УДК 665.61:661.715

DOI: 10.15372/KhUR2020229

Изменения структурных параметров смол и асфальтенов при депарафинизации нефти сжиженным газом

М. В. МОЖАЙСКАЯ, Г. С. ПЕВНЕВА, В. Г. СУРКОВ

Институт химии нефти СО РАН, Томск (Россия)

E-mail: Mozhayskaya@ipc.tsc.ru

Аннотация

Изучено изменение структурных параметров молекул смол и асфальтенов осадков, полученных после депарафинизации нефти сжиженным углеводородным газом при температурах 0, -5, -15 и -25 °C. Показано, что с понижением температуры процесса количество выделившегося осадка увеличивается от 10.9 до 13.4 мас. %, а также происходит более глубокая депарафинизация, полная деасфальтенизация и частичное обессмоливание. Установлено, что снижение температуры депарафинизации от 0 до -25 °C приводит к изменению структурно-групповых характеристик молекул асфальтенов и смол: молекулярной массы, количества ароматических и нафтеновых циклов, алкильных заместителей и структурных блоков в молекуле.

Ключевые слова: асфальтены, смолы, депарафинизация сжиженным газом

ВВЕДЕНИЕ

Интенсивность формирования и состав асфальтено-смоло-парафиновых отложений (АСПО) при добыче и транспортировке нефти определяются, в основном, содержанием в ней твердых углеводородов, смол, асфальтенов и их соотношением [1-3]. Воздействие внешних факторов (температуры, давления) приводит к изменению физико-химических свойств нефтяных систем. В результате снижения температуры и давления уменьшается потенциальная растворяющая способность нефтяной системы по отношению к высокомолекулярным соединениям, что и приводит к образованию АСПО [4, 5].

Асфальтены — наиболее высокомолекулярные компоненты нефти. Их молекулы представляют собой сложные полициклические образования, содержащие ароматические, нафтеновые и гетероароматические циклы с алифатическими боковыми заместителями. Такие особенности строения асфальтенов определяют их способность к образованию ассоциатов [5–7]. В нефти асфальтены обычно содержатся в форме колло-

идных частиц, а смолы — в виде соединений, растворенных в углеводородной среде или сорбированных на поверхности асфальтеновых коллоидов [8]. Изменения состава дисперсионной среды, давления и температуры способствуют структурным преобразованиям не только асфальтеновых агрегатов, но и смолистых компонентов [9, 10].

В настоящее время предлагается и используется множество методов, позволяющих предотвращать или удалять отложения с поверхностей нефтяного оборудования, однако все они или экономически затратны, или недостаточно эффективны [1, 2, 11–13]. Одним из экономически наиболее привлекательных способов предотвращения образования АСПО может выступать низкотемпературная очистка (депарафинизация) нефти природным сжиженным газом непосредственно на промысле [2, 11, 13]. Этот способ позволяет существенно снизить содержание твердых парафинов и асфальтенов в сырой нефти, а также улучшить ее физико-химические характеристики.

Решение фундаментальных и прикладных проблем, связанных с АСПО, разработка рациональных технологий борьбы с их образованием требуют значительного увеличения объема и глубины информации о составе компонентов этих отложений (твердых парафинов, смол, асфальтенов). Это придает актуальность работам по комплексному изучению состава и строения высокомолекулярных соединений нефти.

Цель данного исследования — изучение структурных характеристик молекул смол и асфальтенов при депарафинизации нефти сжиженным газом в зависимости от температуры процесса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования выбрана нефть Харьягинского месторождения с высоким содержанием твердых парафинов (10.2 мас. %), смол (5.4 мас. %) и асфальтенов (1.6 мас. %). По физико-химическим характеристикам нефть отличается высокой температурой застывания (16.0 °C), ее плотность составляет 844 кг/м³, вязкость (при 25 °C) — $16.2 \text{ мм}^2/\text{с}$. В качестве депарафинирующего агента использовали сжиженный газ (пропан-бутановую смесь).

Обработку нефти сжиженным газом проводили при соотношении нефть/сжиженный газ, равном 1:3, и различных отрицательных температурах $(0, -5, -15, -25 \, ^{\circ}\text{C})$ с получением осадка (смеси твердых парафинов, смол и асфальтенов) и очищенной нефти — рафината.

Методика депарафинизации нефти сжиженным газом описана в работе [11]. Эксперименты проводились на лабораторной установке, состоящей из баллона со сжиженным газом, стального экстрактора объемом 280 см³, оснащенного датчиками температуры и давления, фильтром для отделения выделившихся осадков, термостатом для охлаждения смеси. В экстрактор помещали около 50 см³ нефти и вводили самотеком из баллона расчетное количество сжиженного газа. Количество введенной смеси контролировали весовым методом. Скорость охлаждения в интервалах температур от +20 до -20 °C составляла $5~^{\circ}\text{C}/\text{мин}$, а от $-20~\text{до}~-25~^{\circ}\text{C}$ — около $4~^{\circ}\text{C}/\text{мин}$. Продолжительность выдержки экстрактора при заданных температурах составляла 10 мин. Температуру процесса контролировали с помощью термометра, помещенного во входной патрубок фильтра.

Состав n-алканов осадков анализировали с использованием высокотемпературного газового хроматографа "Хромос 1000" (Россия) с пламенно-ионизационным детектором и капиллярной колонкой НТ-5 длиной $15\,$ м с внутренним диаметром $0.22\,$ мм. Хроматограммы получали в режиме линейного программирования температуры от $80\,$ до $390\,$ °C со скоростью нагрева $15\,$ °C/мин.

Вещественный состав нефти — содержание асфальтенов, смол и масел — определяли по методике [14]. Нефть разбавляли 40-кратным избытком гексана, выдерживая раствор в течение 1 сут. Выпавший осадок асфальтенов отфильтровывали, отмывали гексаном от масел и смол. Мальтены наносили на слой активированного силикагеля АСК (1:15 по массе) и в экстракторе Сокслета последовательно вымывали нефтяные масла n-гексаном и смолы — смесью этанола и бензола (1:1 по объему).

Вещественный состав осадков, полученных при депарафинизации, определяли по методике, описанной выше. Осадки переводили в жидкое состояние, предварительно нагревая их до $40-50~^{\circ}\mathrm{C}$, затем добавляли 40-кратный избыток n-гексана для выделения асфальтенов. Мальтены разделяли на масла и смолы.

Структурно-групповой анализ (СГА) высокомолекулярных соединений основан на данных спектроскопии ЯМР ¹Н, элементного состава и молекулярной массы [15]. Спектры ЯМР ¹Н регистрировали с помощью Фурье-спектрометра AVANCE AV 300 (Bruker, Германия, растворитель — CDCl₃, внутренний стандарт — гексаметилдисилоксан) при концентрации образца в CDCl₃ 1 мас. %. Средние молекулярные массы (СММ) асфальтенов измеряли криоскопическим методом в нафталине. Элементный состав определяли на CHNS-анализаторе Vario EL Cube (Elementar Analysensysteme GmbH, Германия) [15].

Построение средних структур молекул асфальтенов и смол, расчет их минимальной стерической энергии проводили с помощью разработанной в Институте химии нефти СО РАН программы [16], основанной на подходе Монте-Карло, предложенном в работе [17]. При построении структур средних молекул смол и асфальтенов использовали данные СГА: количество ароматических и нафтеновых колец, парафиновых фрагментов, содержание углерода, водорода, серы, азота и кислорода, количество структурных блоков в молекуле.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Депарафинизация нефти сжиженным газом с последующим выделением осадков АСПО проведена при температурах 0, -5, -15 и -25 °C (табл. 1). Видно, что с понижением температуры от 0 до -25 °C количество образующегося осадка возрастает с 10.9 до 13.4 мас. % за счет увеличения содержания в нем твердых парафинов и смол. Количество твердых парафинов в осадке, полученном при -25 °C, в 2.4 раза, а смол - в 1.3 раза выше, чем в осадке, полученном при 0 °C. В процессе депарафинизации при всех температурах асфальтены полностью переходят в осадок. Рафинаты представляют собой деасфальтенизированную нефть. По мере сниже-

ния температуры процесса депарафинизации улучшаются физико-химические характеристики очищенной нефти: уменьшается вязкость в 2.5 раза, снижается температура застывания с +14 до -14 °C (см. табл. 1).

В полученных после депарафинизации осадках n-алканы представлены гомологическим рядом соединений с числом атомов углерода до 57 включительно (рис. 1). Наряду с твердыми n-алканами C_{17+} , в осадках присутствуют и низкомолекулярные гомологи $C_{11}^{-}C_{16}^{-}$. Наличие последних связано с проведением процесса при отрицательных температурах. Так, на долю низкомолекулярных гомологов $C_{11}^{-}C_{16}^{-}$ в осадках, полученных при температурах 0, -15 и -25 °C, приходится 3.9-6.7 отн. %. Исключением явля-

ТАБЛИЦА 1 Состав и физико-химические характеристики продуктов депарафинизации

Температура процесса, °С	Выход, мас. %		Физико-химические характеристики очищенной нефти		Содержание в осадке, мас. %		
	Осадок	Рафинат	Вязкость при 25 °C, мм²/с	Температура застывания, °С	Парафины	Смолы	Асфальтены
0	10.9	89.1	14.9	+14	1.4	1.8	1.6
-5	12.2	87.8	13.8	+9	1.8	1.7	1.6
-15	12.9	87.1	5.7	0	2.4	1.8	1.6
-25	13.4	86.6	6.3	-14	3.4	2.3	1.6

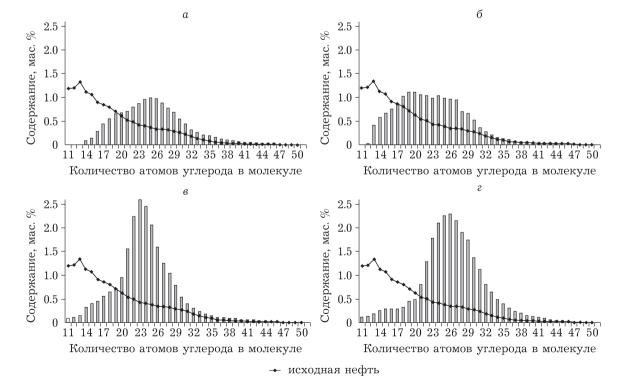


Рис. 1. Молекулярно-массовое распределение u-алканов в осадках, полученных при различных температурах депарафинизации нефти, °C: 0 (a), -5 (b), -25 (c).

ТАБЛИЦА 2 Общая характеристика и средние структурные параметры молекул асфальтенов осадков

Показатель	Асфальтены осадков					
	Исходные	Выделенные при температуре депарафинизации, °C				
		0	-5	-15	-25	
Средняя молекулярная масса, а.е.м.	1132	1737	1771	1262	1520	
Элементный состав, мас. %:						
C	84.17	85.05	85.32	84.94	86.29	
Н	8.33	7.89	7.78	7.80	7.29	
N	0.68	1.18	0.99	1.16	1.02	
S	2.79	3.3	2.95	3.39	2.37	
O	4.03	2.58	2.96	2.71	2.67	
Число атомов в молекуле:						
C	79.40	123.11	125.9	89.33	109.3	
C_a	31.55	54.28	52.5	36.36	45.26	
$C_{_\mathtt{H}}$	39.65	63.18	66.7	47.84	59.28	
C_{π}	8.20	5.65	6.7	5.13	4.76	
$C_{\scriptscriptstylelpha}$	11.28	16.60	16.5	12.03	15.14	
C_{γ}	3.92	5.65	6.7	5.13	4.76	
Распределение атомов углерода, %:						
$f_{ m a}$	39.74	44.09	41.7	40.70	44.41	
$f_{_{ m H}}$	49.93	51.32	53.0	53.56	54.23	
$f_{_{ m II}}$	10.33	4.59	5.3	5.74	4.36	
Кольцевой состав:						
K_{o}	17.04	28.42	31.6	22.87	32.14	
K_{a}	7.41	13.17	12.6	8.76	10.81	
$ m K_{_{H}}$	9.62	15.25	18.9	14.11	21.31	
Количество структурных блоков, m_{\circ}	2.47	3.62	3.6	2.74	3.19	

Примечание. Здесь и в табл. 3: C_a , C_n , C_n , C_n , C_γ , C_γ — количество атомов углерода в ароматических, нафтеновых и парафиновых структурах молекул, в α -положениях к гетерофункциям и ароматическим ядрам и в не связанных с последними терминальных метильных группах соответственно; f_a , f_n и f_n — доли углеродных атомов в соответствующих структурных фрагментах; $K_{\text{общ}}$ — общее число колец, K_a и K_n — количества ароматических и нафтеновых циклов в средней молекуле соответственно.

ется осадок, полученный при -5 °C, в котором доля n-алканов C_{11} - C_{16} составляет 14.1 отн. %. При этой температуре в процессе депарафинизации образуется мелкодисперсная взвесь, что приводит к соосаждению большого количества низкомолекулярных углеводородов.

Смолы и асфальтены, выделенные из осадков, проанализированы методом СГА, который позволяет рассчитать среднее распределение атомов между структурными элементами молекул смол и асфальтенов [14].

Анализ данных изменения структурно-группового состава средних молекул асфальтенов осадков, образующихся в процессе депарафинизации при различных температурах, показал, что их СММ значительно выше, чем у исходных асфальтенов (табл. 2). Это происходит за счет увеличения количества нафтеновых и ароматических колец в молекулах асфальтенов. Однако четко выраженной закономерности изменения СММ асфальтенов в зависимости от температуры процесса депарафинизации не выявлено. Так, с понижением температуры от 0 до -15 °C СММ асфальтенов осадков снижается с 1771 до 1262 а.е.м., затем при понижении температуры до -25 °C увеличивается до 1520 а.е.м. Установлено, что молекулы асфальтенов осадков, образованных при температурах от 0 до −15 °C, являются четырехблочными. Тогда как молекулы исходных асфальтенов и выделенных при -25 °C состоят из трех структурных блоков. Алифатическое обрамление молекул асфальтенов (С,), полученных в процессе депарафинизации, при понижении температуры уменьшается по сравнению с исходными асфальтенами, в то время как количество ароматических (К) и нафтеновых колец (К ,), наоборот, увеличивается (см. табл. 2). Это можно связать с изменениями

ТАБЛИЦА 3 Общая характеристика и средние структурные параметры молекул смол осадков

Показатель	Смолы осадков					
	Исходные	е Выделенные при температуре депарафинизации, °C				
		0	-5	-15	-25	
Средняя молекулярная масса, а.е.м.	652	848	861	852	719	
Элементный состав, мас. %:						
C	84.44	83.86	85.41	84.87	84.85	
Н	7.86	9.22	8.29	9.49	8.29	
N	1.12	1.21	0.74	1.49	1.04	
S	2.40	3.53	2.37	2.44	2.44	
O	4.18	2.18	3.19	1.71	3.38	
Число атомов в молекуле:						
C	45.88	59.26	61.28	60.26	50.84	
C_a	13.94	20.88	17.77	19.28	14.61	
C _H	29.21	24.05	40.05	28.38	33.52	
$C_{_{\Pi}}$	2.73	14.33	13.45	12.60	2.71	
C_{α}	6.39	7.42	7.65	6.78	6.07	
C_{γ}	2.73	3.67	3.45	3.72	2.71	
Распределение атомов углерода, %:						
$f_{ m a}$	30.37	35.24	29.01	32.00	28.74	
$f_{_{ m H}}$	63.67	40.59	65.36	47.09	65.93	
$f_{_{ m II}}$	5.96	24.17	5.63	20.90	5.33	
Кольцевой состав:						
K_{o}	14.05	10.83	17.53	11.43	14.59	
$ m K_a^{}$	3.23	3.39	3.50	4.59	4.05	
K _H	10.82	5.88	13.44	6.84	10.54	
 Количество структурных блоков, $m_{_{\mathrm{a}}}$	1.55	1.93	1.76	1.95	1.59	

Примечание. Обозн. см. табл. 2.

сил межмолекулярного взаимодействия молекул асфальтенов как друг с другом, так и с другими нефтяными компонентами, которые происходят при изменении состава дисперсионной среды за счет разбавления сжиженным газом и проведения процесса при отрицательных температурах. Среди возможных следует отметить, например, п-взаимодействие ароматических фрагментов асфальтенов и смоляных молекул, совместно формирующих блочную структуру; взаимодействие между двумя неспаренными электронами, а также между радикалами и системой п-электронов соседних молекул асфальтенов; взаимодействия за счет водородных связей с участием гетероатомов [18].

В изменениях структурных параметров средних молекул смол осадков в зависимости от температуры процесса так же, как и для асфальтенов, четкая закономерность не прослеживается. Средняя молекулярная масса смол осадков увеличивается при снижении температуры процесса депарафинизации (табл. 3), что

связано с увеличением числа ароматических циклов. Однако количество нафтеновых циклов с понижением температуры изменяется скачкообразно. Молекулы смол как исходные, так и из осадков, выделенных при низких температурах, представляют собой двухблочные структуры. В отличие от асфальтенов, смолы не обладают способностями к самоассоциации и образованию крупных агрегатов. Алифатическое обрамление средних молекул исходных смол незначительно при понижении температуры от 0 до -15 °C наблюдается увеличение количества алкильных атомов углерода до 13-14, а при -25 °C содержание периферийных углеродных цепочек молекул смол снова резко снижается до исходного значения (см. табл. 3).

На основании данных СГА построены гипотетические структуры средних молекул асфальтенов и смол, методом молекулярной динамики рассчитаны их полные стерические энергии. Среди построенных структур отобраны те, кото-

Температура процесса депарафинизации, °С	Асфальтены	Смолы
Исходные		
0		THAT THE THE THE THE THE THE THE THE THE TH
-5		THE PARTY OF THE P
-15		
-25		

рые имеют наименьшее расхождение с параметрами, вычисленными по данным ${\rm C}\Gamma{\rm A}$ (табл. 4).

По пространственным структурам можно наглядно проследить за изменениями структурных

параметров молекул асфальтенов и смол в процессе депарафинизации нефти. По сравнению с исходными молекулами, изменяются количества их структурных блоков, ароматических колец, алкильных фрагментов и возможное расположение гетероатомов. Объемные четырехблочные молекулы асфальтенов, занимающие большие пространства, стремясь к наиболее термодинамически устойчивому состоянию, упаковываются в более плотные "клубки", чем молекулы с меньшим числом блоков в молекуле (см. табл. 4).

ЗАКЛЮЧЕНИЕ

Полученные результаты показали, что при депарафинизации нефти сжиженным газом в ней значительно снижается содержание твердых парафинов, происходит деасфальтенизация и частичное обессмоливание, существенно улучшаются физико-химические характеристики.

Установлено, что изменение химического состава дисперсионной среды за счет разбавления сжиженным газом и проведение процесса депарафинизации нефти при различных отрицательных температурах влияет на структуры нано- и микроагрегатов асфальтенов, их самопроизвольную сборку и выпадение в осадок. Показано, что снижение температуры депарафинизации приводит к изменению структурных параметров молекул асфальтенов и смол, выделенных из осадков: средней молекулярной массы, доли ароматических и нафтеновых фрагментов, общего количества алкильных заместителей и их разветвленности.

Работа выполнена в рамках государственного задания ИХН СО РАН (проект V.46.2.2), финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1 Rogel E. Simulation of interactions in asphaltene aggregates // Energy & Fuels. 2000. Vol. 14. P. 566-574.
- 2 Ластовкина Г. А., Радченко Е. Д., Рудина М. Г. Справочник нефтепереработчика. Л.: Химия, 1986. 648 с.
- 3 Sabbagh O., Akbarzadeh K., Badamchi-Zadeh A., Svrcek W. Y., Yarranton H. W. Applying the PR-EoS to asphaltene pre-

- cipitation from *n*-alkane diluted heavy oils and bitumens // Energy & Fuels. 2006. Vol. 20. P. 625-634.
- 4 Nyadong L., Lai J., Thompsen C., LaFrancois C. J., Cai X., Song C., Wang J., Wang W. High-field Orbitrap mass spectrometry and tandem mass spectrometry for molecular characterization of asphaltenes // Energy& Fuels. 2018. Vol. 32. P. 294–305.
- 5 Santos Silva H., Alfarra A., Vallverdu G., Bégué D., Bouyssiere B., Baraille I. Sensitivity of asphaltene aggregation toward the molecular architecture under desalting thermodynamic conditions // Energy & Fuels. 2018. Vol. 32. P. 2681-2692.
- 6 Safieva J. O., Likhatsky V. V., Filatov V. M., Syunyaev R. Z. Composition of asphaltene solvate shell at precipitation onset conditions and estimation of average aggregate sizes in model oils // Energy & Fuels. 2010. Vol. 24. P. 2266-2274
- 7 Sirota E. B. Physical structure of asphaltenes // Energy & Fuels. 2005. Vol. 19. P. 1290-1296.
- 8 Mostowfi F., Indo K., Mullins O. C., McFarlane R. Asphaltene nanoaggregates studied by centrifugation // Energy & Fuels. 2009. Vol. 23. P. 1194–1200.
- 9 Камьянов В. Ф., Аксенов В. С., Титов В. И. Гетероатомные компоненты нефти. Новосибирск: Наука, 1983. 240 с.
- 10 Wiehe I. A., Yarranton H. W., Akbarzadeh K., Rahimi P. M., Teclemariam A. The paradox of asphaltene precipitation with normal paraffins // Energy & Fuels. 2005. Vol. 19. P. 1261-1267.
- 11 Фатыхов М. А., Багаутдинов Н. Я., Валеев А. М. Способ механического разрушения отложений парафина в НКТ нефтедобывающих скважин // Нефтепромысловое дело. 2007. \mathbb{N}_2 6. С. 50–52.
- 12 Строганов В. М., Турукалов М. Б., Ясьян Ю. П. Некоторые аспекты удаления асфальтено-смоло-парафиновых отложений с применением углеводородных растворителей // Нефтепереработка и нефтехимия. 2006. № 12. С. 25–28
- 13 Можайская М. В. Певнева Г. С., Сурков В. Г., Головко А. К. Моделирование процесса осадкообразования в зависимости от состава асфальтено-смоло-парафиновых компонентов // Нефтепереработка и нефтехимия. 2007. № 12. С. 32–35.
- 14 Певнева Г. С., Воронецкая Н. Г., Гринько А. А., Головко А. К. Влияние смол и асфальтенов на термические превращения углеводородов тяжелой нефти на основе парафина // Нефтехимия. 2016. Т. 56, № 8. С. 690-696.
- 15 Головко А. К., Камьянов В. Ф., Огородников В. Д. Высокомолекулярные гетероатомные компоненты нефтей Тимано-Печорского нефтегазоносного бассейна // Геология и геофизика. 2012. Т. 53, № 12. С. 1786-1795.
- 16 Дмитриев Д. Е., Головко А. К. Свидетельство о государственной регистрации программы для ЭВМ № 2010612415 от 06.04.10.
- 17 Boek E. S., Yakovlev D. S., Headen T. F. Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation // Energy & Fuels. 2009. Vol. 23, No. 3. P. 1209-1219.
- 18 Сюняев Р. З., Сафиева Р. З. Нефтяные дисперсные системы. М.: Химия. 1990. 224 с.