УДК 532.546:536.421

НАГНЕТАНИЕ ГАЗА В ПОРИСТЫЙ РЕЗЕРВУАР, НАСЫЩЕННЫЙ ГАЗОМ И ВОДОЙ^{*}

В.Ш. ШАГАПОВ¹, Н.Г. МУСАКАЕВ², М.К. ХАСАНОВ¹

¹Стерлитамакская государственная педагогическая академия

²Тюменский филиал Института теоретической и прикладной механики им. С.А. Христиановича СО РАН

Численно исследуется процесс образования газогидрата в природном пласте, насыщенном газом и водой, в результате нагнетания газа. Построены автомодельные решения плоскоодномерной задачи, описывающие распределения основных параметров в пласте. Установлено, что в зависимости от параметров нагнетаемого газа образование газогидрата может происходить как на фронтальной поверхности, так и в протяженной области.

введение

Одной из основных проблем нефтегазовой отрасли на протяжении всей ее истории является образование и отложение твердой фазы, как в пласте, так и в системах подземного и наземного оборудования нефтяных и газовых месторождений. Среди таких отложений особый интерес представляют газовые гидраты – твердые кристаллические соединения, образующиеся при определенных термодинамических условиях и имеющие в своей основе газ (чаще метан) в особом, связанном на молекулярном уровне с водой, состоянии [1].

В настоящее время процессы техногенного гидратообразования носят чаще негативный характер, обусловленный затратами на устранение данных отложений при добыче и транспортировке углеводородного сырья. Однако эти процессы могут иметь и положительный аспект, например, использоваться для хранения газа, поскольку массовое содержание газа в газогидратном состоянии в единице объема при одинаковых условиях в несколько раз выше, чем в свободном состоянии [2]. Возможным примером процесса, сопровождающимся образованием гидрата, является нагнетание газа в естественные подземные газохранилища, частично насыщенные водой.

В настоящей работе в плоскоодномерном приближении рассматриваются некоторые особенности образования гидрата при нагнетании газа в пористый пласт, заполненный в исходном состоянии газом и водой.

1. ЗАДАЧА ФАЗОВЫХ ПЕРЕХОДОВ С ФРОНТАЛЬНОЙ ГРАНИЦЕЙ

Пусть полубесконечный пористый пласт в начальный момент времени насыщен газом и водой, давление и температура которых в исходном состоянии соответствуют термодинамическим условиям существования их в свободном состоянии. Положим, что через границу пласта закачивается такой же газ, причем его давление

^{*} Работа выполнена при финансовой поддержке Правительства Республики Башкортостан и РФФИ (совместный грант p-агидель-а № 05-19-91917).

[©] Шагапов В.Ш., Мусакаев Н.Г., Хасанов М.К., 2005

и температура соответствуют условиям образования газогидрата и поддерживаются на границе области постоянными. При постановке данной задачи будем полагать, что в результате закачки газа от границы в глубь пласта начинает распространяться фронтальная поверхность образования гидрата, разделяющая пласт на две области. В первой, находящейся вблизи границы пласта, вода полностью перешла в газогидратное состояние, поэтому в порах присутствуют только газ и газогидрат, а во второй (дальней) области поры заполнены газом и водой. Таким образом, согласно предложенной модели полагается, что образование газогидрата полностью происходит на фронтальной границе между этими двумя зонами.

1.1. Основные уравнения

При описании происходящих процессов тепломассопереноса примем следующие допущения: скелет пористой среды, газогидрат и вода несжимаемы и неподвижны, пористость постоянна, температура пористой среды и насыщающего вещества (газа, гидрата или воды) совпадают. Гидрат является двухкомпонентной системой с массовой концентрацией газа g.

В рамках принятых допущений уравнение сохранения массы газа имеет вид

$$mS_{g(i)}\frac{\partial\rho_{g(i)}}{\partial t} + \frac{\partial}{\partial x} \left(mS_{g(i)}\rho_{g(i)}\upsilon_{g(i)}\right) = 0, \tag{1}$$

где m — пористость, $S_{g(i)}$ — газонасыщенность. Здесь и далее нижние индексы sk, h, l, g относятся к скелету, гидрату, воде и газу соответственно; параметры первой и второй областей будут снабжены нижними индексами в скобках i = 1, 2.

В качестве закона фильтрации газа примем закон Дарси:

$$mS_{g(i)}v_{g(i)} = -\frac{k_{(i)}}{\mu_g}\frac{\partial p_{(i)}}{\partial x},$$
(2)

где $k_{(i)}$ — коэффициент проницаемости для газа, μ_g — динамическая вязкость газа.

Зададим зависимость коэффициента проницаемости для газа от газонасыщенности на основе формулы Козени

$$k_{(i)} = k_* \frac{(mS_{g(i)})^3}{(1 - mS_{g(i)})^2} \approx k_0 S_{g(i)}^3 \left(k_0 = k_* m^3\right).$$

Газ будем считать калорически совершенным:

$$p_{(i)} = \rho_{g(i)} R_g T_{(i)}.$$
 (3)

Уравнение притока тепла, пренебрегая баротермическим эффектом, запишем в виде:

$$\rho c \frac{\partial T_{(i)}}{\partial t} + \rho_{g(i)} c_g m S_{g(i)} \upsilon_{g(i)} \frac{\partial T_{(i)}}{\partial x} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T_{(i)}}{\partial x} \right),$$

$$\rho c = (1-m) \rho_{sk} c_{sk} + m S_g \rho_g c_g + m S_l \rho_l c_l + m S_h \rho_h c_h,$$

$$\lambda = (1-m) \lambda_{sk} + m S_g \lambda_g + m S_l \lambda_l + m S_h \lambda_h.$$
(4)

Здесь ρc и λ — удельная объемная теплоемкость и коэффициент теплопроводности системы, ρ_j , c_j , λ_j (j = sk, g, l, h) — плотность, удельная теплоемкость и коэффициент теплопроводности фаз. Поскольку в значения ρc и λ основной вклад вносят параметры скелета пористой среды, то во всем пласте будем полагать их постоянными.

Представленные уравнения необходимо дополнить условиями баланса массы и тепла на границе фазового перехода ($x = x_{(s)}$):

$$mS_{h(1)}\rho_{h}(1-g)\dot{x}_{(s)} = mS_{l0}\rho_{l}\dot{x}_{(s)}$$

$$mS_{g(2)}\rho_{g(s)}^{0}(\upsilon_{g(2)}-\dot{x}_{(s)}) + mS_{h(1)}\rho_{h}g\dot{x}_{(s)} = mS_{g(1)}\rho_{g(s)}^{0}(\upsilon_{g(1)}-\dot{x}_{(s)}),$$

$$\lambda\frac{\partial T_{(1)}}{\partial x} - \lambda\frac{\partial T_{(2)}}{\partial x} = mS_{h(1)}\rho_{h}l\dot{x}_{(s)},$$
(5)

где $S_{h(1)}$ — гидратонасыщенность первой области, S_{l0} — начальная водонасыщен-• ность, l — удельная теплота гидратообразования, $x_{(s)}$ — скорость движения границы фазового перехода (нижний индекс *s* в скобках относится к параметрам на границе гидратообразования).

В рассматриваемой задаче скорость движения фронта фазовых переходов будет лимитироваться скоростью отвода тепла, выделяющегося при образовании гидрата, т. е. теплопереносом в пласте. Это обусловлено очень медленным (в основном за счет теплопроводности) протеканием теплообмена в протяженных природных пластах. Например, для области протяженностью L = 1 м, характерное время теплообмена составит $t^* \sim \frac{L^2}{\aleph^{(T)}} \approx 10^6 c$, где $\aleph^{(T)} = \frac{\lambda}{\rho c}$ — коэффициент

температуропроводности пласта.

На таких больших временах, значительно превосходящих характерное время кинетики процесса, выполняется условие равновесия по температуре в зоне фазовых переходов.

Следовательно, давление и температура на границе между областями связаны условием фазового равновесия [1, 2]:

$$T_{(s)} = T_0 + T_* \ln\left(\frac{p_{(s)}}{p_{s0}}\right),$$

где T_0 — исходная температура системы, p_{s0} — равновесное давление, соответствующее исходной температуре, T_* — эмпирический параметр, зависящий от вида газогидрата.

Будем полагать, что в начальный момент времени в пористой среде давление p_0 и температура T_0 во всех точках пласта одинаковы, причем $p_0 < p_{s0}$. Эти два условия запишем в виде:

$$p_{(2)} = p_0, \quad T_{(2)} = T_0 \quad (t = 0, x \ge 0).$$

На границе гидратообразования потребуем условие непрерывности давления и температуры:

$$p_{(1)} = p_{(2)} = p_{(s)}, \quad T_{(1)} = T_{(2)} = T_{(s)} \quad (x = x_{(s)}).$$

Условия на границе пласта запишем в виде:

$$T_{(1)} = T_e, \ p_{(1)} = p_e \ (t > 0, \ x = 0).$$

1.2. Аналитическое решение

Сформулированная выше задача является автомодельной. Введем автомодельную переменную

$$\xi = \frac{x}{\sqrt{\aleph^{(T)}t}}.$$

Тогда на основе (1) – (4) уравнения температуропроводности и пьезопроводности, применяя метод линеаризации Лейбензона, могут быть записаны в виде:

$$-\frac{1}{2}\xi \frac{dT_{(i)}}{d\xi} = \frac{d}{d\xi} \left(\frac{dT_{(i)}}{d\xi}\right) + \frac{1}{2}\alpha_{(i)} \frac{dp_{(i)}^{2}}{d\xi} \frac{dT_{(i)}}{d\xi},$$

$$-\xi \frac{dp_{(i)}^{2}}{d\xi} = 2\eta_{(i)} \frac{d}{d\xi} \left(\frac{dp_{(i)}^{2}}{d\xi}\right),$$

$$\frac{\rho_{g0}c_{g}k_{(i)}}{d\xi}, \quad \eta_{(i)} = \frac{\aleph_{(i)}^{(p)}}{d\xi}, \quad \aleph_{(i)}^{(p)} = \frac{k_{(i)}p_{0}}{d\xi}.$$
 (6)

где $\alpha_{(i)} = \frac{\mu_{g0}c_g\kappa_{(i)}}{\lambda p_0\mu_g}, \quad \eta_{(i)} = \frac{\kappa_{(i)}}{\kappa^{(T)}}, \quad \kappa_{(i)}^{(p)} = \frac{\kappa_{(i)}\mu_0}{\mu_g m S_{g(i)}}.$

Уравнения (6) можно проинтегрировать. Тогда для распределения давления и температуры в каждой из областей получим:

$$p_{(1)}^{2} = p_{(s)}^{2} + \frac{(p_{e}^{2} - p_{(s)}^{2})\int_{\xi}^{\xi_{(s)}} \exp\left(-\frac{\xi^{2}}{4\eta_{(1)}}\right) d\xi}{\int_{0}^{\xi_{(s)}} \exp\left(-\frac{\xi^{2}}{4\eta_{(1)}}\right) d\xi},$$

$$T_{(1)} = T_{(s)} + \frac{\left(T_{e} - T_{(s)}\right)\int_{\xi}^{\xi_{(s)}} \exp\left(-\frac{\xi^{2}}{4} - \frac{\alpha_{(1)}}{2}p_{(1)}^{2}\right) d\xi}{\int_{0}^{\xi_{(s)}} \exp\left(-\frac{\xi^{2}}{4} - \frac{\alpha_{(1)}}{2}p_{(1)}^{2}\right) d\xi},$$

$$p_{(2)}^{2} = p_{0}^{2} + \frac{\left(p_{(s)}^{2} - p_{0}^{2}\right)\int_{\xi}^{\infty} \exp\left(-\frac{\xi^{2}}{4\eta_{(2)}}\right) d\xi}{\int_{\xi_{(s)}}^{\infty} \exp\left(-\frac{\xi^{2}}{4\eta_{(2)}}\right) d\xi},$$

$$T_{(2)} = T_{0} + \frac{\left(T_{(s)} - T_{0}\right)\int_{\xi}^{\infty} \exp\left(-\frac{\xi^{2}}{4} - \frac{\alpha_{(2)}}{2}p_{(2)}^{2}\right) d\xi}{\int_{\xi_{(s)}}^{\infty} \exp\left(-\frac{\xi^{2}}{4} - \frac{\alpha_{(2)}}{2}p_{(2)}^{2}\right) d\xi}.$$
(8)

На границе фазового перехода ($\xi = \xi_{(S)}$) из (5) имеем систему уравнений для нахождения координаты границы фазовых переходов и значений параметров на ней:

$$\frac{dT_{(1)}}{d\xi} - \frac{dT_{(2)}}{d\xi} = \frac{mS_h \rho_h l}{2\rho c} \xi_{(s)},$$

648

$$k_{(2)}\frac{dp_{(2)}^2}{d\xi} - k_{(1)}\frac{dp_{(1)}^2}{d\xi} = mS_{l0}\mu_g \left(\frac{\rho_l g}{(1-g)\rho_{g(s)}} - \frac{\rho_l}{(1-g)\rho_h} + 1\right)\xi_{(s)}\mathbf{x}^{(T)}p_{(s)}.$$

Данная система уравнений после подстановки решений (7) и (8) может быть решена численно.

1.3. Результаты численных расчетов

На рис. 1, *а* представлены распределения температуры и давления при нагнетании метана под давлением $p_e = 5$ МПа с температурой $T_e = 278$ К в пласт с начальным давлением $p_0 = 4$ МПа и исходной водонасыщенностью $S_{l0} = 0,2$. Для остальных параметров, характеризующих систему, приняты следующие значения: $m = 0,1, g = 0,12, T_0 = 280$ К, $T_* = 10$ К, $p_{s0} = 5,5$ МПа, $k_0 = 10^{-14}$ м², $\rho_h = 900$ кг/м³, $\rho_l = 1000$ кг/м³, $\lambda = 2$ Вт/(м·К), $l = 5 \cdot 10^5$ Дж/кг, $\rho_c = 2,5 \cdot 10^6$ Дж/(К·м³), $\mu_g = 10^5$ кг/(м·с), $c_g = 1560$ Дж/(К·кг). Из данного рисунка видно, что температура пласта перед фронтом гидратообразования ниже равновесной температуры, а за фронтом — выше ее. Поэтому решение с фронтальной поверхностью образования гидрата является непротиворечивым.

На рис. 1, *b* показаны распределения температуры и давления при нагнетании метана под давлением $p_e = 6$ МПа с температурой $T_e = 278$ К. Из приведенных данных видно, что температура пласта за фронтом гидратообразования опускается ниже равновесной температуры (пунктирная линия 2), что соответствует переохлаждению воды в этой области. Следовательно, в данном случае модель с фронтальной поверхностью образования гидрата не позволяет построить физически непротиворечивое решение.

По результатам численных расчетов можно сделать вывод о том, что возможны два принципиально различных вида решения в зависимости от параметров

Рис. 1. Распределения температуры пласта (1), равновесной температуры (2) и давления. Непротиворечивый случай (*a*), случай переохлаждения воды за фронтом (*b*), $p_e = 5$ (*a*), 6 (*b*) МПа, $T_e = 278$ K (*a*, *b*).

нагнетаемого газа. Также при различных значениях параметров, характеризующих систему, для величины давления, под которым нагнетается газ, существует некоторое максимальное значение, зависящее от проницаемости и исходной температуры, при превышении которого невозможно в рамках данной модели построить непротиворечивое решение. Для значений проницаемо-

сти, характерных для реальных пластов $k = 10^{-12} - 10^{-15}$ м², величина этого предельного давления с высокой степенью точности совпадает с величиной равновесного давления p_{s0} , соответствующего исходной температуре. Этот результат можно получить также из следующих физических соображений.

Как следует из графиков, при рассматриваемых значениях проницаемости, давление на фронте фазового перехода приближенно совпадает с давлением, под которым нагнетается газ, поэтому в случае $p_e > p_{s0}$ температура на фронте превышает величину начальной температуры и, как следствие, ведет к снижению температуры пласта за фронтом гидратообразования. А поскольку коэффициент пьезопроводности $\mathbf{x}^{(p)}$ значительно выше коэффициента температуропроводности $\mathbf{x}^{(T)}$, температура пласта снижается быстрее, чем давление и однозначно связанная с ним равновесная температура. Это и приводит к возникновению в рамках данной модели ситуации переохлаждения воды за фронтом. Следовательно, модель с фронтальной поверхностью образования гидрата физически непротиворечиво описывает процесс только в случае закачки газа под давлением, не превышающим величину равновесного давления, соответствующего исходной температуре. Для описания процесса образования гидрата при закачке газа под более высоким давлением необходимо строить модель с протяженной (объемной) областью образования гидрата.

Таким образом, для рассматриваемого процесса на фазовой диаграмме в области стабильного существования газогидрата (ниже равновесной кривой) можно выделить две области, разделенные линией $p = p_{s0}$ (рис. 2). Если параметры нагнетаемого газа соответствуют первой области ($p_e < p_{s0}$) на этой диаграмме, то гидратообразование происходит на фронтальной поверхности, а если эти же параметры отвечают второй области ($p_e \ge p_{s0}$), тогда возникает протяженная область фазовых переходов.

2. РЕШЕНИЕ С ОБЪЕМНОЙ ОБЛАСТЬЮ ОБРАЗОВАНИЯ ГИДРАТА

Рассмотрим случай, когда в результате нагнетания газа гидрат образуется в объемной области. При этом возникают три характерные области: ближняя, в которой поры заполнены газом и гидратом, промежуточная, здесь газ, вода и гидрат находятся в равновесии, и дальняя, она заполнена газом и водой. В промежуточной зоне происходит образование гидрата. Соответственно возникают две поверхности: между дальней и промежуточной областями, на ней начинается переход воды в гидрат, и между ближней и промежуточной областями, на которой процесс гидратообразования заканчивается.

2.1. Основные уравнения

Тепломассоперенос в ближней и дальней областях описывается уравнениями (1) – (4) (нижние индексы i = 1, 3 соответствуют параметрам ближней и дальней областей соответственно). В промежуточной области (нижний индекс i = 2) основные уравнения необходимо записать с учетом поглощения газа и выделения тепла при образовании гидрата:

$$m\frac{\partial(\rho_{g(2)}S_{g(2)})}{\partial t} + \frac{\partial}{\partial x}\left(mS_{g(2)}v_{g(2)}\rho_{g(2)}\right) = -mg\rho_{h}\frac{\partial S_{h(2)}}{\partial t},$$

$$\rho c\frac{\partial T_{(2)}}{\partial t} + \rho_{g(2)}c_{g}mS_{g(2)}v_{g(2)}\frac{\partial T_{(2)}}{\partial x} = \frac{\partial}{\partial x}\left(\lambda\frac{\partial T_{(2)}}{\partial x}\right) + m\rho_{h}l\frac{\partial S_{h(2)}}{\partial t},$$

$$mS_{g(2)}v_{g(2)} = -\frac{k_{(2)}}{\mu_{g}}\frac{\partial p_{(2)}}{\partial x}.$$
(9)

Кроме того, значения температуры и давления в промежуточной области связаны условием фазового равновесия, а значения водо- и гидратонасыщенности условием сохранения массы воды:

$$T_{(2)} = T_0 + T_* \ln\left(\frac{p_{(2)}}{p_{s0}}\right),\tag{10}$$

$$m\rho_l \frac{\partial S_{l(2)}}{\partial t} = -m(1-g)\rho_h \frac{\partial S_{h(2)}}{\partial t}.$$
 (11)

Процесс гидратообразования возможен одновременно как в промежуточной области, так и на поверхности, разделяющей ближнюю и промежуточную области. Поэтому будем полагать, что на поверхности $x = x_{(s)}$, разделяющей ближнюю и промежуточную области (на первой границе), происходит скачок гидратонасыщенности от $S_h^- = S_{h(1)}$ до $S_h^+ = S_{h(s)}$, обусловленный переходом на этой границе части воды в газогидратное состояние. Здесь величина $S_{h(1)}$ определяется из условия сохранения массы воды (11)

$$S_{h(1)} = \frac{\rho_l S_{l0}}{\rho_h (1-g)},$$

а величина S_{h(s)} подлежит нахождению.

На поверхности $x = x_{(m)}$, разделяющей дальнюю и промежуточную области (на второй границе), значение гидратонасыщенности будем считать непрерывным и равным нулю.

Тогда на первой границе ($x = x_{(s)}$) условия баланса массы и тепла запишутся следующим образом:

$$m(S_{h(1)} - S_{h(s)})\rho_h(1 - g)\dot{x}_{(s)} = mS_{l(s)}\rho_l\dot{x}_{(s)},$$

$$mS_{g(2)}\rho_{g(s)}^{0}(\upsilon_{g(2)}-\dot{x}_{(s)})+m(S_{h(1)}-S_{h(s)})\rho_{h}g\dot{x}_{(s)}=mS_{g(1)}\rho_{g(s)}^{0}(\upsilon_{g(1)}-\dot{x}_{(s)}),$$

$$\lambda \frac{\partial T_{(1)}}{\partial x} - \lambda \frac{\partial T_{(2)}}{\partial x} = m \left(S_{h(1)} - S_{h(s)} \right) \rho_h l \dot{x}_{(s)}.$$
(12)

651

На второй границе ($x = x_{(m)}$) условия баланса массы и тепла будут иметь следующий вид:

$$\frac{\partial T_{(2)}}{\partial x} = \frac{\partial T_{(3)}}{\partial x}.$$
(13)

На обеих границах давление и температуру будем считать непрерывными величинами:

$$p_{(1)} = p_{(2)} = p_{(s)}, \quad T_{(1)} = T_{(2)} = T_{(s)} \quad (x = x_{(s)});$$

$$p_{(2)} = p_{(3)} = p_{(m)}, \quad T_{(2)} = T_{(3)} = T_{(m)} \quad (x = x_{(m)}).$$

2.2. Аналитическое решение

Уравнения температуро- и пьезопроводности в автомодельных переменных для ближней и дальней областей записываются в виде (6). Поэтому для описания распределений давления и температуры в ближней области получим решение, совпадающее с (7). Аналогично для дальней области можно записать:

$$p_{(3)}^{2} = p_{0}^{2} + \frac{(p_{(m)}^{2} - p_{0}^{2})\int_{\xi}^{\infty} \exp\left(-\frac{\xi^{2}}{4\eta_{(3)}}\right) d\xi}{\int_{\xi_{(m)}}^{\infty} \exp\left(-\frac{\xi^{2}}{4\eta_{(3)}}\right) d\xi},$$

$$T_{(3)} = T_{0} + \frac{\left(T_{(m)} - T_{0}\right)\int_{\xi}^{\infty} \exp\left(-\frac{\xi^{2}}{4} - \frac{\alpha_{(3)}}{2}p_{(3)}^{2}\right) d\xi}{\int_{\xi_{(m)}}^{\infty} \exp\left(-\frac{\xi^{2}}{4} - \frac{\alpha_{(3)}}{2}p_{(3)}^{2}\right) d\xi}.$$

В промежуточной области, пренебрегая изменением объема воды при переходе в гидратное состояние (т. е. считая газонасыщенность и, соответственно, проницаемость в этой области постоянными величинами), на основе уравнений (9) имеем:

$$-\xi \frac{dp_{(2)}^2}{d\xi} = 2\eta_{(2)} \frac{d}{d\xi} \left(\frac{dp_{(2)}^2}{d\xi} \right) + 2\Delta p^2 \xi \frac{dS_h}{d\xi},$$
 (14)

$$-\frac{1}{2}\xi \frac{dT_{(2)}}{d\xi} = \frac{d}{d\xi} \left(\frac{dT_{(2)}}{d\xi}\right) + \frac{1}{2}\alpha_{(2)}\frac{dp_{(2)}^{2}}{d\xi}\frac{dT_{(2)}}{d\xi} - \frac{1}{2}\Delta T\xi \frac{dS_{h}}{d\xi},$$
(15)

где $\alpha_{(2)} = \frac{\rho_{g0}c_g k_{(2)}}{\lambda p_0 \mu_g}, \quad \eta_{(2)} = \frac{\aleph_{(2)}^{(p)}}{\aleph^{(T)}}, \quad \aleph_{(2)}^{(p)} = \frac{k_{(2)} p_0}{\mu_g m (1 - S_{l0})}, \quad \Delta p^2 = \frac{g \rho_h p_0^2}{\rho_{g0} (1 - S_{l0})},$ $\Delta T = \frac{m \rho_h l}{\rho_c}.$

Решение уравнений (10), (14), (15) с параметрами, характерными для рассматриваемой системы, показывает, что в большинстве случаев в уравнении температуропроводности (15) можно пренебречь слагаемыми, отвечающими за теплопроводность и конвекцию (соответственно, первое и второе слагаемые в правой части уравнения). Тогда на основе (10), (14), (15) можно записать следующее дифференциальное уравнение для нахождения давления:

$$-\xi \frac{dp_{(2)}^2}{d\xi} = 2\tilde{\eta}_{(2)} \frac{d}{d\xi} \left(\frac{dp_{(2)}^2}{d\xi} \right),$$

где $\tilde{\eta}_{(2)} = \eta_{(2)} \frac{\Delta T p_0^2}{\Delta T p_0^2 + \Delta p^2 T_*}.$

Проинтегрировав данное уравнение, получим распределение давления в промежуточной области

$$p_{(2)}^{2} = p_{(m)}^{2} + (p_{(s)}^{2} - p_{(m)}^{2}) \frac{\xi}{\xi_{(m)}} \exp\left(-\frac{\xi^{2}}{4\tilde{\eta}_{(2)}}\right) d\xi \\ \int_{\xi_{(s)}} \exp\left(-\frac{\xi^{2}}{4\tilde{\eta}_{(2)}}\right) d\xi$$
(16)

Соответствующее распределение температуры связано условием фазового равновесия (10) с распределением давления.

На основе уравнения (14), используя полученное решение для давления (16), получаем выражение для распределения гидратонасыщенности в промежуточной области

$$S_{h(2)} = S_{h(s)} - \frac{T_*}{2\Delta T} \frac{p_{(s)}^2 - p_{(2)}^2}{p_{(s)}^2}.$$

Отсюда, используя условие равенства нулю гидратонасыщенности на второй границе, получим выражение для определения ее значения на первой границе

$$S_{h(s)} = \frac{T_*}{2\Delta T} \frac{p_{(s)}^2 - p_{(m)}^2}{p_{(s)}^2}.$$
(17)

Значение водонасыщенности на первой границе определяется из уравнения сохранения массы воды (11)

$$S_{l(s)} = S_{l0} - S_{h(s)} \frac{(1-g)\rho_h}{\rho_l},$$

где $S_{h(s)}$ находится по формуле (17).

Положение границ ($\xi = \xi_{(s)}$ и $\xi = \xi_{(m)}$) и значения параметров на них можно найти из системы уравнений, полученных на основе соотношений (12) и (13):

$$k_{(2)} \frac{dp_{(2)}^2}{d\xi} - k_{(1)} \frac{dp_{(1)}^2}{d\xi} = mS_{l(s)} \left(\frac{\rho_l g}{(1-g)\rho_{g(s)}} - \frac{\rho_l}{\rho_h (1-g)} + 1 \right) \xi_{(s)} \aleph^{(T)} \mu_g p_{(s)},$$
$$\frac{dT_{(1)}}{d\xi} - \frac{dT_{(2)}}{d\xi} = \frac{mS_{l(s)}\rho_l l}{2(1-g)\rho c} \xi_{(s)};$$

653

$$\frac{dp_{(2)}^2}{d\xi} = \frac{dp_{(3)}^2}{d\xi},$$
$$\frac{dT_{(2)}}{d\xi} = \frac{dT_{(3)}}{d\xi}.$$

Данная система уравнений после подстановки найденных ранее распределений давлений и температур может быть решена численно. В работе при решении этой системы использован метод итераций.

Можно показать, что предельным случаем задачи с объемной областью образования гидрата при нагнетании газа под давлением p_e , равном величине равновесного давления p_{s0} (соответствующего исходной температуре), является решение с фронтальной границей фазовых переходов.

2.3. Результаты численных расчетов

На рис. 3 представлены распределения давления, температуры и гидратонасыщенности при различных значениях давления, под которым нагнетается газ в пласт: $p_e = 4, 5, 6, 7$ МПа (линии 1, 2, 3, 4). Для параметров, характеризующих исходное состояние пористой среды, приняты значения $p_0 = 3$ МПа, $S_{l0} = 0,2$, остальные параметры имеют величины, указанные ранее; температура нагнетаемого газа $T_e = 278$ К. Кривая 1 соответствует случаю нагнетания газа без образования гидрата, кривая 2 — образованию гидрата на фронтальной поверхности, кривые 3 и 4 гидратообразованию в объемной области.

Как видно из рис. 3, в случае образования гидрата в протяженной зоне температура в этой области поднимается выше исходной температуры пласта. Следова-

тельно, в данном случае подача холодного газа в пласт приводит к нагреву пласта, при этом степень нагрева возрастает с увеличением давления, под которым нагнетается газ. Кроме того, в соответствии с графиком, повышение данного давления увеличивает протяженность промежуточной области и долю гидратообразования, приходящуюся на эту область (по сравнению с гидратообразованием на поверхности, разделяющей ближнюю и промежуточные области). Таким образом, с повышением давления, под которым нагнетается газ, схема процесса все больше отличается от рассмотренной выше схемы с фронтальной поверхностью образования гидрата.

Рис. 3. Распределения давления, температуры и гидратонасыщенности при различных давлениях нагнетания газа в пласт.

 $p_e = 4$ МПа (1), 5 МПа (2), 6 МПа (3), 7 МПа (4).

Рис. 4. Распределение температуры при различных значениях: *a* — температуры закачиваемого газа: $T_e = 278$ (*I*), 280 (2), 282 K (*3*); *b* — начальной водонасыщенности пласта: $S_{l0} = 0, 2$ (*I*), 0,5 (2), 0,7 (*3*).

На рис. 4 приведено распределение температуры при нагнетании в пласт газа под давлением $p_e = 7 \text{ M}\Pi a$. Начальное давление в пласте составляет $p_0 = 3 \text{ M}\Pi a$, исходная водонасыщенность — $S_{l0} = 0,2$. На рис. 4, *а* линии 1, 2 и 3 соответствуют различным значениям температуры нагнетаемого газа $T_e = 278, 280$ и 282 К. В соответствии с графиком температура на границе пласта влияет на распределение температуры только в ближней области. Кроме того, кривая 3 показывает, что образование гидрата возможно и при нагнетании более теплого, по сравнению с исходным состоянием пласта, газа (при условии достаточно высокого давления, под которым нагнетается газ). На рис. 4, b линии 1, 2 и 3 соответствуют различным значениям исходной водонасыщенности пласта $S_{l0} = 0,2; 0,5$ и 0,7. Как видно, рост исходной водонасыщенности пласта приводит к уменьшению объемной области гидратообразования. Данное обстоятельство обусловлено тем, что в соответствии с формулой Козени уменьшение газонасыщенности (вследствие увеличения водонасыщенности) снижает величину проницаемости. Поэтому в меньшей по протяженности области давление оказывается достаточным для протекания процесса образования гидрата.

На рис. 5 показано положение автомодельных координат границ области гидратообразования в зависимости от давления, под которым нагнетается газ. Температура нагнетаемого газа принимается равная 278 К. Из данного графика видно, что процесс образования гидрата начинается при давлении нагнетания газа,

Рис. 5. Автомодельные координаты границ области гидратообразования в зависимости от давления нагнетания газа при различных значениях начальной водонасыщенности пласта. $S_{I0} = 0,2$ (1), 0,5 (2).

удовлетворяющем условиям существования гидрата. При дальнейшем повышении давления протяженность ближней области растет тем быстрее, чем меньше исходная водонасыщенность пласта. Из графика для координаты второй границы $\xi_{(m)}$ следует, что объемная область гидратообразования появляется при более высоком давлении нагнетания газа, по сравнению с давлением, соответствующим началу гидратообразования, и далее ее протяженность увеличивается с ростом давления, под которым нагнетается газ. Тем самым при закачке холодного газа для давления, под которым он нагнетается, можно выделить три интервала значений, отвечающих: 1) отсутствию гидратообразования, 2) образованию гидрата на фронтальной поверхности, 3) образованию гидрата в объемной области, протяженность которой увеличивается с ростом давленого давления и величины проницаемости пласта.

выводы

Выполнено численное моделирование процесса нагнетания газа в пористый пласт, сопровождающегося образованием газогидрата. Показано, что образование газогидрата может происходить как на фронтальной поверхности, так и в объемной области. Установлено, что возникновение объемной области гидратообразования приводит к нагреву пласта выше исходной температуры. Анализ результатов численных расчетов показывает, что с ростом проницаемости пласта и давления, под которым нагнетается газ, протяженность объемной области увеличивается.

СПИСОК ЛИТЕРАТУРЫ

- 1. Истомин В.А., Якушев В.С. Газовые гидраты в природных условиях. М.: Недра, 1992. 236 с.
- 2. Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. М.: Химия, 1980. 296 с.
- 3. Нигматулин Р.И., Шагапов В.Ш., Сыртланов В.Р. Автомодельная задача о разложении газогидратов в пористой среде при депрессии и нагреве // ПМТФ. — 1998. — Т. 39, № 3. — С. 111–118.
- **4.** Цыпкин Г.Г. Математическая модель диссоциации газовых гидратов, сосуществующих с газом в пластах. // Докл. РАН. 2001. Т. 381, № 1. С. 56–59.
- 5. Максимов А.М., Цыпкин Г.Г. О разложении газовых гидратов, сосуществующих с газом в пластах. // Изв. АН СССР. Сер. Мех. жидк. и газа. — 1990. — № 5. — С. 84–88.

Статья поступила в редакцию 15 июня 2005 г.