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С использованием полученных ранее аналитических формул для собственных частот
и форм колебаний неоднородных стержней с переменным сечением (корсетной формы)
определены геометрические и упругие характеристики образцов, а также выполнены
оценки амплитуд осевых напряжений, полученных при проведении экспериментальных
исследований усталостной прочности металлических сплавов при высокочастотном цик-
лическом нагружении. На основе трехрежимной модели усталостного разрушения пред-
ложен численный метод расчета кинетики повреждаемости при высокочастотном цик-
лическом нагружении растяжением-сжатием образцов корсетной формы при различных
значениях коэффициента асимметрии цикла. Проведено сравнение результатов расчетов
по предложенной модели с результатами экспериментов на образцах корсетной формы
из титанового сплава. Предложенные модель и метод расчета позволяют с достаточной
точностью строить усталостные кривые для различных режимов циклического нагру-
жения и коэффициентов асимметрии цикла. Для этого достаточно знать базовые точки
бимодальной усталостной кривой для реверсивного цикла.
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сечения, теория возмущений, высокочастотные испытания на растяжение-сжатие, цик-
лическая повреждаемость

Введение. Ранее [1] под усталостью материалов понималась их реакция на цикли-
ческие процессы нагружения, приводящие к разрушению после 105 ÷ 106 циклов, что в
современной литературе называется многоцикловой усталостью (МнЦУ). Было введено
понятие предела усталости как уровня амплитуд циклического нагружения, ниже которо-
го усталостного разрушения не происходит. Понятие циклического неупругого деформи-
рования материалов было введено при исследовании циклического разрушения при значи-
тельных внешних нагрузках, приводящих к макроскопическим пластическим деформаци-
ям. Характерная долговечность материалов при таком нагружении находится в диапазоне
103 ÷ 105 циклов, что соответствует современным представлениям о малоцикловой уста-
лости (МЦУ). В течение длительного времени считалось, что указанные два диапазона
определяют полную кривую усталости. Однако с развитием экспериментальных методов
и средств управления нагружающими машинами появилась возможность проводить уста-
лостные испытания при существенно большей величине долговечности (порядка 108÷1010

циклов) [2]. Оказалось, что в этом случае материалы могут разрушаться при значениях
амплитуды напряжений, значительно меньших классического предела усталости [3]. Ис-
следование поверхностей излома металлических материалов показало, что при большой
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Рис. 1. Результаты испытаний образцов из конструкционной стали марки SUJ2
на усталостное разрушение:
1 — область зарождения трещины на поверхности образца без поверхностной обработ-
ки, 2, 3 — области зарождения трещины под поверхностью образца (2 — с поверхност-
ной обработкой, 3 — без поверхностной обработки); стрелки — результаты испытаний

без разрушения
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Рис. 2. Трехмодальная кривая усталостной долговечности для металлических
материалов:
1 — режимМЦУ, 2 — режимМнЦУ, 3 — режим СвМУ; выделенные области— области

бифуркации

долговечности механизм зарождения усталостных трещин существенно меняется. Уста-
новлено, что при таких условиях нагружения область зарождения трещины располагается
под поверхностью образца или изделия. Зарождение трещины в этом режиме обусловле-
но микроскопическими особенностями структуры материала или наличием внутренних

дефектов. Выявленные особенности разрушения материалов при таких условиях цикли-
ческого нагружения позволили выделить новый режим — сверхмногоцикловую усталость

(СвМУ) (108 ÷ 1010 циклов). На рис. 1 представлены характерные результаты экспери-
ментов на усталостное разрушение для образцов из конструкционной стали SUJ2 [4], а на
рис. 2 — полная (трехмодальная) кривая усталостной долговечности для металлических
материалов. Следует отметить, что четко выраженная граница между областями МЦУ,
МнЦУ и СвМУ отсутствует. Переход от одного усталостного режима к другому проис-
ходит в некоторой области, называемой областью бифуркации [5]. Смена механизма раз-
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рушения имеет вероятностный характер. В настоящее время не существуют стандарты,
регламентирующие границы области бифуркации. Обычно кривые МЦУ и МнЦУ объеди-
няются в единую “классическую” усталостную кривую Веллера. При уменьшении внешней
нагрузки появляется еще одна область бифуркации, что обусловлено сменой механизмов
разрушения от МнЦУ к СвМУ. В областях бифуркации возможен значительный разброс
экспериментальных данных.

1. Трехрежимная модель усталостного разрушения. Для описания полной кри-
вой усталости целесообразно использовать соотношение Баскина [6], устанавливающее
связь между напряжениями и количеством циклов до разрушения:

σa = σu + σcN
−β. (1)

Здесь σa — амплитуда циклической нагрузки; N — количество циклов до разрушения;
σu — предел усталости; σc — коэффициент степенной зависимости; β — коэффициент на-
клона кривой усталости. Анализ экспериментальных кривых усталости показывает, что
скорость уменьшения циклической прочности при увеличении количества циклов нагру-
жения оказывается одинаковой для левой (МЦУ, МнЦУ) и правой (СвМУ) ветвей, что
позволяет сформулировать гипотезу о подобии их математического описания [7]. В рамках
предлагаемой модели предполагается, что левая и правая ветви полной кривой усталости
описываются соотношением типа соотношения Баскина (1):

σeq = σu + σLN
−βL , σeq = σ̃u + σVN

−βV . (2)

Здесь σu — классический предел усталости; σ̃u — предел усталости в области СвМУ;
σeq — эквивалентное напряжение, которое совпадает с амплитудой циклической нагрузки
в случае одноосного нагружения; индекс L соответствует параметрам левой ветви полной
кривой усталости, индекс V — параметрам правой ветви.

Параметры для левой и правой ветвей можно определить по результатам анализа

полных кривых усталости, полученных при испытаниях на одноосное нагружение [7]. При
больших значениях внешней нагрузки, когда амплитуда циклического нагружения может
превышать предел текучести материала, усталостная прочность незначительно отлича-
ется от предела прочности материала σв. Эта тенденция сохраняется в течение первых
102 ÷ 103 циклов нагружения в зависимости от материала. Таким образом, одним из гра-
ничных условий для левой ветви полной усталостной кривой является достижение предела

прочности материала на заданном числе испытаний (для определенности примем его рав-
ным 103 циклов). Вторым граничным условием является выход на значение предела уста-
лости после 107 циклов нагружения. Подставляя вместо амплитуды циклической нагрузки
предел прочности, можно получить выражение для σL. Проводя аналогичные рассуждения
для правой ветви полной кривой усталости, заметим, что она приобретает ниспадающий
характер при значении внешней нагрузки, приближенно равном классическому пределу
усталости, определенному после 107 ÷ 108 циклов, а затем выходит на новый “предел
усталости СвМУ”. Принимая количество испытаний, при котором правая ветвь имеет
ниспадающий характер, равным 108 циклам, получаем выражение для параметра σV . Та-
ким образом, параметры обобщенных соотношений (2) определяются квазистатическими
и усталостными характеристиками прочности материала:

σL = 103βL(σв − σu), σV = 108βV (σu − σ̃u).

Показатель степени определяется на основе анализа одноосных ветвей усталостных

кривых при симметричном цикле нагружения.
В общем случае сложного напряженно-деформированного состояния эквивалентное на-

пряжение может быть определено в соответствии с экспериментально обоснованными кри-
териями многоосного усталостного разрушения. Кроме того, эквивалентные напряжения
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могут быть использованы для описания различных механизмов раскрытия микротрещин

(нормального отрыва или сдвига). В зависимости от выбранного критерия количество

циклов до разрушения, вычисленное по формуле (2), различается. Таким образом, если
одновременно использовать несколько критериев, описывающих усталостную прочность

нормального и сдвигового раскрытия трещины, то модель позволяет определить тип рас-
крытия в области ее зарождения. В работе [8] выбраны два критерия: Смита— Ватсона—
Топпера (механизм микротрещин нормального отрыва) [9] в форме [10] и Карпинтери —
Спагноли — Вантадори (механизм сдвиговых микротрещин) [11]. Поскольку в данной
работе моделируются процессы усталостного разрушения при циклическом растяжении-
сжатии, ограничимся критерием Смита — Ватсона — Топпера.

1.1. Критерий для микротрещин нормального отрыва и уравнение повреждаемости.
Разрушение по механизмам отрыва связано с растягивающими компонентами напряже-
ний. На процесс формирования трещины нормального отрыва при усталостном нагруже-
нии может оказывать влияние не только амплитуда циклического напряжения, но и растя-
гивающее среднее статическое напряжение. В критерии Смита— Ватсона— Топпера [10]
эти компоненты напряжений учтены следующим образом:

σeq = σn =
√
〈σ1 max〉∆σ1/2 .

Здесь 〈σ1max〉 = σ1H(σ1 max) — максимальное главное растягивающее напряжение;
H(f) — функция Хевисайда; ∆σ1/2 — амплитуда главного циклического напряжения.

Предлагаемая модель допускает применение других критериев для описания процесса

разрушения по механизму нормального отрыва или сдвига.
Критерии многоосного разрушения подразумевают неизменность напряженно-

деформированного состояния в процессе циклического нагружения с момента зарождения

микроповреждений до момента макроразрушения. Однако при циклическом нагружении
происходит постепенная деградация свойств материала, а также образование и рост мик-
ротрещин, что приводит к изменению напряженно-деформированного состояния. Для кор-
ректного описания и моделирования процесса усталостного разрушения необходимо учи-
тывать кинетику этих процессов.

В настоящей работе рассматривается процесс постепенного уменьшения локальных

механических характеристик материала (модулей упругости), подвергаемого циклическо-
му нагружению. Для описания циклической деградации свойств материала использует-
ся распределенная функция повреждаемости ψ, введенная в работах Ю. Н. Работнова и
Л.М. Качанова [12, 13], принимающая значения в диапазоне от 0 до 1 и полагаемая равной
относительной плотности микродефектов в малом объеме деформируемого образца [14, 15].
Для неповрежденной материальной частицы ψ = 0, а для полностью разрушенной ψ = 1.
Современное состояние теории повреждаемости для описания процессов длительного раз-
рушения изложено в работе [16].

Процесс циклической повреждаемости в режиме малоцикловой усталости исследовался

в работе [17].
Для рассматриваемых режимов МнЦУ и СвМУ изменение функции повреждаемости

с увеличением числа циклов нагружения описывается кинетическим уравнением [18]

∂ψ

∂N
= B(σ,∆σ)

ψγ

1− ψ1−γ , (3)

где B(σ,∆σ) — коэффициент, зависящий от напряженно-деформированного состояния ма-
териала в цикле нагружения; ∆σ — разность амплитуд циклической нагрузки; γ — па-
раметр, характеризующий скорость накопления повреждаемости и определяемый экспе-
риментально. Выражения для коэффициентов B(σ,∆σ) можно получить путем сравнения
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соотношений (2) для одноосных усталостных кривых с решением кинетического уравнения
для функции повреждаемости при однородном напряженном состоянии [18]. В результате
для левой и правой ветвей усталостной кривой аналитические выражения для коэффици-
ента B имеют вид

BL =
[〈σeq − σu〉/(σв − σu)]

1/βL

2(1− γ) · 103
, σu + ∆σu < σeq < σв,

BV =
[〈σeq − σ̃u〉/(σu − σ̃u)]

1/βV

2(1− γ) · 108
, σ̃u < σeq 6 σu + ∆σu,

(4)

где ∆σu = 10−5βL(σв − σu) — ширина области бифуркации. Выражения в угловых скоб-
ках соответствуют ветви усталостной кривой и определяются по формуле 〈f〉 = fH(f).
Значение величины γ находится в диапазоне 0 < γ < 1. В результате получаем связанную
задачу; в процессе циклического нагружения формируются поля напряжений, оказываю-
щие влияние на коэффициенты кинетического уравнения повреждаемости, с увеличением
повреждаемости происходит деградация механических характеристик материала, влияю-
щих на напряженно-деформированное состояние в последующих циклах.

Развитие повреждаемости в материальной частице приводит к уменьшению модулей

упругости: в общем случае — по нелинейному закону, а в предложенном варианте моде-
ли — по кусочно-линейному закону

λ(ψ) =

{
λ0(1− κψ), ψ < ψ∗,

0, ψ∗ 6 ψ 6 1,
µ(ψ) =

{
µ0(1− κψ), ψ < ψ∗,

0, ψ∗ 6 ψ 6 1,

где ψ∗ < 1 — критическое значение повреждаемости, при котором происходит полное раз-
рушение. Анализ кинетических кривых роста усталостных трещин показывает, что некон-
тролируемый, лавинообразный рост трещин начинается прежде, чем трещина достигает
критической длины, при которой происходит полное разрушение элемента конструкции.
Поэтому в данной модели введено критическое значение функции повреждаемости ψ, при
котором процессы деградации принимают лавинообразный характер. Критическое значе-
ние функции повреждаемости ψ∗ 6 1.

1.2. Численный метод решения уравнения повреждаемости. Численный метод рас-
чета зон повреждаемости заключается в пошаговом (по циклам нагружения) определе-
нии упругого напряженно-деформированного состояния образца материала или элемента
конструкции совместно с численным решением нелинейного уравнения повреждаемости

(3) и корректировкой модулей упругости среды в областях, где функция повреждаемости
отлична от нуля. Такие области становятся дополнительными развивающимися концен-
траторами напряжений. Узкие протяженные зоны полного разрушения будем называть

квазитрещинами.

Особенности предложенной модели, в частности универсальность описания правой и
левой ветвей полной кривой усталости, использование единого кинетического уравнения
для функции повреждаемости для различных механизмов (нормального отрыва и сдвиго-
вого) накопления усталостной повреждаемости, позволили унифицировать алгоритм чис-
ленного решения. Кинетическое уравнение для функции повреждаемости (3) не позволяет
использовать аппроксимацию явной схемы решения вследствие наличия особенности в зна-
менателе, в результате чего система уравнений становится жесткой. Однако разностная
аппроксимация уравнения (3) может быть выполнена путем непосредственного интегри-
рования на интервале между номерами циклов Nn и Nn+1, что позволяет получить ана-
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литическое решение для значений функции повреждаемости в каждом пространственном

узле сетки с заданным шагом по времени (количеству циклов):

ψn+1
k =

(
1−

√
(1− (ψnk )1−γ)2 − 2(1− γ)Bn ∆Nn

)1/(1−γ)
. (5)

Здесь ψn+1
k — значение функции повреждаемости в пространственном узле k и временном

слое n+ 1; ∆Nn = Nn+1 −Nn.
Для определения глобального шага расчета по числу циклов для всего образца путем

перебора узлов сетки выбирается тот, в котором в текущем напряженном состоянии ло-
кальный шаг для достижения критического значения функции повреждаемости является

минимальным. Искомая величина шага считается равной половине величины минималь-
ного локального шага [18]:

∆Nn =
1

2
min
k

∆Ñn
k , ∆Ñn

k =
1

Bn

(ψ1−γ

1− γ
− ψ2(1−γ)

2(1− γ)

)∣∣∣1
ψn

k

.

Зависимость между значениями характеристик упругости и функций повреждаемости

принята в виде [16]

En+1
k = E0(1− κψn+1

k )[H(ψ∗ − ψn+1
k ) + 0,001], (6)

где En+1
k — значение модуля упругости на следующем шаге; E0 — модуль упругости непо-

врежденного материала; κ — коэффициент деградации модуля упругости, определяемый
в ходе вычислительных экспериментов. Коэффициент Пуассона для материала полагаем
неизменным.

В численном методе для реализации алгоритма сквозного счета принято, что в со-
стоянии полного разрушения материал обладает минимальными остаточными модулями

упругости, приближенно равными 0,001 начального значения. Это позволяет проводить
расчет на фиксированной сетке, решая сильнонеоднородную задачу упругости на каждом
шаге по циклам нагружения.

Для расчета кинетики повреждаемости в корсетных образцах, подвергаемых высоко-
частотным циклическим нагружениям вплоть до усталостного разрушения, необходимо
знать распределение напряжений при резонансных режимах нагружения с фиксированной

амплитудой смещений и неоднородным распределением модуля Юнга.
2. Определение собственных частот и форм колебаний неоднородного

стержня с переменным сечением. Стержни корсетной формы с переменным сечени-
ем используются при проведении экспериментальных исследований усталостной прочно-
сти металлических сплавов при высокочастотном циклическом нагружении образцов на

растяжение-сжатие [19].
Уравнение продольных колебаний неоднородного стержня с переменным сечением

имеет вид

∂

∂x

(
I(x)

∂w

∂x

)
− ρS(x)

∂2w

∂t2
= 0,

где I(x) = E(x)S(x); E — модуль Юнга стержня; S — переменная площадь сечения;
параметры зависят от продольной координаты.

Рассматриваются стационарные гармонические колебания

w(x, t) = u(x) eiωt .

Уравнение для амплитуды колебаний имеет вид

d

dx

(
I
du

dx

)
+ ρSω2u = 0. (7)
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Граничные условия для собственных колебаний записываются в виде

du

dx
= 0 при x = ±l. (8)

В работе [20] построено решение задачи (7), (8) методом разложения по малому пара-
метру и рассмотрен случай малого изменения параметров стержня по длине:

I = I0 + εI1(x) + . . . , S = S0 + εS1(x) + . . . , ε� 1.

Решение для функции смещений и собственной частоты также было записано в виде раз-
ложения по степеням малого параметра ε:

u = u0 + εu1(x) + . . . , ω = ω0 + εω1 + . . . .

После подстановки этих разложений в уравнение (7) для u и в граничные условия (8) и
приравнивания членов при одинаковых степенях малого параметра ε были сформулирова-
ны и решены задачи нулевого и первого порядков для определения собственных частот и

форм колебаний.
Антисимметричное решение задачи нулевого приближения имеет простой вид

u0n = Un sin knx, cos knl = 0.

Тогда значения параметра k, который является нулевым приближением собственных ча-
стот, равны

knl = π/2 + πn, n = 0, 1, 2, . . . ,

kn = ω0n/c0, c0 =
√
E0/ρ .

Наименьшее значение kn есть k0 = π/(2l).
Полученные в [20] решение для первого приближения смещений и поправка к соб-

ственной частоте равны

u1x(x) = Un[A(ξ) cos knx−B(ξ) sin knx], (9)

где

A(ξ) =

x∫
−l

(Ī ′1 cos knξ sin knξ − knĒ1 sin2 knξ) dξ + ω̄1nkn(x+ l),

B(ξ) =

x∫
−l

(Ī ′1 cos2 knξ − knĒ1 sin knξ cos knξ) dξ,

ω̄1n =
ω1n

ω0n
= − 1

2knl

l∫
−l

(Ī ′1 cos knξ − knĒ1 sin knξ) sin knξ dξ,

полная амплитуда колебаний Un на концах стержня считается известной; Ī1 = I1/I0, S̄1 =
S1/S0, Ē1 = E1/E0 — безразмерные геометрические и упругие параметры стержня.

Следует отметить, что в результате интегрирования по частям в формулах (9) ис-
чезают производные распределенных геометрических и упругих характеристик стержня.
Вследствие громоздкости соответствующие формулы не приводятся.
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Если переменные по длине стержня площадь сечения и модуль Юнга являются чет-
ными функциями пространственной координаты, то поправка к собственной частоте ко-
лебаний равна

ω̄1n =
1

l

( l∫
0

(
Ī1 −

Ē1

2

)
cos 2knξ dξ +

1

2

l∫
0

Ē1 dξ
)
.

Если выбрать тригонометрическое представление переменного радиуса осесимметричного

однородного стержня в виде

r(x) = r0(1− ε cos (πx/l)), r1(x) = −r0 cos (πx/l),

то первая собственная частота с точностью до O(ε2) будет определяться формулой

ω = ω0(1− ε+ . . .), ω0 =
π

2l

√
E0

ρ
.

Первая антисимметричная собственная форма колебаний с той же точностью равна

u(x) = U
(

sin
(πx

2l

)
+
ε

2
sin

(πx
l

)
cos

(πx
2l

)
+ . . .

)
. (10)

В работе [20] путем сравнения полученных приближенных формул с некоторыми точ-
ными решениями показано, что эти формулы справедливы при ε 6 0,5. Далее будем ис-
пользовать формулы (9) для оценки осевых напряжений в стержне, учитывая приближен-
ность этих оценок при немалых значениях параметра ε. Соответствующее распределение
осевых напряжений определяется формулой

σ(x) = E(x)
du

dx
.

Для стержней корсетной формы с узкой центральной частью максимум напряжений

в цикле, равный амплитуде в случае реверсивного нагружения, достигается при x = 0.
В общем случае циклическое нагружение характеризуется коэффициентом асимметрии

циклаR = σmin/σmax. Реверсивному циклу с нулевым средним напряжением соответствует
значениеR = −1.Испытания с ненулевым средним напряжением в цикле проводятся путем
наложения высокочастотных колебаний на стержень, статически растянутый усилием P .
В этом случае статические осевые напряжения в образце равны

σst = P/S(x).

Коэффициент асимметрии цикла определяется по центральному сечению образца, в
котором зарождается и развивается поврежденность вплоть до полного разрушения:

R =
σst(0)− σ(0)

σst(0) + σ(0)
.

3. Материалы и методы проведения исследований. Для определения парамет-
ров модели и проверки эффективности ее работы проведены испытания на СвМУ при

различных режимах растяжения-сжатия.
Пьезоэлектрические установки для проведения высокочастотных испытаний на СвМУ

осуществляют циклическое нагружение на растяжение-сжатие и кручение [19, 21]. Для
реализации осевых нагружений используется конвертер, обеспечивающий продольные сме-
щения малой амплитуды (20 ÷ 60 мкм). Базовой корсетной формой осесимметричного
стержня являются “песочные часы”, что позволяет создать квазиоднородное напряжен-
ное состояние с высоким уровнем напряжений в центральной, узкой части образца.
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Рис. 3. Пьезоэлектрическая установка для проведения испытаний на Св-
МУ при одноосном нагружении
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Рис. 4. Геометрия образцов для испытаний на СвМУ при одноосном нагружении

На рис. 3 представлена установка для проведения испытаний на СвМУ при

растяжении-сжатии, состоящая из компьютера, контрольного устройства, генератора, кон-
вертера и волновода. Принцип работы установки основан на резонансном нагружении с
частотой порядка 20 кГц.

Для проведения испытаний на СвМУ при одноосном растяжении-сжатии были изго-
товлены образцы из титанового сплава ВТ3-1 (рис. 4). В качестве заготовки для образцов
использовался диск первой ступени компрессора низкого давления авиационного двигателя

Д30-КУ, устанавливаемого на самолеты Ту-154. Диск компрессора находился в эксплуа-
тации на воздушном судне в течение 8000 ч, после чего был заменен согласно регламенту.
Выведенный из эксплуатации диск был проверен неразрушающими методами контроля на

наличие следов пластической деформации и микротрещин. В результате проверки указан-
ных выше нарушений не выявлено.

Испытания на гладких образцах были проведены на воздухе при постоянной амплиту-
де нагружения с непрерывным обдувом сухим сжатым воздухом. Параметры нагружения,
такие как частота и амплитуда, контролировались в течение всего времени проведения
эксперимента.

4. Результаты испытаний на СвМУ титанового сплава ВТ3-1. Результаты
испытаний титанового сплава в области СвМУ при осевом нагружении представлены на

рис. 5.
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Рис. 5. Результаты испытаний на СвМУ образцов из титанового сплава ВТ3-1
в случае симметричного одноосного нагружения при R = −1 (стрелки — ре-
зультаты испытаний без разрушения)
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Рис. 6. Результаты испытаний на МнЦУ образцов из титанового сплава ВТ3-1
в случае одноосного нагружения при различных значениях коэффициента асим-
метрии цикла:
1 — R = −1, 2 — R = −0,5, 3 — R = 0,1, 4 — R = 0,3, 5 — R = 0,5; стрелки —
результаты испытаний без разрушения

Из полученных результатов следует, что по мере увеличения числа циклов нагруже-
ния усталостная прочность уменьшается. Результаты осевых испытаний были использо-
ваны для определения параметров модели для правой ветви полной усталостной кривой.

Для левой ветви полной кривой усталостной долговечности (см. рис. 2) результаты бы-
ли получены при испытаниях образцов титанового сплава ВТ3-1 (Ti–6Al–4V) на МнЦУ [22]
(рис. 6).

5. Результаты расчетов усталостного разрушения корсетных образцов из

титанового сплава. Описанная выше схема расчета резонансных колебаний стержня
корсетной формы (рис. 7) по формулам (9), (10) при заданных первой собственной частоте
(20 кГц) и амплитуде граничных смещений с использованием модели и метода расчета
циклической повреждаемости (3)–(6) была применена для моделирования усталостного
разрушения образцов из титанового сплава при различных режимах циклического нагру-
жения.
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Рис. 7. Форма корсетного образца (ε = 0,5)
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Рис. 8. Распределение амплитуды напряжений Sa по оси x в момент разрушения

при R = −1:
1 — U = 50 мкм, N = 2,0 · 108, 2 — U = 60 мкм, N = 1,3 · 106, 3 — U = 70 мкм, N = 9,8 · 104

Расчеты проводились при следующих значениях параметров модели циклической по-
вреждаемости, которые в среднем соответствуют характеристикам левой и правой ветвей
бимодальной усталостной кривой титанового сплава ВТ3-1 при R = −1 (реверсивный
цикл) в режимах СвМУ (см. рис. 5) и МнЦУ (см. рис. 6): ρ = 4500 кг/м3, E0 = 115 ГПа,
σв = 1100 МПа, σu = 450 МПа, σ̃u = 350 МПа, βL = 0,31, βV = 0,25, ψ∗ = 0,98,
κ = 0,1. Геометрические характеристики образца имели следующие значения: rmin = 3 мм,
rmax = 9 мм, l = 30 мм.

На рис. 8 показано распределение амплитуды осевых напряжений Sa по оси x в мо-
мент разрушения для реверсивного цикла (R = −1) при значениях амплитуды граничных
смещений U = 50, 60, 70 мкм. Расчетное число циклов до полного разрушения равно со-
ответственно N = 2,0 · 108 (режим СвМУ), N = 1,3 · 106 (режим МнЦУ), N = 9,8 · 104

(переходный режим МЦУ–МнЦУ).
На рис. 9 приведены распределения функции повреждаемости ψ(x) в момент полного

разрушения для R = −1 при тех же режимах нагружения и разрушения, что и для рис. 8.
На рис. 10,а показано распределение модуля Юнга в момент полного разрушения,

которому соответствует резкое уменьшение модуля упругости в узкой зоне в центральном

сечении образца. Увеличение повреждаемости с ростом числа циклов нагружения в режиме
СвМУ до полного разрушения при N = 2,0 ·108, R = −1, U = 50 мкм показано на рис. 10,б.

Таким образом, предложенные трехрежимная модель усталостного разрушения и ме-
тод расчета кинетики циклической повреждаемости позволяют эффективно моделировать

резонансные высокочастотные колебания корсетных образцов вплоть до полного разруше-
ния.
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Рис. 9. Распределение функции повреждаемости в момент полного разрушения
в случае R = −1 (обозначения те же, что на рис. 8)
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Рис. 10. Распределение модуля Юнга E по оси x в момент полного разруше-
ния (а) и увеличение повреждаемости (б) при R = −1, U = 50 мкм, N = 2,0 ·108

sa, ÌÏà

200

400

800

600

10111010109108107105103 104 106 N

1
2
3
4
5

Рис. 11. Бимодальные усталостные кривые, полученные с использованием моде-
ли циклической повреждаемости, при различных значениях коэффициента асим-
метрии цикла:
1 — R = −1, 2 — R = −0,5, 3 — R = 0,1, 4 — R = 0,3, 5 — R = 0,5
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С использованием предложенной численной схемы проведены расчеты усталостных

кривых для титанового сплава ВТ3-1 при различных значениях коэффициента асиммет-
рии цикла и амплитуды резонансных граничных смещений, соответствующих условиям
усталостных испытаний, результаты которых представлены на рис. 5, 6. Результаты рас-
четов бимодальных усталостных кривых приведены на рис. 11. Использовано минимальное
количество параметров, характеризующих рассчитанные точки усталостной кривой при
реверсивном цикле, а также оценочные значения степенных показателей для этой кривой.

С учетом разброса результатов усталостных испытаний, особенно в зонах перехода от
одного усталостного режима к другому, можно утверждать, что расчетные усталостные
кривые достаточно точно описывают характер изменения соотношения амплитуд нагруже-
ния и числа циклов до полного разрушения в широком диапазоне значений коэффициента

асимметрии цикла для различных циклических режимов.
Заключение. С использованием полученных ранее аналитических формул для соб-

ственных частот и форм колебаний неоднородных стержней переменного сечения (кор-
сетной формы) определены геометрические и упругие характеристики образцов, а также
выполнены оценки амплитуд осевых напряжений, полученных при проведении экспери-
ментальных исследований усталостной прочности металлических сплавов при высокоча-
стотном циклическом нагружении.

На основе трехрежимной модели усталостного разрушения представлен численный

метод расчета кинетики повреждаемости при высокочастотном циклическом нагружении

растяжением-сжатием образцов корсетной формы при различных значениях коэффициента
асимметрии цикла.

Предложенные модель и метод расчета позволяют с достаточной точностью строить

усталостные кривые для различных режимов МнЦУ или СвМУ и коэффициентов асиммет-
рии цикла. Для этого достаточно знать базовые точки бимодальной усталостной кривой в
реверсивном цикле (R = −1). Проведено сравнение результатов расчетов по предложенной
модели с результатами экспериментов на образцах корсетной формы из титанового сплава

ВТ3-1.
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