка жидкости, волны, турбулентность, демпфирование, трение потока газа, дисперсионное уравнение.

Введение

На пленке жидкости, стекающей по наклонной поверхности, с возрастанием расхода появляются большие волны. При дальнейшем увеличении расхода жидкости при числах Re ≈ 200 [1] в экспериментах наблюдаются первые признаки перехода к турбулентному режиму течения [1]. Турбулентность возникает, по-видимому, за передним фронтом волны и затем в ограниченных областях на заднем фронте больших волн становится видимой на свободной поверхности пленки в виде мелкой ряби [1]. Переход к турбулентному режиму течения в пленке напоминает аналогичный переход в пограничном слое, где были обнаружены ограниченные области с турбулентными пульсациями скорости — пятна Эммонса [2, 3]. Эти пятна при движении вниз по потоку увеличивались в размерах и сливались в непрерывную область турбулентности. Можно ожидать, что из-за малых чисел Рейнольдса турбулентность, генерируемая большими волнами, будет ослаблена (демпфирована) по сравнению с классической пристенной турбулентностью

^{*} Исследования выполнены в рамках гос. задания ИТ СО РАН (№ 121031100246-5).

в плоском канале. Фактор демпфирования [4] был явно введен в модель турбулентной вязкости, предложенной автором ранее [5, 6].

1. Условно осредненные уравнения Навье-Стокса

Для построения полуэмпирической модели турбулентно-волнового движения пленки жидкости будем опираться на следующие факторы:

 наличие длинноволнового приближения, позволяющего использовать идеи пограничного слоя Прандтля;

 применение принципа независимого описания больших волн и внутренней мелкомасштабной турбулентности, порождающей турбулентную вязкость;

— использование модифицированной модели пристенной турбулентности, приводящей вдали от стенки к логарифмическому профилю скорости.

Отношение средней толщины пленки жидкости h к длине волны λ будем считать малой величиной: $\varepsilon = h/\lambda << 1$. Оценим частоты больших волн и пристенных турбулентных пульсаций скорости. Частота волн определяется отношением нуссельтовского масштаба скорости жидкости $u_N = gh^2/(3v)$ к длине волны λ :

$$f_{\rm w} = \frac{gh^2}{3\nu\lambda},\tag{1}$$

где ν — кинематическая вязкость жидкости, g — ускорение свободного падения в гравитационном поле.

Частота турбулентных пульсаций вблизи стенки определяется касательным напряжением трения на стенке (τ_w) :

$$f_{\rm t} = \frac{v_*^2}{v},\tag{2}$$

где $v_* = \sqrt{\tau_w / \rho}$ — динамическая скорость, ρ — плотность жидкости. Напряжение трения на стенке складывается из удельного веса пленки ρgh и приложенного к поверхности пленки напряжения трения газового потока τ_g :

$$\tau_{\rm w} = \rho g h + \tau_{\rm g}.\tag{3}$$

Отношение двух частот (1) и (2) запишется в виде

$$\frac{f_{\rm w}}{f_{\rm t}} = \left(\frac{gh^2}{3\nu\lambda}\right) \left/ \left(\frac{v_*^2}{\nu}\right) = \frac{h}{3\lambda} \left(1 + \frac{\tau_{\rm g}}{\rho gh}\right)^{-1} << 1.$$
(4)

Согласно выражению (4), при $h \approx 0.5 - 1$ мм и $\lambda \approx 30$ мм получим, что частоты турбулентных пульсаций на два порядка больше, чем частоты больших волн, и наложение внешнего трения газового потока τ_g только усиливает это неравенство частот.

Выполним усреднение основных уравнений по мелкомасштабной, высокочастотной турбулентности. Скорость и давление представим в виде

$$u_i + u_i', \quad p + p', \tag{5}$$

где u_i, p — крупномасштабные волновые движения, u'_i, p' — мелкомасштабные турбулентные пульсации. Средние величины от пульсаций имеют нулевые значения:

$$\left\langle u_{i}^{\prime}\right\rangle =\left\langle p^{\prime}\right\rangle =0$$

Здесь и далее угловыми скобками обозначается усреднение по высокочастотным компонентам турбулентных пульсаций при условии, что крупномасштабные волновые движения не усредняются и продолжают свою эволюцию независимо от мелкомасштабных турбулентных пульсаций. Подобная процедура усреднения уравнений Навье–Стокса и вывода уравнений движения крупных масштабов встречается в методе больших вихрей LES (Large Eddy Simulation). Усредненные уравнения содержат дополнительные неизвестные величины — напряжения Рейнольдса, которые можно выразить через скалярную турбулентную вязкость:

$$\langle v'u_i' \rangle = -v_{\rm T} \frac{\partial u_i}{\partial y}$$

Тогда условно осредненные уравнения Навье–Стокса для случая течения жидкой пленки по наклонной плоскости принимают вид:

$$\frac{\partial u}{\partial t} + u_j \nabla_j u + \frac{\partial}{\partial x} \frac{p}{\rho} = g_x + \nabla_j \left(v + v_{\rm T} \right) \nabla_j u, \tag{6}$$

$$\frac{\partial v}{\partial t} + u_j \nabla_j v + \frac{\partial}{\partial y} \frac{p}{\rho} = g_y + \nabla_j \left(v + v_T \right) \nabla_j v, \tag{7}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
(8)

Здесь использованы продольная (*u*) и перпендикулярная стенке (*v*) компоненты скорости и ускорения $g_x = g \sin \theta$, $g_y = -g \cos \theta$, где θ — угол наклона плоскости к горизонту.

2. Уравнения движения в приближении длинных волн

Так как $h \ll \lambda$, будем считать, что производные по *y* значительно больше производных по *x*, и отбросим старшие производные по *x* в правых частях уравнений (6) и (7). Это приближение длинных волн аналогично приближению тонкого пограничного слоя в теории Прандтля [3]. Тогда, проинтегрировав уравнение неразрывности (8) и введя характерные масштабы, получим оценку порядка величины поперечной скорости:

$$v = -\frac{\partial}{\partial x} \int_{0}^{y} u dy \approx \frac{u_{\rm N} h}{\lambda} << u_{\rm N},\tag{9}$$

где $u_{\rm N}$ — характерный нуссельтовский масштаб скорости.

Уравнение (7) для поперечной скорости используем (как и в теории Прандтля) для определения давления. Перепишем его в виде

$$\frac{\partial}{\partial y}\frac{p}{\rho} = g_y - \dot{v} + \frac{\partial}{\partial y}(v + v_{\rm T})\frac{\partial}{\partial y}v,$$

где \dot{v} означает полную (субстанциональную) производную. Интегрируя это уравнение по *y* от *h* до *y*, получим распределение давления по толщине пленки:

$$\frac{p}{\rho} \approx \frac{p_h}{\rho} + g_y \left(y - h \right) - \int_h^y \dot{v} \, dy + \left(v + v_T \right) \frac{\partial v}{\partial y} \Big|_h^y, \tag{10}$$

где p_h — давление под свободной поверхностью.

Давление в жидкости под слабо искривленной свободной поверхностью определяется суммой локального давления газового потока и лапласовского давления:

$$p_h = p_g - \sigma \frac{\partial^2 h}{\partial x^2}.$$
 (11)

Согласно уравнению неразрывности (8), заменим в выражении (10) $\frac{\partial v}{\partial y}$ величиной $-\frac{\partial u}{\partial x}$.

Отметим, что при подстановке давления (10) в уравнение (6) этот член можно отбросить, так как он принимает вид

$$-\frac{\partial}{\partial x}(\nu+\nu_{\rm T})\frac{\partial u}{\partial x},$$

а вторыми производными по x мы пренебрегаем. В результате подстановки давления (10) в уравнение (6) получаем:

$$\dot{u} + \frac{\partial}{\partial x} \left[\left(g_y - \overline{\dot{v}} \right) \left(y - h \right) - \frac{\sigma}{\rho} \frac{\partial^2 h}{\partial x^2} + \frac{p_g}{\rho} \right] = g_x + \frac{\partial}{\partial y} \left(v + v_T \right) \frac{\partial u}{\partial y}, \tag{12}$$

где средняя величина $\overline{\dot{v}} = (h - y)^{-1} \int_{v}^{h} \dot{v} \, dy$.

Величина членов с ускорениями \dot{u} и \dot{v} (производные по времени оцениваем частотой u_N / λ) оценивается следующим образом:

$$\dot{u} \sim \frac{u_{\rm N}}{\lambda} u_{\rm N} >> \frac{\partial}{\partial x} \left(\overline{\dot{v}} \left(y - h \right) \right) \sim \frac{h}{\lambda} \frac{u_{\rm N}}{\lambda} v,$$

однако, согласно уравнению неразрывности, $v \sim -\int \frac{\partial u}{\partial x} dy \sim \frac{h}{\lambda} u_N$, поэтому получаем

$$\dot{u} \sim \frac{u_{\rm N}^2}{\lambda} >> \left(\frac{h}{\lambda}\right)^2 \frac{u_{\rm N}^2}{\lambda} \sim \frac{\partial}{\partial x} (\overline{\dot{v}} (y-h)),$$

что позволяет пренебречь членом с ускорением $\overline{\dot{v}}$ в уравнении (12).

Таким образом, для продольной и поперечной скоростей имеем модифицированную систему уравнений, аналогичную системе Прандтля теории пограничного слоя:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial}{\partial x} \left[\frac{p_g}{\rho} - \frac{\sigma}{\rho} \frac{\partial^2 h}{\partial x^2} \right] = g_x + g_y \frac{\partial h}{\partial x} + \frac{\partial}{\partial y} \left[\left(v + v_T \right) \frac{\partial u}{\partial y} \right], \quad (13)$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
(14)

Отметим, что по сравнению с классической системой уравнений Прандтля здесь появилась турбулентная вязкость $v_{\rm T}$ и два члена с производными от толщины пленки, отвечающие за капиллярное и гидростатическое давления. Давление $p_{\rm g}$ газового потока, обтекающего волны, может зависеть от локальной толщины пленки (по некоторым моделям и от производной $\partial h / \partial x$).

3. Интегральная модель для турбулентно-волновой пленки

Интегрируя уравнение неразрывности по толщине *h* и используя кинематическое условие на поверхности пленки

$$v_h = \frac{\partial h}{\partial t} + u_h \frac{\partial h}{\partial x},\tag{15}$$

получим уравнение

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0, \qquad (16)$$

связывающее толщину пленки и расход жидкости, текущей в пленке:

$$q = \int_0^h u dy \; .$$

Аналогично, интегрируя уравнение (13) по толщине h и используя условие (15), получим уравнение для расхода жидкости в пленке q:

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\chi \frac{q^2}{h} \right) = \frac{\tau_{\rm g} - \tau_{\rm w}}{\rho} + h \left(g_x + g_y h' + \frac{\sigma}{\rho} h''' - \frac{p_{\rm g}'}{\rho} \right), \tag{17}$$

где введен фактор χ , определяющий интеграл от квадрата скорости через среднюю по толщине пленки скорость в квадрате: $\chi = \overline{u^2}/\overline{u}^2$. Величины τ_g и τ_w в уравнении (17) это касательные напряжения трения на свободной поверхности пленки (из-за потока газа) и на твердой стенке соответственно. Если напряжение трения τ_g должно быть задано или рассчитано по модели турбулентного потока газа, то напряжение трения на стенке τ_w еще следует связать с расходом и с толщиной пленки. Таким образом, уравнение (17) является незамкнутым и необходимо как-то определить величины χ и τ_w . Для этого надо построить выражение для среднего профиля скорости $\langle \langle u \rangle \rangle$. Дополнительное усреднение уравнения (13) по однородным переменным t и x, обозначаемое двойными скобками $\langle \langle \cdot \rangle \rangle$, приводит к удалению производных по t и x и дает уравнение

$$\frac{\partial}{\partial y} \langle \langle uv \rangle \rangle = g_x + \frac{\partial}{\partial y} \left[\left(v + v_T \right) \frac{\partial}{\partial y} \langle \langle u \rangle \rangle \right], \tag{18}$$

где $\langle \langle uv \rangle \rangle$ — это дополнительные (волновые) вклады в рейнольдсовы напряжения, которыми мы в дальнейшем будем пренебрегать. Интегрируя уравнение (18) по координате *у*, получаем профиль средней скорости:

$$\langle\langle u \rangle\rangle = \frac{\tau_{\rm g}h}{\rho v} s\left(\frac{y}{h}\right) + \frac{g_x h^2}{v} f\left(\frac{y}{h}\right),\tag{19}$$

выраженный через две структурные функции, определяемые профилем безразмерной турбулентной вязкости $\phi = v_T / v$:

$$s(\eta) = \int_{0}^{\eta} \frac{d\eta}{1+\varphi},$$
(20)

$$f(\eta) = \int_{0}^{\eta} \frac{(1-\eta)d\eta}{1+\varphi} \,.$$
(21)

Проинтегрировав уравнение (19) по толщине пленки, получим осредненный по времени расход жидкости в пленке:

$$\langle\langle q \rangle\rangle = \frac{\tau_{\rm g} h^2}{\rho_V} \overline{s} + \frac{g_x h^3}{v} \overline{f} , \qquad (22)$$

где обозначенные чертой сверху осредненные по толщине пленки функции \overline{s} и \overline{f} зависят от безразмерной толщины δ_+ , описываемой подробно далее. Если теперь представить трение на стенке в виде

$$\frac{\tau_{\rm w}}{\rho} = \nu \left(\frac{\partial u}{\partial y}\right)_{y=0} = \nu \frac{q}{\overline{f} h^2} + \left(1 - \frac{\overline{s}}{\overline{f}}\right) \frac{\tau_{\rm g}}{\rho}, \qquad (23)$$

то при подстановке его в уравнение (17) получим эволюционное уравнение для удельного расхода жидкости:

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\chi \frac{q^2}{h} \right) = -C_{\text{frict}} \frac{\nu q}{h^2} + \frac{\overline{s}}{\overline{f}} \frac{\tau_g}{\rho} + h \left(g_x + g_y h' + \frac{\sigma}{\rho} h''' - \frac{p'_g}{\rho} \right), \tag{24}$$

где $C_{\text{frict}} = 1/\overline{f}$ — безразмерный коэффициент трения, а фактор χ следует определить через задаваемые параметры. Когда в уравнении (24) исчезают все производные, получаем выражение (22) для расхода жидкости в пленке постоянной толщины. Отметим, что замыкающее соотношение (23) построено как обобщение формулы для трения на стенке в ламинарном случае, представленной в работах [7, 8].

Запишем подробнее выражение для фактора χ :

$$\chi = \frac{\overline{u^2}}{\overline{u}^2} = \frac{T^2 \overline{s^2} + 2T \overline{sf} + \overline{f^2}}{\left(T \overline{s} + \overline{f}\right)^2},$$
(25)

где $T = \tau_{\rm g} / (\rho g_x h)$ — отношение сил трения газового потока и веса пленки, также здесь введены величины, осредненные по толщине пленки:

$$\overline{s} = \int_{0}^{1} \left[\int_{0}^{z} \frac{d\eta}{1 + \varphi(\delta_{+}\eta)} \right] dz = \int_{0}^{1} \frac{(1 - \eta)d\eta}{1 + \varphi(\delta_{+}\eta)}, \quad \overline{f} = \int_{0}^{1} \left[\int_{0}^{z} \frac{(1 - \eta)d\eta}{1 + \varphi(\delta_{+}\eta)} \right] dz = \int_{0}^{1} \frac{(1 - \eta)^{2}d\eta}{1 + \varphi(\delta_{+}\eta)}, \quad (26)$$
$$\overline{s^{2}} = \int_{0}^{1} \left[\int_{0}^{z} \frac{d\eta}{1 + \varphi(\delta_{+}\eta)} \right]^{2} dz,$$
$$\overline{sf} = \int_{0}^{1} \left[\int_{0}^{z} \frac{d\eta}{1 + \varphi(\delta_{+}\eta)} \right] \left[\int_{0}^{z} \frac{(1 - \eta)d\eta}{1 + \varphi(\delta_{+}\eta)} \right] dz, \quad \overline{f^{2}} = \int_{0}^{1} \left[\int_{0}^{z} \frac{(1 - \eta)d\eta}{1 + \varphi(\delta_{+}\eta)} \right]^{2} dz. \quad (27)$$

4. Модель турбулентной вязкости

В рассматриваемой модели используются две безразмерные толщины пленки: δ_+ и δ_- . Толщина $\delta_+ = hv_*/v$ — это безразмерная толщина пленки, используемая в модели турбулентного обмена. Так как реальная толщина пленки *h* входит также и в динамическую скорость v_* , связь между δ_+ и *h* получается нелинейная:

$$\delta_{+} = \frac{hv_{*}}{v} = \frac{h}{v} \sqrt{\frac{\tau_{g}}{\rho} + gh}.$$
(28)

Введем также другую безразмерную толщину пленки:

$$\delta_{-} = \frac{h}{l_{\nu}},\tag{29}$$

здесь величина $l_{\nu} = (\nu^2/g)^{1/3}$ — это вязко-гравитационный масштаб, характерный для ламинарной пленки. Например, число Рейнольдса ламинарной пленки $\text{Re}_{N} = h^3/(3l_{\nu}^3)$. Из выражений (28, 29) получим связь между безразмерными толщинами пленки:

$$\delta_+^2 = \delta_-^2 \left(F + \delta_- \right), \tag{30}$$

где $F = \tau_{\rm g} / (\rho g l_{\nu})$ — фактор трения. Вспомогательная толщина пленки δ_+ входит в модель турбулентного переноса и определяет все величины (26), (27). Безразмерная толщина пленки δ_- может быть рассчитана из соотношения (30) по формуле Кардано, но это решение кубического уравнения (30) также можно с точностью порядка 1 % представить более простой приближенной формулой, предложенной в работе [4]:

$$\delta_{-} = \frac{\delta_{+}}{\left[\left(\delta_{+} + F \delta_{+}^{1/3} \right)^{2} + F^{3} \right]^{1/6}} \,.$$
(31)

Систему уравнений (16), (24)–(27) следует дополнить моделью турбулентной вязкости. Эта модель была сформулирована в работе автора [4], где рассчитывались средняя толщина и коэффициент теплоотдачи для стекающей пленки. Модель основана на явной формуле для безразмерной вязкости:

$$\varphi = v_{\rm t} / v = \frac{y_+^3 d_F}{A / D + B y_+^2}, \tag{32}$$

где

$$D = 1 - \exp\left[-\left(\delta_{+} - \delta_{0}\right)^{2} / \delta_{*}^{2}\right]$$
для $\delta_{+} > \delta_{0}$,
 $D = 0$ для $\delta_{+} < \delta_{0}$,
 $\delta_{0} = 10$, $\delta_{*} = 80$.

 $y_{\perp} = v_* y / v$, A = 1015, B = 2, 5,

Рис. 1. Функции \overline{s} и \overline{f} в зависимости от толщины δ_+ , рассчитанные для двух значений фактора трения. Аппроксимации этих функций формулами (33), (34) с погрешностью 5 % показаны штрихпунктирными линиями.

Рис. 2. Функции $\overline{s^2}$, \overline{sf} и $\overline{f^2}$ в зависимости от толщины δ_+ , рассчитанные для двух значений фактора трения *F*.

Фактор *D* учитывает уменьшение турбулентного переноса [4] при малых толщинах пленки. При $\delta_+ < \delta_0 = 10$ предполагается, что течение в пленке ламинарное и турбулентность

отсутствует ($v_t = 0$). Фактор $d_F = 1 - \frac{y_+}{\delta_+} \Delta$, здесь величина $\Delta = \frac{\delta_-}{F + \delta_-}$ зависит от толщины пленки δ_- и параметра трения потока газа *F*. Этот фактор описывает профиль относительного трения в пленке:

$$\frac{\tau(y)}{\tau_{\rm w}} = 1 - \frac{y_+}{\delta_+} \Delta.$$

При F = 0 функция d_F совпадает с линейным законом затухания для турбулентной вязкости вблизи поверхности пленки, использованным в работе [9]. Для случая ненулевого трения газового потока фактор d_F использовался в работе [10] в рамках модели пути перемешивания.

Пять функций из уравнений (24), (25) для двух факторов трения представлены на рис. 1, 2 в зависимости от безразмерной толщины δ_+ . На рис. 3 для четырех значений параметра *F* показано поведение величины χ в зависимости от толщины δ_+ . Штрихпунктирные кривые на рис. 1, 3 — это результаты расчетов по аппроксимациям (33)–(35) (с погрешностью меньше 5 %):

$$\overline{s} = \left[2^{8} + \left(\frac{\delta_{+}}{13 + 2\Delta - E} \right)^{7,2} \right]^{-1/8}, \quad (33)$$

$$\overline{f} = \left[3^8 + \left(\frac{\delta_+}{10 + \Delta}\right)^7\right]^{-1/8}, \quad (34)$$

Рис. 3. Формфактор χ в зависимости от толщины δ_+ , рассчитанный для четырех значений фактора трения *F*.

Рис. 4. Безразмерная толщина пленки δ_{-} в зависимости от числа Рейнольдса для факторов трения: Данные работы [11] при F = 0 (1), 10 (2), 30 (3), 50 (4), 80 (5) и работы [12] при F = 0 (6). Символы и точки — данные экспериментальных работ [11, 12], линии — результаты расчетов по уравнению (36).

Рис. 5. Коэффициент в законе вязкого трения из уравнения (24). Сплошная линия — расчет по (26), штриховая линия — расчет по приближенной формуле (37).

$$\chi = \frac{1, 2\Delta + 1, 333(1 - \Delta) + D\sqrt{\delta_{+}/7}}{1 + D\sqrt{\delta_{+}/7}},$$
(35)

где

$$E = \exp\left[-\left(\frac{\delta_{+} - 150}{\delta_{*}}\right)^{2}\right], \quad D = 1 - \exp\left[-\left(\frac{\delta_{+} - \delta_{0}}{\delta_{*}}\right)^{2}\right].$$

Система уравнений (16), (24) описывает турбулентно-волновое движение пленки жидкости при произвольных числах Рейнольдса. Число Рейнольдса определяется осредненным расходом жидкости по формуле (22), откуда получаем связь числа Re с толщинами пленки δ_+ и δ_- :

$$\operatorname{Re} = F \delta_{-}^{2} \overline{s}(\delta_{+}) + \delta_{-}^{3} \overline{f}(\delta_{+}), \qquad (36)$$

где $\delta_+ = \delta_- \sqrt{F} + \delta_-$. На рис. 4 линиями показана безразмерная толщина пленки δ_- , рассчитанная по уравнению (36), в зависимости от числа Рейнольдса для пяти различных значений фактора трения. Символы и точки — данные экспериментальных работ [11, 12].

В уравнении (24) в члене с вязким трением присутствует коэффициент трения C_{frict}, для которого была построена приближенная формула, дающая степенной закон при больших числах Рейнольдса:

$$C_{\text{frict}} = \frac{1}{\overline{f}} = \left[3^8 + \left(\frac{\text{Re}}{110}\right)^{6,1} \right]^{1/8} \Rightarrow \left(\frac{\text{Re}}{110}\right)^{0,763}.$$
 (37)

На рис. 5 эта зависимость представлена штриховой линией, сплошной линией показаны расчеты по формуле (26). Видно, что в ламинарном режиме течения при малых числах Рейнольдса (Re < 400) коэффициент, определяющий трение, равен 3. При переходе к турбулентным течениям этот коэффициент сильно возрастает согласно степенному закону (37).

5. Дисперсионное уравнение для волн малой амплитуды

Рассмотрим характеристики волн малой амплитуды для случая течения пленки только под действием силы тяжести с трением на свободной поверхности, равным нулю $(\tau_g = 0)$. Система уравнений (16), (24) сначала обезразмеривалась с помощью капиллярной постоянной $\Lambda = \sqrt{\sigma / \rho g}$ ($H = h / \Lambda$, $X = x / \Lambda$), и далее из нее было выведено дисперсионное уравнение для комплексной фазовой скорости линейной волны. Для этого в уравнениях (16) и (24) положили $q = Q + \tilde{q}$, $h = H + \tilde{h}$, а малые возмущения определили в виде бегущей волны, то есть $\tilde{q} = A \exp(ik(X - Ct))$ и $\tilde{h} = B \exp(ik(X - Ct))$. Линеаризованная система уравнений для малых амплитуд A и B, полученная из уравнений (16) и (24), является однородной и, следовательно, ее детерминант должен быть равен нулю. Выполнив это условие, получим дисперсионное уравнение для фазовой скорости волны C:

$$C^{2} - 2\left(\chi \frac{\psi}{H} - \frac{i}{2\alpha H^{2}\overline{f}\operatorname{Ka}^{1/4}}\right)C + \chi \frac{\psi^{2}}{H^{2}} - 3\mathrm{i}\frac{\sin\theta}{\alpha} - H\cos\theta - \alpha^{2}H = 0, \quad (38)$$

где $\psi = H^3 \overline{f} \operatorname{Ka}^{1/4} \sin \theta$, α — волновое число, $\operatorname{Ka} = (\sigma / \rho)^3 / (gv^4)$ — критерий Капицы.

На рис. 6–8 в тех же переменных, что и в работе [7], приведены реальная часть фазовой скорости C_r (*a*) и инкремент нарастания αC_i (*b*), определяемый мнимой частью

Рис. 6. Реальная часть фазовой скорости (*a*) и инкремент нарастания возмущений (*b*) для угла наклона стенки 5°.

Рис. 7. Реальная часть фазовой скорости (*a*) и инкремент нарастания возмущений (*b*) для вертикальной стенки.

Рис. 8. Реальная часть фазовой скорости (*a*) и инкремент нарастания возмущений (*b*) для угла наклона стенки Θ = 180–5°. Пленка течет под плоской поверхностью.

фазовой скорости C_i . Сравнение с соответствующими величинами из работы [7] показывает хорошее совпадение результатов настоящих расчетов с данными [7] для ламинарных чисел Рейнольдса Re < 100. Для чисел Рейнольдса больше 100 представленная модель начинает учитывать турбулентный обмен и результаты отклоняются от данных [7], рассчитанных для ламинарного течения.

Заключение

На основе предложенной ранее модели турбулентного обмена выведено новое эволюционное уравнение для расхода жидкости в пленке, применимое для расчетов турбулентно-волновых режимов течения при произвольно больших числах Рейнольдса. Уравнения представленной модели обобщают прежние интегральные модели [12, 13] на случай турбулентного течения пленки. Данная модель описывается уравнениями (16), (24), (26), (27). Показано, что в ламинарном случае при Re < 100 результаты расчетов фазовой скорости C_r и инкремента нарастания αC_i совпадают с результатами модели [12], но при больших числах Re они заметно различаются. Предложены аппроксимации различных величин (как функций толщины пленки), возникающих в уравнениях новой интегральной модели.

Список литературы

- 1. Бобылев А.В., Харламов С.М., Гузанов В.В., Квон А.З., Маркович Д.М. Волновая структура пленок жидкости при переходе к турбулентному режиму течения // Письма в ЖТФ. 2019. Т. 45, вып. 15. С. 10–13.
- Emmons H.W. The laminar-turbulent transition in a boundary layer. Part 1 // J. Aeronautical Sci. 1951. Vol. 18, No. 7. P. 490–498.
- 3. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 711 с.
- **4.** Гешев П.И. Влияние перемежаемости на толщину и теплообмен турбулентной стекающей пленки жидкости // Теплофизика и аэромеханика. 2021. Т. 28, № 2. С. 225–238.
- 5. Гешев П.И. Простая модель для расчета толщины турбулентной пленки жидкости, увлекаемой силой тяжести и потоком газа // Теплофизика и аэромеханика. 2014. Т. 21, № 5. С. 579–586.
- Geshev P.I. A linear model of close-to-wall turbulent transfer // Russian J. Engng Thermophysics. 1993. Vol. 3, No. 1. P. 49–89.
- Alekseenko S.V., Nakoryakov V.Y. Instability of a liquid film moving under the effect of gravity and gas flow // Int. J. Heat Mass Transfer. 1995. Vol. 38. P. 2127–2134.
- Jurman L.A., McCready M.J. Study of waves on thin liquid films sheared by turbulent gas flows // Phys. Fluids. A. 1989. Vol. 1, No. 3. P. 522–536.

- Mudawwar I.A., El-Masri M.A. Momentum and heat transfer across freely-falling turbulent liquid films // Inter. J. Multiphase Flow. 1986. Vol. 12, No. 5. P. 771–790.
- 10. Yih S.-M., Liu J.-L. Predictions of heat transfer in turbulent falling liquid films with or without interfacial shear // AIChE J. 1983. Vol. 29, No. 6. P. 903–909.
- 11. Ueda T., Tanaka T. Studies of liquid film in two-phase annular and annular-mist flow regions. Pt. 1. Down-flow in a vertical tube // Bulletin JSME. 1974. Vol. 17, No. 107. P. 603–613.
- **12.** Алексеенко С.В., Накоряков В.Е., Покусаев Б.Г. Волновое течение пленок жидкости. Новосибирск: Наука, 1992. 256 с.
- 13. Шкадов В.Я. Волновые режимы течения тонкого слоя вязкой жидкости под действием силы тяжести // Изв. АН СССР. МЖГ. 1967. № 1. С. 43–51.

Статья поступила в редакцию 2 октября 2022 г., после доработки — 7 декабря 2022 г., принята к публикации 8 декабря 2022 г.