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Представлены результаты лабораторных исследований развития трещин гидроразрыва в не-
однородном поле напряжений. Трещины создавались в системе двух и трех пересекающихся 
скважин в искусственных кубических блоках с длиной ребра 420 мм. Формируемый в месте 
пересечения скважин концентратор напряжений способствует началу процесса трещинообра-
зования в его окрестности. При выполнении экспериментов максимальная сжимающая 
нагрузка на образец прикладывалась перпендикулярно плоскости, содержащей оси скважин. 
Установлено, что в таком поле напряжений система из трех скважин лучше стабилизирует 
трещину в указанной плоскости, чем система из двух скважин. 
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Лабораторные исследования особенностей роста трещин в горных породах наряду с мате-
матическим моделированием являются важным этапом разработки технологий гидравлическо-
го разрыва пласта. В большинстве случаев при проведении таких экспериментов используют 
керновый материал, полученный при бурении нефтегазовых скважин. При этом процесс тре-
щинообразования изучается на установках кармановского типа, реализуемых по традиционной 
условно трехосной схеме с осевым и боковым сжатием, что не полностью соответствует дей-
ствующему в массиве полю сжимающих напряжений [1 – 4]. 

Для получения достоверных результатов физического моделирования процесса гидрораз-
рыва необходимы лабораторные установки с независимым трехосным нагружением достаточно 
крупных кубических блоков [5]. При линейных размерах образца свыше 300 мм в нем можно 
создавать искусственные неоднородности в виде моделей пластовых скважин и подземных  
выработок, что расширяет возможности эксперимента и позволяет исследовать особенности 
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распространения трещин в актуальных для горного дела постановках. Большинство таких ра-
бот связано с изучением влияния геометрических параметров указанных неоднородностей 
и сжимающих нагрузок на траекторию разрыва [6 – 11]. В некоторых случаях рассматривают 
и значительное повышение вязкости рабочего флюида [12]. Установленные закономерности 
представляют ценность для проектирования гидравлического разрыва пласта и его реализации 
в шахтных условиях, когда распространение трещины происходит в поле сжимающих напря-
жений, осложненном влиянием близкорасположенных горных выработок и большого числа 
пластовых скважин. 

Опыт практической реализации гидроразрыва показывает, что управлять направлением 
распространения трещины возможно на начальном этапе ее развития за счет применения раз-
личных технических подходов и решений. К ним относятся создание инициирующих щелей 
на стенках скважины [13 – 15], изменение локального поля напряжений в зоне разрыва [16, 17], 
использование специальных рабочих жидкостей и режимов их закачки [18 – 20]. На направле-
ние роста трещины влияют расположение и форма перфорационных отверстий, кривизна сква-
жин, их взаимное расположение, наличие в них ответвлений. 

Цель настоящей работы — изучение возможности соединения пересекающихся скважин 
единой продольной трещиной гидроразрыва в неблагоприятном для ее развития поле напряже-
ний. Физическое моделирование проводилось в крупных кубических блоках из пескобетона 
с длиной ребра 420 мм, а указанное поле создавалось за счет приложения максимальной 
нагрузки перпендикулярно плоскости, содержащей оси скважин. 

МЕТОДЫ ИССЛЕДОВАНИЯ ОСОБЕННОСТЕЙ РОСТА ТРЕЩИНЫ ГИДРОРАЗРЫВА 

Исследования процесса гидроразрыва выполнялись на лабораторной установке независи-
мого трехосного нагружения, созданной в лаборатории физических методов воздействия 
на массив горных пород ИГД СО РАН [21]. Основа установки — станина с четырьмя верти-
кальными направляющими. Силовой контур испытательной камеры образуется за счет после-
довательной укладки толстых листов высокоуглеродистой стали с квадратным вырезом и от-
верстиями под направляющие. Физическая модель помещается на нижнюю опорную площадку 
станины перед монтированием листов. К преимуществам такого подхода относится достаточно 
простой доступ к модели после проведения эксперимента без ее излишних перемещений. 
На рис. 1 приведены фотографии образца в испытательной камере до укладки листов и после. 

а б 

  
Рис. 1. Общий вид образца в испытательной камере до укладки стальных листов (а) и после (б) 
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Схема лабораторной установки и система регистрации данных показана на рис. 2. Сжатие 
модели по горизонтальным осям осуществляется за счет действия двух плоских гидравличе-
ских домкратов 7, 8 с максимально развиваемым усилием 200 тс, опирающихся на стенки ис-
пытательной камеры. Нагрузка физической модели 10 по вертикальной оси обеспечивается 
гидравлическим домкратом 9 поршневого типа с максимальным усилием 400 тс. Раздельная 
подача давления на каждый домкрат выполняется ручным насосом 3 по гидравлическим лини-
ям 1 через коллектор 4 посредством последовательного перекрытия кранов 5. Подключенные 
к домкратам пневматические гидроаккумуляторы 6 позволяют стабилизировать внешние 
сжимающие напряжения при деформировании и разрыве исследуемого образца. Нагнетание 
рабочей жидкости в модель скважины 11 происходит с помощью механического пресс-
расходомера 14. 

 
Рис. 2. Схема лабораторной установки с системой регистрации данных: 1 — гидравлическая 
линия; 2 — линия передачи данных; 3 — ручной насос НРГ-7035; 4 — коллектор; 5 — кран;  
6 — гидроаккумулятор пневматический; 7, 8 — плоские гидравлические домкраты; 9 — гид-
равлический домкрат низкий ДН400П15; 10 — физическая модель; 11 — модель скважины 
гидроразрыва; 12 — датчик давления РПД-И; 13 — цифровая линейка; 14 — пресс-расходомер 
механический; 15 — шасси SCXI-1000; 16 — клеммная коробка SCB-68P; 17 — компьютер 

В ходе экспериментов с помощью четырех датчиков 12 регистрировались давления в си-
стеме независимого трехосного нагружения физической модели и давление рабочей жидкости 
в интервале гидроразрыва. По линии передачи данных 2 их сигналы поступали в четырехка-
нальный модуль усилителей SCXI-1121, оснащенный терминальным блоком SCXI-1338, и да-
лее оцифровывались преобразователем SCX-1600, установленным в шасси SCXI-1000 15, а за-
тем с его выхода по соединительному кабелю USB — в персональный компьютер 17. Для реги-
страции объема закачиваемой рабочей жидкости использовалась цифровая линейка (линейный 
энкодер) 13, выходной сигнал которой поступал в компьютер через клеммную коробку 16 
в счетчик импульсов с квадратурным детектором, плата которого подключена к компьютеру 17 
через шину PCI. Аппаратные возможности системы сбора данных подробно описаны в [22]. 

Для изготовления искусственных кубических образцов применялся пескобетон мар-
ки М300 в заводской упаковке (кварцевый песок с портландцементом в пропорции 2 : 1). Со-
гласно исследованиям, выполненным на оборудовании ЦКП геомеханических, геофизических 
и геодинамических измерений СО РАН, предел прочности на сжатие отвердевшей смеси со-
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ставляет 21.5 МПа, модуль упругости — 10.5 ГПа. Такие физические свойства искусственного 
материала сопоставимы с некоторыми породами кровли угольных пластов (алевролиты, угли-
стые аргиллиты), а также с породами соляных месторождений (каменная соль, сильвинит) [23, 24]. 

Состав заливали в специальные формы, которые обеспечивали параллельность граней, 
и выдерживали 21 день до полного отвердевания. Всего изготовлено четыре кубических моде-
ли размером 420 × 420 × 420 мм, в каждой из которых безударным способом пробуривались две 
пары скважин: вертикальная длиной 350 мм и пересекающая ее под углом γ = 30º наклонная 
длиной 410 мм. Расстояние l между вертикальными скважинами в блоке составляло 125 мм, 
а расстояние d между вертикальной и наклонной — 120 мм. 

В двух блоках дополнительно создавали наклонные скважины, пересекающиеся с верти-
кальными под углом γ = 60° (рис. 3). Данные скважины пробуривались с боковой поверхности 
блока, расстояние m от верхней грани блока до центра скважины равнялось 90 мм. Диаметр 
скважин 16 мм; после бурения выполняли их очистку сжатым воздухом. Формирование в каж-
дом блоке двух независимых систем скважин (отмечены I и II на рис. 3а) позволило увеличить 
количество проводимых испытаний. 

 
Рис. 3. Общий вид модели блока в варианте с дополнительными наклонными скважинами 
сверху (а) и в разрезе А – А (б): 1 — штуцер; 2 — шпилька с резиновой шайбой; 3 — эпоксид-
ная смола 

В вертикальные скважины устанавливали металлические штуцеры длиной 70 мм и диамет-
ром 12 мм для закачки рабочей жидкости (гидравлическое масло МГЕ-46В), в наклонные — 
шпильки той же длины с резиновым уплотнением для герметизации области нагружения. 
Штуцеры и шпильки закреплялись в скважинах с помощью эпоксидной смолы. 

ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ 

В ходе физического моделирования исследовалась возможность управления развитием 
трещины гидроразрыва в неоднородном поле напряжений с помощью пересекающихся сква-
жин. В качестве максимального сжимающего напряжения выбрано Sxx > Syy = Szz (рис. 3). 
При таком соотношении напряжений на внешних границах модели растущая трещина имеет 
тенденцию к развороту и выходу из плоскости пересечения скважин, что ранее наблюдалось 
в ходе численных и лабораторных экспериментов [25, 26]. Часть гидроразрывов проведена 
в условиях гидростатического сжатия Sxx = Syy = Szz. 
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После установки блока в испытательную камеру и его нагружения гидравлическими 
домкратами выполняли поочередную закачку рабочей жидкости в скважины. В таблице приве-
дены сжимающие напряжения, угол γ пересечения скважин, а также давления гидроразрыва 
при нагнетании рабочей жидкости в I и II системы скважин (PbI и PbII соответственно). 

Характеристики блоков, параметры эксперимента и давления гидроразрыва 

Номер  
блока 

Угол γ,  
град 

Условия нагружения, МПа Давление гидроразрыва, МПа 
Sxx Syy Szz PbI PbII 

1 30 3.0 3 3 7.65 9.76 
2 30 4.5 3 3 7.39 5.36 
3 60 3.0 3 3 9.23 10.13 
4 60 4.5 3 3 12.04 8.40 

 
Изменение давления рабочей жидкости P в первой системе скважин в блоках 1 и 2 от вре-

мени закачки t показано на рис. 4. Закачку проводили следующим способом. Сначала жидкость 
нагнетали ручным насосом, доводя давление в интервале разрыва до 2 – 3 МПа, а дальнейшую 
ее подачу осуществляли с помощью механического пресс-расходомера с расходом ~ 60 мл/мин. 
После образования трещины закачку прекращали, регистрируя падение давления за счет выхо-
да трещины на поверхность блока. 

 
Рис. 4. Изменение давления рабочей жидкости P в скважинах в первом (а) и втором (б) блоках 

После выполнения эксперимента блок распиливали по двум параллельным плоскостям 
циркулярной пилой с глубиной резания 120 мм, затем раскалывали с помощью металличе-
ских клиньев. Плоскости распила находились на расстоянии 120 мм от верхней и нижней 
границ блока. 

На рис. 5 представлены фотографии поверхностей разлома физических моделей со следа-
ми сформированных трещин, подкрашенных маркером, при этом в верхней части блока рас-
полагается первая система скважин (I), а в нижней — вторая (II). Дополнительно измерялся 
и анализировался угол отклонения α крыльев трещин от плоскости, задаваемой скважинами. 
В однородном поле напряжений трещины формировались преимущественно в плоскости пе-
ресечения скважин (рис. 5а, в). При проведении первой закачки в блоке 1 образовалась трещи-
на, соединяющая скважины и выходящая на боковые стенки модели, отклонение от плоскости 
скважин составило около 15°. Вертикальная трещина в верхней части (рис. 5а) образовалась 
при распиле и расколе блока и к гидроразрыву отношения не имеет. Отметим формирование 
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дополнительной трещины из вертикальной скважины, которая распространилась в нижнюю 
часть блока. При выполнении второго разрыва наблюдалась сбойка скважин единой продоль-
ной трещиной, однако в этом случае искривление ее крыльев более выражено (α = 48 и 25°). 

     а    б 

     
     в    г 

     
Рис. 5. Траектории трещин гидроразрыва в блоках 1 – 4 (а – г) в плоскости распила, отстоящей 
на 120 мм от верхней границы блоков 

В блоке 3 в ходе первой закачки сформировалась продольная трещина гидроразрыва 
в направлении действия Syy, объединившая все три скважины, угол α не превышал 8° (рис. 5в). 
Давление разрыва при закачке рабочей жидкости во вторую скважину составило свыше 
10 МПа, при этом трещины, образовавшиеся в каждой из трех скважин, так и не соединились 
в единый разрыв, отклонившись от общей плоскости на 17 – 28°. 

При Sxx = 1.5Syy наблюдались следующие особенности. В блоке 2 первая закачка привела 
к разрыву наклонной скважины, при этом трещина значительно отклонилась от плоскости, за-
данной скважинами (α = 37°), и вышла на боковую поверхность блока. В ходе второй закачки 
соединение скважин все-таки произошло, но за пределами плоскости, соединяющей их оси. 
Виден рост трещины вдоль действия максимального сжимающего напряжения Sxx. 

В блоке 4 в процессе закачки в первую систему скважин, несмотря на неблагоприятное по-
ле напряжений, сформировался продольный разрыв, объединивший скважины (рис. 5г). 
Наблюдалось некоторое искривление крыльев трещин по направлению действия Sxx. Зафикси-
ровано максимальное давление разрыва, составившее 12 МПа. Второй разрыв в данном блоке 
привел к возникновению трещины в наклонной скважине при давлении 8.4 МПа, направленной 
в сторону действия Sxx. Формирование трещин в наклонной скважине в неоднородном поле 
напряжений зафиксировано и при проведении испытаний в блоках меньшего размера [26]. 
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ВЫВОДЫ 

Использование системы пересекающихся скважин — перспективный способ локального 
управления траекторией трещины и создания единого протяженного разрыва. В однородном 
поле напряжений в большинстве выполненных экспериментов скважины соединялись между 
собой единой трещиной гидравлического разрыва пласта с небольшими отклонениями от за-
данной скважинами плоскости. 

В условиях достаточно сильного превышения одной горизонтальной нагрузки над другой 
(Sxx = 1.5Syy) система из трех скважин лучше стабилизирует трещину в плоскости, содержащей 
их оси, чем система из двух скважин. Отметим, что в неоднородном поле напряжений высока 
вероятность формирования трещины в наклонной скважине по направлению действия макси-
мального сжатия. 
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