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Высокоэнтропийные сплавы обладают заметно лучшими механическими и физическими харак-
теристиками по сравнению с традиционными сплавами и находят широкое применение в таких

отраслях промышленности, как национальная оборона, авиакосмическая техника, физика высо-
кого давления и т. п. Получение высокоэнтропийных сплавов по большей части осуществляет-
ся методом электродуговой плавки, характеризующимся сегрегацией химических элементов и
низкой продуктивностью. В настоящей работе для получения тугоплавких высокоэнтропийных
сплавов (ТВЭС) применяется метод детонационного спекания механически легированных по-
рошковых смесей тугоплавких металлов. По результатам численных расчетов были определены
условия формирования твердорастворной фазы ТВЭС и минимальное детонационное давление,
необходимые для детонационного спекания, а также проведены эксперименты, в которых в ка-
честве переменной характеристики использовалось соотношение массы взрывчатого вещества

к суммарной массе порошка и трубки, в которую он помещался. В результате детонационно-
го спекания получен объемный материал, содержащий ТВЭС на основе Mo—Nb—Re—Ta—W.
Спеченные материалы анализировались методами рентгенофазового анализа, растровой элек-
тронной микроскопии, энергодисперсионной спектроскопии и т. д. Результаты показали, что
полученные продукты содержат ОЦК-фазы и металлический Re, распределение химических
элементов неравномерное, а ТВЭС сформировались только в некоторых частях материала, что
тем не менее демонстрирует применимость используемого метода для изготовления ТВЭС.
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ВВЕДЕНИЕ

Концепция высокоэнтропийных сплавов

(ВЭС) была предложена в 2004 г. [1], и с

тех пор данные сплавы привлекают огромное

внимание. Принято считать, что ВЭС состо-
ят минимум из пяти химических элементов,
смешанных в эквимолярной или почти экви-
молярной пропорции, а молярная доля каж-
дого из них составляет от 5 до 35 % [1, 2].
По мере изучения ВЭС была разработана кон-
цепция ТВЭС — тугоплавких высокоэнтро-
пийных сплавов [3], содержащих три или бо-
лее тугоплавких элемента, молярная доля ко-
торых превышает 35 %. ТВЭС наследует ос-
новные характеристики ВЭС, такие как упо-
рядоченное расположение атомов и химическое

разупорядочение, высокая энтропия, искажение
кристаллической решетки, медленная диффу-
зия. Исследования показали, что ТВЭС облада-
ют отличными механическими характеристи-
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ками — прочностью, твердостью, износостой-
костью, а также высокими температурой плав-
ления и плотностью [2, 4, 5]. Вследствие то-
го, что механические и физические свойства
ТВЭС превосходят соответствующие свойства

традиционных сплавов, они имеют перспекти-
вы применения в авиакосмической отрасли, фи-
зике высокого давления и других областях.

В настоящее время ТВЭС различного

состава (MoNbRe0.5TaW [2], WFeNiMo [6],
HfZrTiTa0.53 [7]) получают методом вакуум-
ной электродуговой плавки. Однако этот метод
характеризуется высокой степенью сегрегации

химических элементов [8] и ограничением раз-
мера ТВЭС. Он используется главным обра-
зом для получения материала в лабораторных

масштабах. Поэтому разработка нового спосо-
ба получения ТВЭС в масштабах практическо-
го применения представляет собой безотлага-
тельную техническую проблему.

Метод механического легирования —
твердофазный неравновесный высокоэнергети-
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ческий процесс помола в шаровой мельнице —
позволяет проводить прямое легирование

исходных материалов в твердофазном состоя-
нии, при этом достигается бо́льшая взаимная
растворимость элементов по сравнению с про-
цессами высокоскоростной кристаллизации.
Как следствие, механическое легирование

имеет существенные преимущества при из-
готовлении порошковых смесей сплавов с

высокой температурой плавления [9]. Метод
детонационного спекания заключается в воз-
действии на частицы порошка ударных волн,
генерируемых взрывом. Тем самым реали-
зуется их спекание с получением плотного

изделия [10, 11]. В качестве новой высоко-
энергетической технологии детонационное

спекание характеризуется высокими темпе-
ратурами и рабочими давлениями, короткой
продолжительностью спекания, возможностью
достигать плотность, близкую к теоретиче-
ской, и отсутствием сегрегации химических

элементов. Относительно традиционных мето-
дов спекания данный способ имеет уникальные

преимущества с точки зрения обработки и

получения материалов. В настоящей работе

использовались оба метода: механическое

легирование для смешивания порошков туго-
плавких металлов и детонационное спекание

порошковых смесей для получения объемных

ТВЭС.

1. ВЫБОР ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ
И РАЗРАБОТКА ХИМИЧЕСКОГО СОСТАВА

Самые простые структуры ВЭС — твер-
дые растворы замещения. Они легко образуют-
ся при повышенной взаимной растворимости

химических элементов, когда их атомные ра-
диусы и электроотрицательности различают-
ся незначительно. В настоящей работе изуча-
ются тугоплавкие ВЭС, состоящие из элемен-
тов пятой, шестой и седьмой групп побочных
подгрупп пятого и шестого периодов периоди-
ческой системы [12]. ТВЭС, состоящие из туго-
плавких металлов (W, Mo, Nb, Ta и т. д.), обла-
дают высокими жаростойкостью и механиче-
скими свойствами при высоких температурах.
Однако при комнатной температуре они доста-
точно хрупки, что затрудняет их применение
на практике [13]. Разумный выбор элементов,
составляющих ВЭС, позволяет получить улуч-
шенные механические свойства металлических

материалов. Как известно из исследований, до-
бавка Re к ТВЭС на основе вольфрама может

привести к повышению вязкости и пластично-
сти, а также снизить хрупкость сплава при
комнатной температуре [14]. Поэтому в данной
работе в качестве объекта исследования был

выбран сплав состава Mo20Nb20Re10Ta20W30.
В работе [8] было показано, что предска-

зать образование твердорастворной фазы вы-
сокоэнтропийного сплава можно с помощью

трех параметров: отношение энтропии к эн-
тальпии (Ω), разница атомных радиусов (δ)
и концентрация валентных электронов (КВЭ).
В соответствии с существующими исследова-
ниями, критериями формирования фазы твер-
дого раствора являются значения Ω > 1.1 и

δ 6 6.6 % [15], а для предсказания типа ре-
шетки — ОЦК или ГЦК — используется па-
раметр КВЭ. При КВЭ < 6.87 в сплаве суще-
ствует только ОЦК-фаза, если же КВЭ > 8.0,
то единственной фазой сплава является ГЦК-
фаза. В случае, когда 6.87 6 КВЭ < 8.0, сплав
состоит из нескольких фаз [16].

Для настоящей работы энтальпию сме-
шения элементов, входящих в состав раз-
рабатываемого сплава, можно получить из

данных [17], а другие параметры имеются

в свободном доступе в литературе. Для спла-
ва Mo20Nb20Re10Ta20W30 характерны следу-
ющие значения: Ω = 3.329, δ = 2.57 %,
КВЭ = 5.7. Согласно вышеописанному кри-
терию, в данном ТВЭС должна существовать
единственная твердорастворная ОЦК-фаза.

2. МАТЕРИАЛЫ И МЕТОДИКИ

2.1. Приготовление порошковых смесей

Чистота используемых тугоплавких по-
рошков Mo, Nb, Re, Ta, W превышает 99.9 %,
средний размер частиц находится в диапа-
зоне 38 ÷ 45 мкм («Hebei Xinda Alloy Materials
Company»). Порошковую смесь готовили мето-
дом механического легирования. Порошки сме-
шивались в вакуумном сосуде из нержавеющей

стали в молярном соотношении 2 : 2 : 1 :
2 : 3. Отношение массы шаров к массе по-
рошка составляло 3 : 1. Обработка порошков
проводилась в планетарной шаровой мельнице

QM-3SP4 при скорости 300 об/мин в течение
6 ч. Сосуд предварительно вакуумировался, по-
сле чего в него напускался высокочистый ар-
гон. После механического легирования порошок
отделялся от шаров просеиванием и помещал-
ся на хранение в закрытый сосуд до проведения

экспериментов.
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2.2. Выбор взрывчатого вещества

Для того чтобы гарантировать уплотне-
ние металлических порошков, необходимо рас-
считать минимальное детонационное давление

и выбрать подходящее взрывчатое вещество

(ВВ) ввиду того, что для различных порошко-
вых материалов требуется разное давление при

спекании. Из литературы хорошо известно, что
детонационное давление, необходимое для де-
тонационного спекания, прямо пропорциональ-
но твердости частиц порошка. Таким образом,
для оценки минимальной скорости детонации

в процессе детонационного спекания было вы-
брано уравнение, предложенное в работе [18]:

Vd,min = 2
√

1.2 HV/ρe , (1)

где ρe — плотность ВВ, HV — твердость ча-
стиц порошка по Виккерсу. Минимальное де-
тонационное давление можно получить путем

подстановки уравнения (1) в следующее соот-
ношение между детонационным давлением и

скоростью детонации:

Pd,min = ρev
2
d,min/4. (2)

Твердость по Виккерсу сплава

Mo20Nb20Re10Ta20W30 составляет около

6 000 МПа [2, 19]. Исходя из формул (1) и (2)
минимальное детонационное давление должно

быть 7.2 ГПа. Поскольку используемые по-
рошковые материалы состоят из тугоплавких

твердых металлов, в работе использовался

тротил различной плотности. Соответствую-
щие параметры приведены в табл. 1.

2.3. Детонационное спекание

Был проведен эксперимент, в котором

исследовалась возможность применения дето-
национного спекания порошка для производ-
ства высокоэнтропийного сплава посредством

скользящей детонации (рис. 1). В дополнение к
этому изучалось влияние отношения массы ВВ

к суммарной массе порошка и трубки на ка-

Та блиц а 1

Характеристики тротила

ρe, г/см
3 vd, м/с Pd, ГПа

1.0 5 110 7.90

1.1 5 399 9.56

1.2 5 688 11.38

Рис. 1. Схематическое изображение устрой-
ства детонационного спекания

чество получаемых изделий. Сначала порош-
ковые смеси помещались в трубку, подверга-
лись прессованию до относительной плотно-
сти примерно 53 % от теоретической и ва-
куумировались. После этого ВВ распределя-
лось равномерным слоем вокруг и вдоль труб-
ки. ВВ инициировалось с помощью детонатора,
что приводило к скользящей детонации. При
этом формировалась ударная волна, деформи-
рующая трубку.Под действием адиабатическо-
го сжатия, вызванного ударной волной, части-
цы порошка движутся с высокой скоростью,
сдавливаются и сталкиваются друг с другом,
что приводит к поглощению порошком энер-
гии. В результате температура порошка воз-
растает, вызывая увеличение внутренней энер-
гии. По достижении достаточно высокого де-
тонационного давления поверхность частиц по-
рошка начинает плавиться, что и приводит к
спеканию порошкового материала.

В исследованиях детонационного спека-
ния главным параметром чаще всего явля-
ется отношение массы ВВ к массе порошка

(ВВ/П) [20]. Однако в настоящих эксперимен-
тах внутренний диаметр трубки мал, в ре-
зультате чего количество загружаемого порош-
ка также мало. Следовательно, нельзя прене-
брегать поглощением энергии трубкой. Таким
образом, основным параметром в данных экс-
периментах является отношение массы ВВ к

суммарной массе порошка и трубки (ВВ/ПТ).
С целью изучения эффекта ВВ/ПТ проведено

три эксперимента, в которых толщина слоя ВВ
вокруг трубки и над ней была постоянной. Из-
менение параметра ВВ/ПТ осуществлялось за
счет варьирования плотности ВВ (табл. 2).
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Та блиц а 2

Параметры экспериментов

Номер

опыта

Плотность

ВВ, г/см3

Относительная

плотность

порошка, %

ВВ/ПТ

1 1.0 52.83 2.70

2 1.1 52.55 2.98

3 1.2 52.73 3.24

2.4. Подготовка образцов

После экспериментов спеченные образцы

извлекались из трубок. Как видно из рис. 2,
извлеченные образцы претерпели радиальную

усадку по всей длине трубки, исключая ее кон-
цы, что обусловлено разрежением ударной вол-
ны. Этот факт свидетельствует о том, что ис-
пользование трех разных соотношений ВВ/ПТ
при детонационном спекании приводит к фор-
мированию ровных объемных изделий. Однако
при взгляде на спеченные материалы сверху

можно увидеть отверстие в центре всех трех

Рис. 2. Спеченные образцы: общий вид (а),
вид сверху (б), вид снизу (в)

Рис. 3. Внешний вид образцов

изделий. Действие нерегулярного отражения
ослабевает по направлению к нижней части

спеченного сплава вследствие краевого эффек-
та. Следовательно, отверстие не распространя-
ется по всей длине изделия, а исчезает ближе к
его нижней части.

На рис. 3 показаны образцы, изготовлен-
ные из спеченных сплавов. Образцы толщиной
7 мм были вырезаны из средней части трех

спеченных материалов при помощи установ-
ки электроэрозионной резки и обозначены как

СМ1, СМ2 и СМ3. Вырезанные образцы были
отшлифованы до блеска, а затем отполированы
на двухдисковом металлографическом полиро-
вальном станке MP-2A с плавным регулирова-
нием скорости.

2.5. Исследование образцов

Истинная плотность образцов определя-
лась методом Архимеда, теоретическая плот-
ность рассчитывалась по правилу смесей; по-
лученные значения использовались для расче-
та относительной плотности. Твердость образ-
цов по Виккерсу измерялась с использовани-
ем твердомера THVS-MDT-AX при нагрузке

1 000 Н и выдержке 15 с. Фазовый состав ме-
ханически легированных порошковых смесей и

спеченных образцов исследовался на дифрак-
тометре XRD, Bruker D8 DISCOVER с ис-
пользованием излучения медной рентгеновской

трубки. Микроструктурные исследования про-
водились на электронном микроскопе с поле-
вой эмиссией SU5000, распределение и коли-
чество химических элементов анализировалось

при помощи энергодисперсионного спектромет-
ра.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Микроструктура механически легированных
порошковых смесей

На рис. 4 представлены электронные мик-
рофотографии тугоплавких металлических по-
рошков после 6 ч обработки в мельнице (при
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Рис. 4. Электронные изображения механически легированных порошков

Рис. 5. Рентгенограмма порошка после меха-
нического легирования

различных увеличениях). Во время ранней ста-
дии обработки в результате значительного

ударного воздействия мелющих тел наблюда-
ется деформация частиц порошка. Вследствие
этого частицы имеют неправильную форму и

различный размер. Яркая и гладкая поверх-
ность частиц порошка говорит об отсутствии

холодной сварки в ходе их обработки.Как пока-
зали карты распределения, химические элемен-
ты Mo, Nb, Re, Ta, W распределяются нерав-
номерно по исследуемой поверхности. Данный
факт свидетельствует об отсутствии диффузи-
онных процессов во время механической обра-
ботки порошков. Рентгенограмма обработан-
ного порошка (рис. 5) характеризуется нали-
чием только металлических фаз W, Re, Ta.
Рефлексы Mo и Nb на рентгенограмме отсут-

ствуют. Сопоставление результатов, получен-
ных методами растровой электронной микро-
скопии и энергодисперсионной спектроскопии,
дает понять, что состав материала представ-
лен отдельными химическими элементами или

твердыми растворами. Таким образом, исчез-
новение Nb и Mo может быть связано с уши-
рением рефлексов Ta и W, обусловленным фор-
мированием твердых растворов.

3.2. Макроскопический анализ спеченных сплавов

Вследствие высоких значений плотности

тротила и детонационного давления в прове-
денных экспериментах возникал ощутимый эф-
фект нерегулярного отражения. Прямые и от-
раженные волны накладывались, вызывая сме-

Рис. 6. Внешний вид образцов СМ1 (а),
СМ2 (б), СМ3 (в)
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Рис. 7. Диаметр отверстий Маха

щение, которое приводило к появлению но-
вой прочной прерывистой поверхности между

тройной фазовой точкой и осью. Это, в свою
очередь, вызывало образование отверстий Ма-
ха как в спеченных сплавах, так и в расплав-
ленном материале вокруг данных отверстий

(рис. 6). Кроме того, увеличение соотношения
ВВ/ПТ приводило к возрастанию диаметра от-
верстий Маха (d), как показано на рис. 7. От-
ражение волны разрежения по оси вслед за вол-
ной Маха способствовало увеличению количе-
ства радиальных трещин в образце. Таким об-
разом, в спеченных изделиях под действием

растягивающих напряжений, вызванных вол-
ной разрежения, возникали трещины, распро-
страняющиеся от отверстий Маха к периферии

образцов [21]. При более мощной волне Маха
формировалась бы более сильная волна разре-
жения, что вызвало бы бо́льшую степень раз-
рушения материала. В образце СМ3 наблюда-
ются достаточно заметные пустоты, сформи-
рованные пересечением периферийных и ради-
альных трещин, что свидетельствует о чрез-
мерно высоком детонационном давлении в дан-
ном эксперименте. Важно отметить, что более
высокое детонационное давление нанесло бы

более серьезные повреждения вблизи оси спе-
ченного сплава.

3.3. Микроскопический анализ спеченных сплавов

На рис. 8 показаны рентгенограммы спе-
ченных образцов. Все материалы имеют одина-
ковый фазовый состав, представленный ОЦК-

Рис. 8. Рентгенограммы спеченных образцов

структурами и чистым рением. Идентичность
рентгенограмм спеченных материалов показы-
вает, что изменение соотношения ВВ/ПТ прак-
тически не оказывает влияния на фазовый со-
став. Согласно рис. 8,б, на котором изображе-
ны самые высокие рефлексы (110), с увеличе-
нием плотности ВВ самый сильный рефлекс

сдвигается в сторону больших углов дифрак-
ции. Это можно объяснить тем, что увеличе-
ние плотности ВВ приводит к росту энергии

соударения, в результате чего зёрна матери-
ала сжимаются и параметры решетки сплава

уменьшаются.
Изображения микроструктуры спеченных

образцов, полученные методом растровой элек-
тронной микроскопии неповрежденных участ-
ков материалов, представлены на рис. 9. Под
действием высокого давления ударной волны

частицы порошка претерпели значительную

пластическую деформацию, некоторые части-
цы сплава приобрели вытянутую форму. Дан-
ная пластическая деформация способствует за-
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Рис. 9. Микроструктура образцов сплава:

а — СМ1, б — СМ3, в — СМ2, г — увеличенное изображение образца СМ2

полнению межчастичного пространства и, со-
ответственно, уплотнению. Более того, меж-
фазные контакты в неповрежденных областях

сплавов, полученных во всех трех эксперимен-
тах, являются крайне прочными. Столкнове-
ние частиц сопровождается образованием мик-
роструй в результате пластической деформа-
ции, как показано на рис. 9,б. Образование мик-
роструй способствует схлопыванию пор за счет

течения материала, что ускоряет поглощение
энергии и деформационные процессы. Все три
образца содержат микропоры. Наличие пустот
может быть связано с некорректным процессом

вакуумирования трубки с порошком, из-за чего
остаточный воздух в порошке становится при-
чиной пористости. Однако остаточный воздух
является не только препятствием для достиже-
ния 100%-й относительной плотности после де-
тонационного спекания, но и фактором, снижа-
ющим твердость спеченных сплавов. На уве-
личенном изображении области микрострукту-
ры образца СМ2 присутствуют следы расплав-
ленного материала, окружающего микропоры.
Данное наблюдение позволяет предположить,
что остаточный воздух, содержащийся в мик-
ропорах, претерпевает адиабатическое сжатие
под действием ударной волны, нагреваясь и
расплавляя окружающий металл.

Полученные энергодисперсионные спек-
тры сплава демонстрируют неравномерное рас-
пределение химических элементов по сканируе-
мой поверхности. Сигнал от Ta, Nb и Mo пред-
ставлен неравномерно распределенными пят-
нами неправильной формы. Более того, все хи-
мические элементы в сплаве не растворены

друг в друге полностью, а присутствуют в ви-
де отдельных металлов или переходных фаз.
Полное смешение всех пяти компонентов реа-
лизуется только в некоторых локальных обла-
стях, что означает, что ТВЭС в спеченных об-
разцах сформировался только локально. Это-
му явлению есть две причины. Во-первых, ко-

роткое время механической обработки исход-
ных порошков (6 ч) приводит к их агломе-
рированию и неравномерному распределению.
С учетом правила сплавообразования и резуль-
татов энергодисперсионной спектроскопии [22]
мы обнаружили, что Nb и Mo, имея более низ-
кие температуры плавления, диффундируют с
большей скоростью и растворяются в других

металлах раньше. Это приводит к их значи-
тельному растворению и частичной агломера-
ции, наряду с образованием переходных фаз

(таких, как WMo, TaNb, MoNb) и ТВЭС. Во-
вторых, шести часов обработки тугоплавких
порошков в мельнице недостаточно для получе-
ния мелкого порошка сплава; частицы порошка
превышают необходимый размер, требуемый
для детонационного спекания. Следовательно,
плавление частиц сплава происходит только на

его поверхности под действием ударной вол-
ны, в то время как внутренний объем частиц
остается неизменным. В результате этого ме-
таллы перемешиваются только на поверхности

частиц порошка. В заключение следует отме-
тить необходимость дальнейшей оптимизации

и улучшения процессов измельчения и гомоге-
низации металлических порошковых смесей.

3.4. Механические свойства

Плотность спеченных образцов определя-
лась методом Архимеда, теоретическая плот-
ность рассчитывалась исходя из правила сме-
сей

ρ =
∑

wiAi

/ ∑ wiAi
ρi

(3)

и составляет 14.82 г/см3. Здесь Ai — молярная

масса каждого элемента, wi — молярная до-
ля компонента, ρi — плотность элемента. Зна-
чения относительной плотности материалов,
полученных методом детонационного спекания
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Та блиц а 3

Плотность спеченных материалов

Образец ВВ/ПТ Плотность,
г/см3

Относительная

плотность, %

СМ1 2.70 14.13 95.34

СМ2 2.98 14.05 94.80

СМ3 3.24 13.82 93.25

при различных соотношениях ВВ/ПТ, приве-
дены в табл. 3. Ввиду перепрессовки порошка
и наличия остаточного воздуха плотность об-
разцов после экспериментов оказалась заметно

ниже теоретического значения. Относительная
плотность образцов убывала при увеличении

соотношения ВВ/ПТ.
Полученные методом детонационного спе-

кания материалы могут выполнять функции

целевого сплава, если не учитывать торцевые
части спеченных образцов, низкое качество ко-
торых обусловлено краевыми эффектами. В
связи с этим для измерения твердости образ-
цов была выбрана их средняя часть. Для изуче-
ния распределения твердости по сечению спе-
ченных образцов вдоль его радиуса были взяты

три точки — А, Б, В. Расстояние между каж-
дой точкой и центром сечения составляло 2, 3
и 4 мм соответственно (рис. 10,а). Для сни-
жения погрешности измерений в каждой точ-
ке проводилось по пять измерений, а за вели-
чину твердости принималось среднее значение.
На рис. 10,б показаны значения твердости по

Рис. 10. Пояснительная схема измерения твердости:

а — расположение точек индентирования, б — распределение значений твердости в образцах

Виккерсу в каждой исследуемой точке. Твер-
дость образцов увеличивается при удалении от

их центра, что обусловлено неравномерностью
косой ударной волны, возникшей при скользя-
щей детонации в процессе детонационного спе-
кания. Кроме того, твердость материала воз-
растает с увеличением соотношения ВВ/ПТ.

ВЫВОДЫ

В данной работе исследовался способ

получения тугоплавких высокоэнтропийных

сплавов методом детонационного спекания.
В результате теоретического анализа опре-
делены легирующие элементы и параметры

спекания. Посредством экспериментов по

детонационному спеканию были получе-
ны ТВЭС систем Mo—Nb—Re—Ta—W и

Mo—Nb—Ta—W. Спеченные объемные мате-
риалы характеризуются высокими плотностью

и твердостью. По результатам их исследования
сделаны следующие выводы.

(1) Продемонстрирована принципиальная
возможность получения высокоэнтропийных

сплавов системы Mo—Nb—Re—Ta—W мето-
дом детонационного спекания.

(2) Перемешивание порошков тугоплавких
металлов методом механического легирования

в течение 6 ч оказалось недостаточным вре-
менем обработки. Распределение элементов в
обработанном порошке было неравномерным,
частицы порошка — относительно крупными,
а подготовленный порошок не удовлетворял

требованиям технологии детонационного спе-
кания.
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(3) Технология детонационного спекания
позволяет получать высокоплотные объемные

материалы, обладающие высокой твердостью.
Характерные значения относительной плотно-
сти и твердости полученных сплавов составля-
ют не менее 93.25 % и до 492 HV соответствен-
но.

(4) Параметр элементарной ячейки спла-
ва, как и плотность, постепенно уменьшается
при увеличении соотношения массы взрывча-
того вещества к сумме масс порошка и трубки.
При этом твердость сплава в одной и той же

точке сечения возрастает с увеличением дан-
ного соотношения.
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