УДК 544.454.3:534.222.2:662.215.2:662.216.3:662.237.3

СВЯЗЬ ЭЛЕКТРОПРОВОДНОСТИ ПРИ ДЕТОНАЦИИ КОНДЕНСИРОВАННЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ С СОДЕРЖАНИЕМ В НИХ УГЛЕРОДА

Н. П. Сатонкина

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, snp@hydro.nsc.ru Новосибирский государственный университет, 630090 Новосибирск

Проведен сравнительный анализ результатов более пятидесяти экспериментов по измерению электропроводности продуктов детонации гексогена, октогена, тэна, тротила и взрывчатого вещества на основе ТАТБ. Выявлена корреляция электропроводности с массовой долей углерода как в химпике, так и в точке Чепмена — Жуге.

Ключевые слова: детонация, конденсированные взрывчатые вещества, зона химической реакции, химпик, электропроводность, проводимость, углеродные наноструктуры, сетки проводимости.

DOI 10.15372/FGV20160413

ВВЕДЕНИЕ

Несмотря на более чем полувековую историю исследования, природа высокой электропроводности при детонации конденсированных взрывчатых веществ (ВВ) недостаточно ясна, общепризнанной гипотезы, имеющей предсказательную силу, пока нет.

Предположение о корреляции между максимальной электропроводностью при детонации и содержанием свободного углерода в продуктах детонации ВВ было высказано в [1, 2] и предложен контактный механизм проводимости по углеродным сеткам. Содержание свободного углерода в точке Чепмена — Жуге (ЧЖ) получено численно из уравнения ВКW, а электропроводность взята максимальной, хотя вопрос корреляции электропроводности и детонационной волны до сих пор открыт.

Проведенный в данной работе анализ экспериментальных данных показал, что максимальная электропроводность зависит от массовой доли всего углерода, а свободный (конденсированный) углерод связан с электропроводностью в точке ЧЖ.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Детонационная волна представляет собой комплекс из ударного фронта, примыкающей

© Сатонкина Н. П., 2016.

к нему области химпика (пика Неймана), где протекают химические реакции, и волны разгрузки Тейлора, отделенной от химпика точкой ЧЖ, в которой массовая скорость продуктов равна местной скорости звука. Согласно теории Зельдовича — Неймана — Дёринга в точке ЧЖ химические реакции завершены.

Типичный профиль электропроводности при детонации конденсированных ВВ показан на рис. 1: за несколько десятков наносекунд электропроводность растет до максимального значения $\sigma_{\rm max}$, далее до точки ЧЖ идет быстрый спад ($\sigma_{\rm CJ}$), а затем — область плавного изменения электропроводности в волне Тейло-

Рис. 1. Профиль электропроводности продуктов детонации октогена плотностью $\rho\,{=}\,1.8~{\rm r/cm}^3$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-03-01039).

ра. Сопоставление литературных данных показало, что при наличии резко выделяющегося на распределении электропроводности пика его длительность близка к длительности зоны химической реакции [3]. На рис. 1 окончание зоны химической реакции определяется, как и на профилях давления, точкой перегиба (точка σ_{CJ}).

В настоящее время не разработано теоретического обоснования связи профилей электропроводности и давления, поэтому обсудим более подробно их корреляцию в рамках выдвигаемой гипотезы. Для рассматриваемых ВВ максимальное значение электропроводности в области химпика σ_{\max} всегда больше электропроводности в точке ЧЖ $\sigma_{\rm CJ}$ [3], поэтому сделано предположение, что σ_{\max} зависит от всего наличествующего в химпике углерода, образовавшего к тому моменту углеродные сетки, а значение $\sigma_{\rm CJ}$ уместно связать со свободным углеродом, оставшимся после химических реакций. Таким образом, до точки $\sigma_{\rm max}$ идет формирование проводящих углеродных структур, основные же реакции окисления углерода происходят в промежутке между $\sigma_{\rm max}$ и $\sigma_{\rm CJ}$. В точке ЧЖ реакции заканчиваются, наблюдаются истончение углеродных сеток и частично их разрыв, электропроводность $\sigma_{\rm CJ} < \sigma_{\rm max}$ обеспечивается оставшимися структурами. Дальнейшее понижение электропроводности связано с разрушением части токопроводящих ветвей в плотной среде продуктов детонации и возможным переходом части углерода в непроводящую фазу (алмаз) в волне разгрузки [4].

В табл. 1 приведены экспериментальные данные [3, 5–8] для ряда вторичных BB: гексогена, октогена, тэна, тротила, BB на основе ТАТБ. Значения получены в экспериментах, в которых реализована установившаяся детонация, при насыпной и максимальной плотностях заряда, значения $\sigma_{\rm Max}$ и $\sigma_{\rm CJ}$ осреднены по результатам $2 \div 5$ экспериментов. Массовая доля конденсированного углерода $r_{\rm CJ}$ в точке ЧЖ рассчитана путем интерполяции данных [9] на начальную плотность.

Из табл. 1 видно, что с увеличением начальной плотности каждого BB и, следовательно, плотности углерода растут значения $\sigma_{\rm max}$ и $\sigma_{\rm CJ}$. С повышением доли конденсированного углерода $r_{\rm CJ}$ электропроводность в точке ЧЖ $\sigma_{\rm CJ}$ увеличивается.

Чем сильнее отличается начальная плотность от максимальной, тем более суще-

			Т	аблица 1			
$ ho,$ г/см 3	$\sigma_{\max}, \\ \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	$r_{ m CJ}$	$\sigma_{\rm CJ}, \ { m Om}^{-1} \cdot { m cm}^{-1}$	Источник			
Γ ексоген, $C_3H_6N_6O_6$							
1.15	1.8	0.040	0.4	[7]			
1.72	5.0	0.078	1.65	[3]			
O ктоген, $C_4H_8N_8O_8$							
1.30	2.8	0.058	0.7	[7]			
1.79	6.7	0.079	2.0	[3]			
Тэн, С5Н8N4O12							
1.05	0.6	0.0	0.2	[7]			
1.73	9.4	0.033	1.6	[3]			
TATE, $C_6H_6N_6O_6$							
1.78	19.1	0.208	10.0	[8]			
Тротил, С7Н5N3O6							
1.04	15.0	0.217	8.9	[10]			
1.57	95.2	0.267	26.8	[6]			

Т	а	б	л	и	π	a	2
-	œ	o	U I	*1	щ	c.	-

BB	$ ho_c, \Gamma/{ m cm}^3$	r_c	$\sigma_c, \operatorname{Om}^{-1} \cdot \operatorname{cm}^{-1}$
Гексоген	1.82	0.162	6.50
Октоген	1.96	0.162	8.33
Тэн	1.77	0.190	10.37
TATB	1.93	0.279	29.85
Тротил	1.66	0.370	108.66

ственными становятся сопутствующие явления, усложняющие интерпретацию экспериментальных данных. Для получения максимальной электропроводности (σ_c) при детонации образцов кристаллической плотности (ρ_c) проведена экстраполяция значений σ_{\max} из работ [2, 3, 5–8, 10] на максимальную плотность. Результаты представлены в табл. 2. С ростом массовой доли углерода в молекуле r_c максимальная электропроводность σ_c увеличивается.

По данным табл. 1 и 2 можно сделать вывод о наличии корреляции между массовой долей углерода и электропроводностью как в области химпика, так и в точке ЧЖ.

Анализ смесевых ВВ при наличии корреляции между долей углерода и электропроводностью существенно сложнее: без перемешивания на молекулярном уровне играет роль дисперсность смешиваемых BB. В работе [11] подробно рассмотрено влияние дисперсности смеси тротил — гексоген. Авторы [11] исследовали также смесь тротил — аммиачная селитра, однако результаты не были опубликованы. Приведем здесь один из этих неопубликованных результатов. ВВ тротил — аммиачная селитра при определенном соотношении компонентов имеет нулевой кислородный баланс, и при насыпной плотности заряда получено рекордно низкое значение электропроводности около 0.01 Ом⁻¹ · см⁻¹, что подтверждает вывод о ключевой роли углерода.

ОБСУЖДЕНИЕ

Единственная работа, в которой электропроводность рассматривается как индикатор процесса роста наночастиц углерода [12], выполнена при использовании пластифицированного ТАТБ, рост электропроводности связывали с термической ионизацией, которая возрастает при увеличении температуры вследствие объединения отдельных углеродных частиц. В работе не рассматривалось наличие углеродных сквозных структур.

Обсуждение связи максимальной электропроводности и содержания всего углерода проведено в работах [13, 14] на примере тротила. Оценки электропроводности гетерогенной среды по перколяционной модели показали, что содержания углерода недостаточно для объяснения полученного в этих работах максимального значения электропроводности $\sigma_{\text{max}} = 250 \text{ Om}^{-1} \cdot \text{сm}^{-1}$. Выдвинуто предположение о существовании сеток с почти металлической проводимостью. На роль проводника претендует углерод, массовая доля которого в тротиле составляет 0.37, но необходимо также наличие пространственных углеродных структур уже в зоне реакции.

На рис. 2, взятом из работы [14], обобщены данные [2, 3, 13–15] по корреляции электропроводности и плотности углерода; максимальная электропроводность продуктов детонации (σ_1) в области химпика и электропроводность вне зоны химической реакции (σ_2) указаны при одинаковой, рассчитанной по уравнению ВКW плотности конденсированного в точке ЧЖ углерода [9]. Можно выделить две примерно параллельные линии, каждая из которых демонстрирует влияние начальной плотности BB. Отдельно для каждого BB прослеживается

Рис. 2. Электропроводность в зоне химической реакции (темные точки и линия σ_1) и вне ее (светлые точки и линия σ_2) в зависимости от содержания твердого углерода в продуктах детонации, вычисленного по модели ВКW (рисунок заимствован из [14])

тенденция к увеличению электропроводности с ростом плотности. Но выделить универсальную закономерность для всех приведенных ВВ в области химической реакции и в волне Тейлора по рис. 2 затруднительно. Между тем расчет плотности углерода в детонационной волне сопряжен с трудностями, связанными с разной степенью сжатия, которая зависит и от расстояния до фронта, и от начальной плотности, и от вида BB.

На рис. 3 приведена зависимость электропроводности в точке ЧЖ (см. табл. 1) от массовой доли конденсированного углерода $\sigma_{\rm CI}(r_{\rm CI})$, а также зависимость максимальной электропроводности при кристаллической плотности (см. табл. 2) от массовой доли углерода в молекуле $\sigma_c(r_c)$. Значения как σ_c , так и $\sigma_{\rm CJ}$ имеют выраженную зависимость от доли углерода. Линии $\sigma_c(r_c)$ и $\sigma_{\rm CJ}(r_{\rm CJ})$ расположены близко друг к другу. Переход к массовой доле углерода, которую легко вычислить, позволил выделить ключевую роль этого фактора. А предположение о зависимости максимального значения σ_c от всего углерода сдвинуло приведенную на рис. 2 линию σ_1 вдоль горизонтальной оси, что сделало зависимость $\sigma(r)$ единой.

При небольшой доле углерода формирование связанных наноструктур становится невозможным из-за отсутствия достаточного количества проводящего вещества. Так, в работе

Рис. 3. Зависимость электропроводности в точке ЧЖ (см. табл. 1) от массовой доли конденсированного углерода и зависимость максимальной электропроводности (см. табл. 2) от массовой доли углерода в молекуле при кристаллической плотности

[10] путем численного эксперимента выяснена предельная объемная доля углерода, равная 0.07, при которой теоретически допускается построение сквозных сеток в продуктах детонации. Исходя из приведенных данных, можно говорить, что и при меньшей, чем 0.07, доле есть влияние углерода, механизм которого может быть связан, например, с высокопроводящими включениями в слабопроводящей среде. При детонации тэна насыпной плотности конденсированного углерода нет. При этом электропроводность не обращается в нуль, что дает возможность определить ее природу в продуктах без углерода.

Задача электропроводности многопараметрическая, существует отмеченная в работе [3] корреляция между электропроводностью σ_{\max} и давлением для октогена, гексогена и тэна, влияют также плотность и температура. В координатах массовая доля углерода — электропроводность их влияние нивелируется.

При рассмотрении влияния всех химических элементов, содержащихся в BB, и всех составляющих продуктов детонации на максимальную электропроводность и электропроводность в точке ЧЖ, однообразная корреляция для пяти BB выявлена только с углеродом.

В литературе имеются косвенные данные, подтверждающие предложенную в настоящей работе модель. Так, в [16] показано, что формирование ультрадисперсного алмаза не связано с промежуточным образованием свободного углерода, предложен механизм формирования наноалмазов, вызванный частичным разрывом связей в молекулах, образованием и ростом углеродного каркаса. В работах [17, 18] на основе анализа данных экспериментов с изотопной меткой, автор пришел к выводу, что окисление углерода идет позднее, чем образование углеродных частиц, происходит быстрое объединение атомов углерода после прихода детонационного фронта.

Еще одним аргументом в пользу предложенной модели могут служить разные детонационные характеристики рассмотренных ВВ, что не мешает зависимости $\sigma(r)$ быть универсальной. Можно предположить, что для всех исследованных ВВ углерод в области химпика и в точке ЧЖ находится в одинаковой проводящей фазе. В работе [4] утверждается, что для тротила, гексогена, сплава тротил — гексоген и ТАТБ при характерном размере ультрадисперсного алмаза параметры в точке ЧЖ сдвигаются в область жидкого наноуглерода, образование алмаза происходит из жидкой фазы в волне разгрузки путем кристаллизации. В работе [19] экспериментально получена электропроводность жидкого углерода при детонационных температурах. Ее значение $\sigma \approx 10^3 \text{ Om}^{-1} \cdot \text{см}^{-1}$ объясняет наблюдаемые в эксперименте высокие значения $\sigma_{\rm max}$ и $\sigma_{\rm CJ}$ при контактной проводимости по углеродным структурам, пронизывающим межэлектродное пространство.

ЗАКЛЮЧЕНИЕ

В работе проведен анализ результатов экспериментов с конденсированными ВВ в широком диапазоне значений массовой доли углерода: от нуля (в точке ЧЖ для тэна насыпной плотности) до 0.37 (доля углерода в молекуле тротила). Обнаружена корреляция между содержанием углерода и электропроводностью как в области химпика, так и в точке ЧЖ. Высокие значения электропроводности обеспечиваются контактным механизмом проводимости, который осуществляется по токопроводящим углеродным сквозным наноструктурам.

ЛИТЕРАТУРА

 Hayes B. Electrical measurements in reaction zones of high explosives // Proc. 10th Symp. (Intern.) on Combustion, Cambridge, England, 1964. — Pittsburgh, PA: Combustion Inst., 1965. — P. 869–874.

- Hayes B. On the electrical conductivity in detonation products // Proc. 4th Symp. (Intern.) on Detonation. — Office of Naval Research, 1967. — ACR-126. — P. 595–601.
- Ершов А. П., Сатонкина Н. П., Иванов Γ. М. Профили электропроводности в плотных взрывчатых веществах // Хим. физика. — 2007. — Т. 26, № 12. — С. 1–13.
- 4. Даниленко В. В. Особенности синтеза детонационных наноалмазов // Физика горения и взрыва. — 2005. — Т. 41, № 5. — С. 104–116.
- 5. Ершов А. П., Сатонкина Н. П., Иванов Γ. М. Распределение электропроводности при детонации прессованного взрывчатого вещества // Письма в ЖТФ. 2004. Т. 30, № 24. С. 63–69.
- 6. Ершов А. П., Сатонкина Н. П. Исследование зоны реакции в неоднородных взрывчатых веществах методом электропроводности // Физика горения и взрыва. 2009. Т. 45, № 2. С. 109–115.
- Ershov A. P., Satonkina N. P. Electrical conductivity distributions in detonating low-density explosives Grain size effect // Combust. Flame. — 2010. — V. 157, N 5. — P. 1022–1026.
- 8. Сатонкина Н. П., Рубцов И. А. Распределение электропроводности при детонации взрывчатого вещества на основе ТАТБ // Журн. техн. физики. — 2016. — Т. 86, № 1. — С. 144– 147.
- Tanaka K. Detonation Properties of Condensed Explosives Computed Using the Kihara — Hikita — Tanaka Equation of State. — Tsukuba, Japan: Natn. Chem. Lab. for Industry, 1983.
- Satonkina N. P., Ershov A. P., Pruuel E. R., Karpov D. I. Electric conductivity of detonating trotyl at different initial conditions // Proc. XXIX Intern. Conf. Physics of Extreme States of Matter. — 2014.
- Ершов А. П., Сатонкина Н. П., Дибиров О. А., Цыкин С. В., Янилкин Ю. В. Исследование взаимодействия компонентов гетерогенных взрывчатых веществ методом электропроводности // Физика горения и взрыва. — 2000. — Т. 36, № 5. — С. 97–108.

- Горшков М. М., Гребенкин К. Ф., Жеребцов А. Л., Заикин В. Т., Слободенюков В. М., Ткачев О. В. Кинетика электропроводности продуктов детонации ТАТБ как индикатор процесса роста наночастиц углерода // Физика горения и взрыва. 2007. Т. 43, № 1. С. 92–98.
- 13. Гилев С. Д. Применение метода электропроводности для изучения физико-химических превращений в детонационных волнах // VI Забабахинские научные чтения: тр. междунар. конф. — Снежинск: РФЯЦ-ВНИИТФ 2001. http://www.vniitf.ru/rig/konfer/6zst/dokl/ sec2/3.pdf.
- 14. Гилев С. Д. Электродинамические процессы при ударном сжатии конденсированных сред: дис.... д-ра физ.-мат. наук / Институт гидродинамики им. М. А. Лаврентьева СО РАН. — Новосибирск, 2009.
- Tasker D. G., Lee R. J. The measurement of electrical conductivity in detonating condensed explosives // Proc. 9th Symp. (Intern.) on Detonation. — Office of Naval Research, 1989. — P. 396–406.
- 16. **Бреусов О. Н.** К вопросу о механизме динамического синтеза алмаза из органических веществ // Хим. физика. — 2002. — Т. 21, № 11. — С. 110–112.
- 17. Анисичкин В. Ф. О механизме выделения углерода при детонационном разложении веществ // Физика горения и взрыва. — 1994. — Т. 30, № 5. — С. 100–106.
- Анисичкин В. Ф. Результаты исследований механизма детонации тротила, гексогена и октогена методом изотопных индикаторов // Физика горения и взрыва. — 2007. — Т. 43, № 5. — С. 96–103.
- Korobenko V. N., Savvatimskiy A. I., Cheret R. Graphite melting and properties of liquid carbon // Intern. J. Thermophys. — 1999. — V. 20, N 4. — P. 1247–1256.

Поступила в редакцию 16/VII 2015 г., в окончательном варианте — 7/XII 2015 г.