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Решается задача о внедрении жесткого недеформируемого клиновидного инструмента в весо-

мый массив горных пород с условием пластичности Кулона – Мора. При этом соотношения 

на характеристиках, как следствия дифференциальных уравнений равновесия, получают 

слагаемые, отождествляющие их с обыкновенными линейными дифференциальными урав-

нениями первого порядка. В результате интегрирования уравнений устанавливаются необхо-

димые значения контактных напряжений на границе “инструмент – порода”. Предельная 

нагрузка зависит как от угла заточки инструмента и физико-механических характеристик по-

роды, так и от глубины проникания. 

Жесткий клин, горная порода, условие Кулона – Мора, вес, предельная нагрузка 
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The problem of penetrating a weighty rock mass with the Coulomb-Mohr plasticity condition with  

a rigid nondeformable wedge-shaped tool is being solved. In this case, the relations on the characteristics, 

as a consequence of differential equilibrium equations, are obtained by the terms that identify them 

with ordinary linear differential equations of the first order. As a result of equation integration, the 

required values of contact stresses at the “tool-rock” interface are determined. The ultimate load  

depends both on the angle of tool sharpening and physical/mechanical rock characteristics, and the 

depth of penetration. 

Rigid wedge, rock, Coulomb-Mohr condition, weight, ultimate load 

Задачи, связанные с прониканием инструментов в массивы горных пород, привлекали и 

продолжают привлекать внимание исследователей [1 – 6]. Для прочных горных пород, по-види-

мому, нет необходимости учитывать вес пород из-за того, что перепад высот верхней и нижней 

точек внедряемого инструмента невелик. Однако в тех случаях, когда прочность пород мала, то 

здесь есть потребность рассматривать влияние веса пород на значения предельной нагрузки 
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при внедрении того или иного инструмента. Отметим, что предельные нагрузки находятся при 

решении задач по схеме жестко-пластического тела [7 – 9]. Жестко-пластическое деформиро-

вание горных пород при условии Кулона-Мора изучалось в [10 – 12], вес горных пород в схему 

жестко-пластического тела вводился в [13, 14]. В случае учета веса горных пород соотношения 

на характеристиках не являются уравнениями в полных дифференциалах, отсюда возникают 

сложности в их интегрировании. Покажем, как это препятствие преодолевается в задаче о внед-

рении жесткого недеформируемого клина в жестко-пластическую весомую среду с условием 

пластичности Кулона – Мора в случае плоской деформации.  

Исходные положения. Рассматривается плоская деформация с условием пластичности 

массива пород в виде условия Кулона – Мора [10 – 12]: 

 max tgn n
n

k   , (1) 

где n  — нормаль к площадке в системе координат 1, 2, 3, связанной с главными осям тензора 

напряжений T , 1 2 3( )    . Исходя из диаграммы Мора (рис. 1), находим эквивалентное (1) 

условие: 

 1 3 1 3tg
2cos 2

k
   




 
  , (2) 

где   — угол наклона прямой (1) к оси абсцисс, точка A — точка касания прямой (2) с большим 

кругом Мора. Условие (2) переписывается в виде 

 1 3 1 3 sin cos
2 2

k
   

 
 

  . (3) 

 

Рис. 1. Диаграмма Мора с главными напряжениями 1 2 3, ,   1 2 3( )    . Заштрихованная 

область — область допустимых напряженных состояний 

Вводятся обозначения 

 1 3 1 3
2

, , tg2
2 2

xy

x y

   
  

 

 
  


, (4) 

где Oxyz — прямоугольная декартова система координат, деформации в направлении оси z 

отсутствуют ( 0z  , 0zx  , 0zy  ), угол   устанавливает ориентацию первого главного 

направления тензора T  по отношению к осям x, y, так как tg2 tg2(1, )x  . Вводятся преобра-

зования Леви: 

 cos2 , cos2 , sin2x y xy               . (5) 

Условие пластичности (3) формулируется как 

 sins     , (6) 

где coss k  . 
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Подстановка (5) в уравнения равновесия 

 

0,

0,

xyx

xy y

b

x y

x y



 



 

 

    

  

 (7) 

где b  — плотность массовых сил ( b g  ), дает гиперболическую систему дифференциаль-

ных уравнений относительно искомых функций , ,    с вещественными характеристиками 

 
1 2

1 2

tg( ), tg( )
dy dy

dx dx
     

   
        
   

, (8) 

где угол   здесь связан с углом   соотношением 

 cos 2 sin   . (9) 

Из (9) следует, что 

 
4 2

m
 

    , 0, 1, ...m   . 

На характеристиках первого семейства / tg( )dy dx     выполняется следующая зависи-

мость между дифференциалами величин ,  , y (y — ордината выбранной точки): 

 
sin 2 cos( )

2 0
cos 2 ( cos 2 )( )

b

s s

d
d dy

   
 

       


  

  
. (10) 

На характеристике второго семейства с уравнением / tg( )dy dx     выполняется анало-

гичная связь 

 
sin 2 cos( )

2 0
cos 2 ( cos 2 )( )

b

s s

d
d dy

   
 

       


  

  
. (11) 

Из (10), (11) следует, что эти выражения не являются полными дифференциалами, т. е. для 

интегрирования необходимо задавать пути интегрирования. Отметим, что угол   выражается 

через угол   с помощью (9), причем / 4   при 0m  . 

Решение задачи о внедрении жесткого клина в жесткопластическую весомую среду. 

Исходная ситуация изображена на рис. 2.  

 

Рис. 2. Жесткий клин с гладкой гранью KA и углом раствора при вершине K, равном 2. Области 

KAB, DAC — области равномерного напряженного состояния, область BAD представляет собой 

центрированное поле 

Здесь представлены жесткий клин, области равномерного напряженного состояния KAB и 

ADC, центрированное поле BAD. На этом же рисунке расставлены направления главных осей в 

каждой из областей. На границе AC, свободной от напряжений, 0n  , поэтому 1-е главное 
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направление на AC совпадает с направлением нормали n , вдоль 3-го главного направления, 

совпадающего с осью x, напряжение 3  — сжимающее ( 3 0  ). На границе KA в треугольнике 

KAB нормальное напряжение n  сжимающее и по абсолютной величине должно превосходить 

сжимающее напряжение вдоль направления KA. Поэтому направление 1 совпадает с направле-

нием KA, направление 3 в треугольнике KAB ортогонально AK. Таким образом значение угла   

в треугольнике ADC равно / 2 , значение   в треугольнике KAB равно / 2  . 

Прежде, чем приступить к решению задачи, приведем несколько формул, которые потребу-

ются в дальнейшем. Рассмотрим рис. 2. Пусть глубина проникания клина OK H , тогда 

 

/ cos , /(2cos ), / cos ,

/(2cos cos ), cos( ),

cos( ) /(2cos cos ).

AK H AP H AB AP

AB H LB AB

OK LB H

  

   

   

  

  

  

 (12) 

Расчеты начнем вести с границы AC полуплоскости 0y  . За исходную точку возьмем 

точку C. На границе AC выполняется условие пластичности (6), (9) 

 cos2s     . (13) 

В точке C 1 0  , поэтому 

 3 3
3 2

, ,
2 2 cos

s  
  


     . (14) 

Двигаемся по характеристике CD вниз (ее уравнение совпадет с (8)). Вдоль нее справед-

ливо (11). Полагаем здесь / 2  , 0d  . Тогда 

 
2

sin

cos sin 2 2cos
b b

dy
d dy


  

  


   . 

Отсюда находим 

 
2 2 22cos cos 2cos

D C s
D C b b

y y MD
   

  


     , (15) 

где MD — глубина, на которой находится точка D ( 0MD ). Из (15) устанавливаем, что 

давление   в точке D по абсолютной величине больше, чем в точке C. 

Дальнейшее движение осуществляется по дуге BD центрированного поля BAD. Для его 

описания вводятся полярные координаты ,   с полюсом в точке A: 

 cos , sinAx x y      . (16) 

Учитывая, что угол   на границе AD равен ( / 2 )   , значение угла / 2  , а на гра-

нице AB угол ( / 2 )       , значение / 2    , то из этих соображений можно связать 

значения углов   и   соотношением 

       . (17) 

Рассмотрим теперь характеристики (8) и соотношения на них (10), (11) в системе коорди-

нат (16). 

Имеем в соответствии с (16) 

 cos sin , sin cosdx d d dy d d             . (18) 

С применением (17), (18) получаем, что характеристики первого семейства (8) вырожда-

ются в уравнения 0d   или 0d   ( = const), что соответствует уравнениям лучей на рис. 2 

в криволинейном треугольнике BAD. Другое семейство характеристик (8) преобразуется в 

уравнение 

 sin 2 cos2 0d d      , 
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интегралом которого служит выражение 

 0ctg2 ( )
0e

     
 , (19) 

где 0  — значение полярного радиуса   при 0  . 

Далее рассматриваем дугу BD в треугольнике BAD. Значение AB согласно (12) равняется 

следующей величине 

 0
2cos cos

H
AB 

 
  . 

При этом угол 0 / 2    . Если подставить эти значения в (19) и положить 0 / 2  , то 

получим значение AD 

 ctg2

2cos cos

H
AD e  

 

 . 

Видно, что значение AD больше по величине значения AB, потому что / 4   ( ctg2 0  ). 

Рассмотрим теперь соотношение на второй характеристике (8) — соотношение (11). Для 

его выражения найдем дифференциал dy . Согласно (16), (18), (19) получаем 

 
sin( )

sin 2
dy d

  





 . 

Тогда соотношение (11) преобразуется в следующее 

 
cos( )

tg2 [ cos2 ] 2[ cos2 ] 0
sin 2

s s bd d d
 

          



      , (20) 

В этом уравнении величину cos2 s    можно считать функцией параметра  . Тогда урав-

нение можно переписать как 

 
cos( )

[ cos2 ] 2ctg2 [ cos2 ] ctg2 0
sin 2

s s b

 
         




     . 

Видно, что это обыкновенное линейное дифференциальное уравнение относительно искомой 

функции cos2 s   . Решение его ищем в виде 

 cos2 s uv    . 

Тогда v удовлетворяет уравнению 

 2ctg2
dv

d
v

  . 

Отсюда 2 ctg2v e    и для определения u получаем следующее дифференциальное уравнение 

 
0ctg2 3 ctg2

0

2

cos2 cos( )

sin 2
b

e e
u

      





  . 

Оно интегрируется [15]. Его интегралом служит выражение 

 
0ctg2 3 ctg2

0

2 2

cos2
[sin( ) 3ctg2 cos( )]

sin 2 (1 9ctg 2 )
b

e e
u C

    
     

 



     


, 

где C — произвольная постоянная. Поэтому находим 

0ctg2 ( )
2ctg20

2 2

cos2
cos2 [sin( ) 3ctg2 cos( )] .

sin 2 9cos 2
s b

e
uv Ce

  
 

        
 

 

       


 (21) 

Для определения константы C в (21) используем условие (15), которое трансформируется в 

 
2 2

2 cos 2cos

s
D b

MD





  

 
    . 
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Тогда выражение для константы C будет следующим: 

 ctg2 2

2 2 2

cos2 (cos 3ctg2 sin )
tg

sin 2 9cos 2 ) 2cos
s b b

AD MD
C e      

   
  

  
   

 
 , (22) 

где AD и MD — отрезки, указанные на рис. 2. Зная константу C из (22), с применением (21) 

находим значение   в точке B. 

Теперь движемся по отрезку BK на рис. 2. Здесь (как и во всем треугольнике KAB) полагаем 

/ 2    , т. е. константой. Используем вторую из характеристик (8) — прямую с угловым 

коэффициентом ctg( )  . На этой характеристике при условии / 2     из (11) получаем 

 
sin( )

sin 2
cos( )

bd dy
 

  
 


 


. 

С учетом этого выражения  

 
sin( )

( )
sin 2 cos( )

b
K B K By y

  
 

  


  


, (23) 

где ( ) ( cos( )) /(2cos cos )K Вy y OK LB H            согласно (12). 

На границе KA  предполагаем, что трение отсутствует, т. е. контактная площадка — главная 

площадка и, кроме того, выполняется условие пластичности (6) 

 1 3 1 3cos2
2 2

S

   
  

 
   . 

Здесь считается, что 1 3( ) / 2 K    . Отсюда находим выражения 1 , 3  из решения системы 

 

2 2
1 3

1 3

sin cos ,

2

S

K

    

  

  


 

  

в виде  

 2
1 2 cosS K     ,    2

3 2 sinS K      . 

Напряжение 3 — нормальное напряжение на KA . Оно зависит от глубины на которой нахо-

дится произвольно выбранная промежуточная точка Р на грани KA клина, причем, как видно из 

предыдущих вычислений, это напряжение изменяется линейно с глубиной. Чтобы найти силу, 

которую требуется приложить к грани KA, надо вычислить интеграл от 3 по всей границе KA, 

т. е. умножить 3 на дифференциал длины / cosdl dh   и взять интеграл в пределах от h = 0 до 

h = H. Величина силы в направлении оси y вычисляется как 32 / sinF  . 

ВЫВОДЫ 

Решена задача о внедрении жесткого клина в весомую горную породу. Получено решение 

предела нагрузки, зависящей от угла при вершине клина, глубины внедрения и параметров гор-

ной породы. 
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