УДК 532.5.031-2:533.6.011.32:533.694.2

ПРОЕКТИРОВАНИЕ ДВУХЭЛЕМЕНТНОГО КРЫЛОВОГО ПРОФИЛЯ В ДИАПАЗОНЕ УГЛОВ АТАКИ

Д. Ф. Абзалилов

Научно-исследовательский институт математики и механики им. Н. Г. Чеботарева Казанского государственного университета, 420008 Казань

E-mail: damir.abzalilov@ksu.ru

Получено численно-аналитическое решение обратной краевой задачи аэрогидродинамики для двухэлементного крылового профиля в полной постановке по заданному на искомых контурах профилей распределению скорости в диапазоне углов атаки. Показано, что при заданном безотрывном распределении скорости на верхних поверхностях контуров профилей при максимальном угле атаки и на нижних поверхностях при минимальном угле атаки отрыва потока не происходит во всем рассмотренном диапазоне. Приведен пример построения разрезного крылового профиля, проведена верификация полученных результатов с использованием пакета программ "Fluent".

Ключевые слова: обратные краевые задачи, крыловой профиль, диапазон углов атаки.

Проектирование оптимальных по аэродинамическим характеристикам многоэлементных крыловых профилей является актуальной задачей [1, 2]. Подход, используемый в [1, 2], заключается в модификации формы крылового профиля с помощью метода сопряженных градиентов. Расчет проводится на многопроцессорных суперкомпьютерах путем много-кратного решения задачи обтекания многоэлементного профиля в потоке вязкой жидкости. Однако эту задачу можно решить и на обычном персональном компьютере с использованием теории обратных краевых задач аэрогидродинамики [3].

В работе [4] решена задача проектирования в потоке идеальной несжимаемой жид-кости двухэлементного крылового профиля по заданному на его поверхности распределению скорости или давления. С практической точки зрения представляет интерес задача проектирования профилей, имеющих заданные аэродинамические характеристики не для фиксированного угла атаки, а для некоторого диапазона углов. Рассмотрим задачу, решенную в [4], с тем отличием, что исходные данные задачи, а именно распределения скорости, задаются для двух разных углов атаки.

Задача решается в следующей постановке. В физической плоскости z (рис. 1,a) искомый двухэлементный крыловой профиль A_kB_k (k=1,2) обтекается установившимся безвихревым потоком идеальной несжимаемой жидкости при двух углах атаки (α и α^*); разность $\delta=\alpha^*-\alpha>0$ считается заданной. Контуры L_{zk} профилей полагаются гладкими, за исключением задних кромок B_k , где внутренние по отношению к области течения углы равны 2π .

Начало декартовой системы координат выбрано на задней кромке B_1 контура L_{z1} , а ось абсцисс параллельна направлению заданного вектора скорости \boldsymbol{v}_{∞} набегающего потока. Периметры контуров известны и равны l_k . Дуговые абсциссы s_k контуров профилей

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-08-01153).

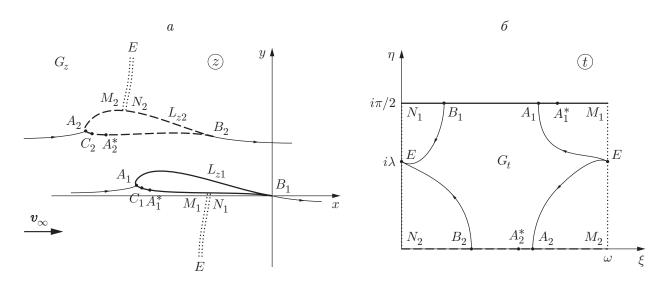


Рис. 1. Область течения в физической (a) и канонической (b) плоскостях

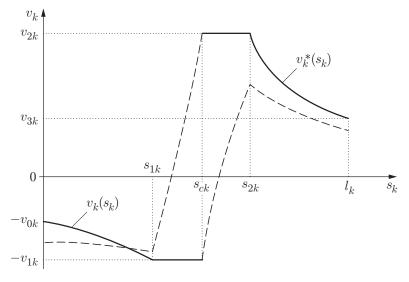


Рис. 2. Параметрическое распределение скорости при решении задачи в диапазоне углов $[\alpha, \alpha^*]$:

сплошные линии — заданное распределение; штриховые — распределение, полученное в результате решения задачи

отсчитываются от нуля в точках B_k до l_k в тех же точках, так чтобы при возрастании s_k область течения оставалась слева. Каждый контур разделен на две части (верхнюю и нижнюю поверхности) точкой C_k ($s=s_{ck}$). На нижних поверхностях задано распределение скорости по профилям L_{zk} при угле атаки α , на верхних поверхностях — при угле α^* :

$$v = \begin{cases} v_k(s_k), & s_k \in [0, s_{ck}], \\ v_k^*(s_k), & s_k \in [s_{ck}, l_k], \end{cases}$$
 $k = 1, 2.$ (1)

Пример такого параметрического распределения скоростей $v_k(s_k)$ и $v_k^*(s_k)$ приведен на рис. 2.

Для фиксации положения контуров задана разность комплексных потенциалов в точках A_2 и A_1 при угле атаки α : $w(z_{a2}) - w(z_{a1}) = \varphi_{a2} + i\psi_{a2}$. Д. Ф. Абзалилов

Поставленную задачу сведем к задаче для одного угла атаки, пересчитав распределения $v_k^*(s_k)$ для угла α .

Двухсвязную область G_z в плоскости z конформно отобразим на прямоугольник G_t со сторонами $\omega_1 = \omega$ и $\omega_2 = i\pi/2$ в плоскости $t = \xi + i\eta$. При этом контуру L_{z1} в плоскости t соответствует сторона N_1M_1 прямоугольника G_t , контуру L_{z2} — сторона N_2M_2 (рис. $1,\delta$), бесконечно удаленная точка в плоскости z переходит в точку E ($t = i\lambda$) на мнимой оси, на боковых гранях прямоугольника выполняется условие периодичности.

Согласно решению прямой задачи о биплане [5] можно записать выражения для комплексного потенциала w(t) и комплексно-сопряженной скорости u(t) течения в прямоугольнике:

$$w(t) = \varphi(\xi, \eta) + i\psi(\xi, \eta) = u_{\infty} [e^{i\beta} \zeta(t - i\lambda) + e^{-i\beta} \zeta(t + i\lambda)] + \frac{\Gamma_1 + \Gamma_2}{2\pi i} \ln \frac{\sigma(t - i\lambda)}{\sigma(t + i\lambda)} + Kt + C; \quad (2)$$

$$u(t) \equiv \frac{dw}{dt}(t) = -u_{\infty} [e^{i\beta} \rho(t - i\lambda) + e^{-i\beta} \rho(t + i\lambda)] + \frac{\Gamma_1 + \Gamma_2}{2\pi i} [\zeta(t - i\lambda) - \zeta(t + i\lambda)] + K.$$
 (3)

Здесь

$$K = (-\Gamma_1 + (\Gamma_1 + \Gamma_2)\lambda \eta_1/\pi - 2u_\infty \eta_1 \cos \beta)/\omega = \text{const},$$

 $u_{\infty},\ \beta$ — мощность и момент диполя в точке $E;\ C=C_1+iC_2$ — комплексная постоянная; $ho(t),\ \zeta(t),\ \sigma(t)$ — функции Вейерштрасса с полупериодами $\omega/2$ и $i\pi/2;\ \eta_1=\zeta(t+\omega)-\zeta(t)$ — постоянная, зависящая от ω .

Заметим, что при смене угла атаки выполняется соотношение

$$z(t) = z^*(t) e^{i\delta}. (4)$$

из которого следует зависимость

$$v_k(\xi) = v_k^*(\xi) \frac{u_k(\xi)}{u_k^*(\xi)}$$
 (5)

 $(u_1(\xi) \equiv u(\xi + i\pi/2); u_2(\xi) \equiv u(\xi);$ функция u(t) определяется выражением (3)). Так как заданы распределения $v_k(s_k)$, а не $v_k(\xi)$, при пересчете $v_k^*(s_k)$ для угла α невозможно использовать формулу (5) без установления зависимостей $s_k(\xi)$.

Функция u(t) определяется следующими шестью неизвестными параметрами: ω , λ , u_{∞} , β , Γ_1 , Γ_2 . Вместо двух последних параметров целесообразно задавать ξ_{b1} и ξ_{b2} — положения точек схода потока в канонической плоскости, так как они не меняются при изменении угла атаки. Для угла α^* получим новую функцию $u^*(t)$, зависящую от новых параметров ω^* , λ^* , u_{∞}^* , β^* , ξ_{b1}^* , ξ_{b2}^* . Из (4) следует $\omega^* = \omega$, $\lambda^* = \lambda$, $u_{\infty}^* = u_{\infty}$, $\beta^* = \beta - \delta$, $\xi_{b1}^* = \xi_{b1}$, $\xi_{b2}^* = \xi_{b2}$.

 $\xi_{b1}^*=\xi_{b1},\,\xi_{b2}^*=\xi_{b2}.$ Таким образом, определены все параметры, по которым восстанавливается функция $u^*(t)$. Из (5) следует

$$\frac{v_k^{*'}(\xi)}{v_k^{*}(\xi)} - \frac{v_k'(\xi)}{v_k(\xi)} = U_k(\xi), \qquad U_k(\xi) \equiv \frac{u_k^{*'}(\xi)}{u_k^{*}(\xi)} - \frac{u_k'(\xi)}{u_k(\xi)}.$$

По виду функций $U_k(\xi)$ можно определить, увеличивается или уменьшается отношение v'(s)/v(s) при изменении угла атаки. В качестве примера рассмотрим верхнюю поверхность первого контура. Этой поверхности соответствует интервал $\xi \in [\xi_{b1}, \xi_{a1}^*]$, на

котором $U_1(\xi) > 0$. Следовательно, $v_1^{*\prime}(\xi)/v_1^*(\xi) > v_1^{\prime}(\xi)/v_1(\xi)$. Так как на рассматриваемом интервале выполняются неравенства $ds/d\xi < 0$, $v_1^*(\xi) > 0$, $v_1(\xi) > 0$, то

$$\frac{v_1^{*'}(s)}{v_1^{*}(s)} < \frac{v_1'(s)}{v_1(s)}. (6)$$

На верхней поверхности задается распределение $v_1^*(s)$ (см. (1)). Как показано в [6], если это распределение является безотрывным, то любое распределение $v_1(s)$, удовлетворяющее (6), также будет безотрывным.

Исследовав таким образом все участки, можно сделать следующий вывод: если распределения скорости, заданные на нижних поверхностях при угле атаки α и на верхних поверхностях при угле атаки α^* , являются безотрывными, то обтекание двухэлементного крылового профиля будет безотрывным во всем диапазоне $[\alpha, \alpha^*]$.

По известным распределениям $v_k(s_k)$ (1) определим функции

$$\varphi_k(s_k) = \int_0^{s_k} v_k(\tilde{s}_k) \, d\tilde{s}_k, \quad s_k \in [0, s_{ck}], \qquad \varphi_k^*(s_k) = \int_{s_k}^{l_k} v_k^*(\tilde{s}_k) \, d\tilde{s}_k, \quad s_k \in [s_{ck}, l_k]. \tag{7}$$

Введем следующие обозначения:

$$\Phi_k \equiv \varphi_k(s_{ck}) = \int_0^{s_{ck}} v_k(\tilde{s}_k) d\tilde{s}_k, \qquad \Phi_k^* \equiv \varphi_k^*(s_{ck}) = \int_{s_{ck}}^{l_k} v_k^*(\tilde{s}_k) d\tilde{s}_k.$$

Функции w(t) и $w^*(t)$ определим по (2). Пусть ξ_{ck} — вещественные части положений точек C_k в плоскости t. Рассмотрим функции

$$\varphi_{1}(\xi) = w(\xi + i\pi/2) - w(\xi_{b1} + \omega + i\pi/2), \qquad \xi \in [\xi_{c1}, \xi_{b1} + \omega],
\varphi_{2}(\xi) = w(\xi) - w(\xi_{b2}), \qquad \qquad \xi \in [\xi_{b2}, \xi_{c2}],
\varphi_{1}^{*}(\xi) = w^{*}(\xi_{b1} + i\pi/2) - w^{*}(\xi + i\pi/2), \qquad \xi \in [\xi_{b1}, \xi_{c1}],
\varphi_{2}^{*}(\xi) = w^{*}(\xi_{b2} + \omega) - w^{*}(\xi), \qquad \qquad \xi \in [\xi_{c2}, \xi_{b2} + \omega].$$
(8)

Сопоставив комплексные потенциалы в физической и канонической плоскостях, получим соотношения

$$\varphi_1(\xi_{c1}) = \Phi_1, \quad \varphi(\xi_{c2}) = \Phi_2, \quad \varphi^*(\xi_{c1}) = \Phi_1^*, \quad \varphi^*(\xi_{c2}) = \Phi_2^*.$$
(9)

Сравнив функции (7) и (8), определим функции $s_k(\xi)$, не зависящие от угла атаки.

Найдем зависимости $v_k(\xi) = v_k[s_k(\xi)]$ и $v_k^*(\xi) = v_k^*[s_k(\xi)]$. Пересчитав по формуле (5) распределения $v_k^*(\xi)$ по образу верхней границы канонической области для угла α , получим распределения $v_k(\xi)$ на всем интервале $\xi \in [0, \omega]$.

Для дальнейшего решения задачи используем метод решения обратной задачи для одного угла атаки [4]. Вводится в рассмотрение модифицированная функция Жуковского — Митчела $\chi(t)$ в виде

$$\chi(t) = \ln\left(\frac{1}{v_{\infty}}\frac{dw}{dz}\right) - \chi_0(t), \qquad \chi_0(t) = \ln\left(\sin\frac{\pi(t - t_{a1})}{\omega}\sin\frac{\pi(t - t_{a2})}{\omega}\right).$$

Функция $\chi(t) = S(\xi, \eta) + iT(\xi, \eta)$ является периодической и не имеет особенностей во всем прямоугольнике G_t . Действительная часть этой функции на верхней и нижней сторонах прямоугольника G_t известна:

$$S_1(\xi) = \ln \left| \frac{v_1(s_1(\xi))}{v_{\infty}} \right| - \ln \left| \sin \frac{\pi(\xi - \xi_{a1})}{\omega} \sin \frac{\pi(\xi - \xi_{a2} + i\pi/2)}{\omega} \right|,$$

Д. Ф. Абзалилов

$$S_2(\xi) = \ln \left| \frac{v_2(s_2(\xi))}{v_{\infty}} \right| - \ln \left| \sin \frac{\pi(\xi - \xi_{a2})}{\omega} \sin \frac{\pi(\xi - \xi_{a1} - i\pi/2)}{\omega} \right|.$$

Здесь $S_1(\xi) = S(\xi, \pi/2); S_2(\xi) = S(\xi, 0).$

Функцию χ можно восстановить по формуле Вилля (см., например, [7])

$$\chi(t) = \frac{1}{i\pi} \int_{0}^{\omega} \left[S_1(\xi) \zeta \left(t - \xi - \frac{i\pi}{2} \right) - S_2(\xi) \zeta(t - \xi) \right] d\xi + \frac{\eta_1 - 2}{2\omega} P_1 + i P_2,$$

где P_2 — произвольная вещественная постоянная; величина P_1 определяется по формуле

$$P_1 = \int_0^\omega S_1(\xi) \, d\xi = \int_0^\omega S_2(\xi) \, d\xi. \tag{10}$$

Условие (10) является условием однозначности функции $\chi(t)$.

По известной функции $\chi(t)$ определяется ее мнимая часть на верхней и нижней сторонах прямоугольника G_t : $T_1(\xi) = \text{Im } \chi(\xi + i\pi/2), T_2(\xi) = \text{Im } \chi(\xi).$

После интегрирования выражения dz/dt = (dw/dt)/(dw/dz) по верхней и нижней сторонам прямоугольника G_t находится параметрическое выражение для контуров

$$z_k(\xi) = z_{0k} + \int_{\xi_{bk}}^{\xi} \frac{u_k(\xi)}{v_k(\xi)} e^{i\theta_k(\xi)} d\xi, \qquad k = 1, 2,$$
(11)

где $\theta_1(\xi) = -T_1(\xi) - \operatorname{Im} \chi_0(\xi + i\pi/2), \ \theta_2(\xi) = -T_2(\xi) - \operatorname{Im} \chi_0(\xi)$ — углы наклона касательных к контурам.

Для решения задачи необходимо выполнение четырех условий (9). С использованием формулы (5) из условий непрерывности распределений скорости в точках B_k и C_k можно получить еще четыре условия:

$$\frac{v_k^*(s_{ck})}{v_k(s_{ck})} = \frac{u_k^*(\xi_{ck})}{u_k(\xi_{ck})}, \qquad \frac{v_k^*(l_k)}{v_k(0)} = \frac{[u_k^*(\xi_{bk})]'}{[u_k(\xi_{bk})]'}, \qquad k = 1, 2.$$
(12)

Условия замкнутости следуют из (11):

$$\int_{0}^{\omega} \frac{u_k(\xi)}{v_k(\xi)} e^{i\theta_k(\xi)} d\xi = 0, \qquad k = 1, 2.$$
(13)

Так как эти условия являются комплексными, они эквивалентны четырем вещественным условиям.

С учетом соотношения $(dw/dz)\big|_{z \to \infty} = v_{\infty}$ получим

$$\operatorname{Im} \chi(i\lambda) = 0, \quad \operatorname{Re} \chi(i\lambda) = 0.$$
 (14)

Первое равенство в (14) служит для определения неизвестной P_2 , а второе представляет собой условие разрешимости. Другим условием разрешимости является указанное выше условие (10). Добавив к этим условиям еще два условия, определяющих функции φ_{a2} , ψ_{a2} , получим чрезвычайно сложную задачу с 16 ограничениями.

В задачу входят восемь неизвестных параметров: ω , λ , u_{∞} , β , ξ_{b1} , ξ_{b2} , ξ_{c1} , ξ_{c2} . Так как количество параметров меньше количества условий разрешимости, для решения задачи необходимо либо использовать метод квазирешений [3], либо ввести свободные параметры в задаваемые распределения $v_k(s_k)$ и $v_k^*(s_k)$. На рис. 2 представлены распределения скорости $v_k(s_k)$ и $v_k^*(s_k)$ в параметрическом виде, каждое из которых зависит от семи параметров: v_{0k} , v_{1k} , v_{2k} , v_{3k} , s_{1k} , s_{ck} , s_{2k} . Таким образом, в задаче содержится 22 свободных параметра.

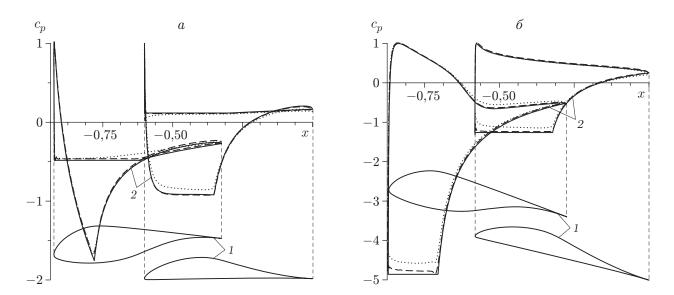


Рис. 3. Контуры двухэлементного профиля (1) и распределения $c_p(x)$ (2): $a-\alpha=1^\circ$; $\delta-\alpha^*=2^\circ$; сплошные линии — расчет по модели ИНЖ; штриховые — расчет по модели невязкого течения; пунктирные — расчет по модели турбулентного течения Спаларта — Аллмараса

 ${\rm Taf}_{\pi \pi \pi \pi} \, 1$ Характеристики двухэлементных профилей в диапазоне углов атаки

\overline{k}	l_k	s_{ck}	v_{1k}	v_{2k}	а, град	α^* , град	c_y	c_y^*
1 2	0,49 0,51	$0,24 \\ 0,25$	1,50 0,95	2,42 1,22	5,3	20,3	0,32	1,69

Вследствие сложности нахождения параметров для удовлетворения 16 нелинейным условиям разрешимости задача решалась в полуобратной постановке. Параметры ω , λ , u_{∞} , β в канонической плоскости задавались, а периметры l_k профилей и положения s_{ck} точек C_k в физической плоскости являлись искомыми. Чтобы зафиксировать положение профилей, задавались не значения φ_{a2} и ψ_{a2} , а параметры ξ_{bk} . В результате схема решения задачи приняла следующий вид.

- 1. Задаются параметры δ , ω , λ , u_{∞} , β , а также ξ_{bk} , s_{1k} , s_{2k} (k=1,2).
- 2. Из условий (9) находятся s_{ck} , l_k .
- 3. Из (12) определяются v_{0k} , v_{1k} .
- 4. Выполнение условий разрешимости (10), (13), (14) обеспечивается выбором параметров ξ_{ck}, v_{2k}, v_{3k} .

На основе данной схемы составлена программа построения двухэлементного крылового профиля.

На рис. З приведен пример построения крылового профиля в диапазоне углов атаки. Параметры ω , λ , β , ξ_{bk} взяты из решения задачи для одного угла атаки [4]; величина u_{∞} находилась из условия $l_1+l_2=1$; диапазон углов $\delta=15^{\circ}$. Характеристики данного профиля представлены в табл. 1.

Для проверки результатов проектирования рассчитано обтекание построенного крылового профиля с использованием пакета программ "Fluent". Расчетная сетка (рис. 4) строилась следующим образом: вокруг двухэлементного крылового профиля была описана окружность, вне этой окружности выбрана регулярная четырехугольная сетка. Внутри

Д. Ф. Абзалилов

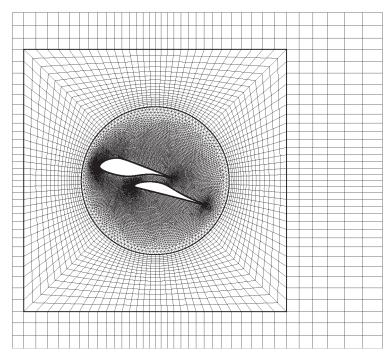


Рис. 4. Расчетная сетка вблизи контура профиля

 ${
m Taf\pi n \pi a} \ 2$ Аэродинамические характеристики крыловых профилей

Модель течения		c_{y1}	c_{x2}	c_{y2}
Модель ИНЖ	0	0,32	0	1,69
Модель невязкого течения		0,31	0,0086	1,61
Модель турбулентного течения Спаларта — Аллмараса		0,31	0,0277	1,55

окружности (за исключением пограничного слоя, для которого сетка также была четырехугольной) использовалась треугольная нерегулярная сетка. Необходимый угол атаки достигался поворотом окружности.

Ставились следующие граничные условия. На входе в расчетную область задавалась скорость потока, на выходе — условие выхода, на боковых гранях — условие симметрии или гладкой стенки (вектор скорости параллелен боковой границе расчетной области), на крыловых профилях — условие прилипания.

Расчет проводился для двух моделей: модель невязкого течения использовалась для проверки результатов численно-аналитического решения (модель идеальной несжимаемой жидкости), модель турбулентного течения Спаларта — Аллмараса — для проверки применимости использованной модели идеальной несжимаемой жидкости (ИНЖ) для описания вязких течений ($Re=6\cdot 10^6$).

Значения аэродинамических сил, полученные с использованием различных моделей, приведены в табл. 2. Следует отметить, что результаты точного численно-аналитического решения (модель ИНЖ) и результаты расчета по модели невязкого течения хорошо согласуются. Отличие точного решения от решения для турбулентного течения наблюдается в области между двумя контурами, где необходимо учитывать вязкие эффекты.

Автор выражает благодарность Н. Б. Ильинскому за полезные замечания.

ЛИТЕРАТУРА

- 1. **Slawig T.** Domain optimization of a multi-element airfoil using automatic differentiation // Adv. Engng Software. 2000. V. 32, N 3. P. 225–237.
- 2. **Kim S., Alonso J. J., Jameson A.** Design optimization of high-lift configurations using a viscous continuous adjoint method. Reno (NV), 2002. (Paper / AIAA; N 2002-0844).
- 3. **Елизаров А. М.** Обратные краевые задачи аэрогидродинамики: теория и методы проектирования и оптимизации формы крыловых профилей / А. М. Елизаров, Н. Б. Ильинский, А. В. Поташев. М.: Наука. Физматлит, 1994.
- 4. **Абзалилов Д. Ф., Волков П. А., Ильинский Н. Б.** Решение обратной краевой задачи аэрогидродинамики для двухэлементного крылового профиля // Изв. РАН. Механика жидкости и газа. 2004. № 3. С. 16–24.
- 5. Седов Л. И. Плоские задачи гидродинамики и аэродинамики. М.: Наука, 1966.
- 6. **Елизаров А. М., Фокин Д. А.** Построение крыловых профилей, обтекаемых безотрывно в заданном диапазоне изменения углов атаки // Изв. АН СССР. Механика жидкости и газа. 1990. № 3. С. 157–164.
- 7. Ахиезер Н. И. Элементы теории эллиптических функций. М.: Наука, 1970.

Поступила	6	редакцию	7/XI	2007	г.