УДК 539.375

СОЕДИНЕНИЕ УПРУГИХ ПЛАСТИН В ПАКЕТ ВДОЛЬ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ ОТРЕЗКОВ

В. В. Сильвестров, И. А. Иванов

Чувашский государственный университет им. И. Н. Ульянова, 428015 Чебоксары

Рассматривается система тонких упругих бесконечных пластин, наложенных друг на друга и соединенных вдоль периодической системы коллинеарных отрезков. Упругие свойства и толщины пластин в общем случае разные. Пластины растягиваются усилиями, приложенными к ним на бесконечности. Методом решения матричной краевой задачи Римана построен алгоритм нахождения комплексных потенциалов, описывающих напряженное состояние пластин, и найдены коэффициенты интенсивности напряжений, построены их графики.

1. Постановка задачи. Пусть *n* тонких бесконечных упругих однородных изотропных пластин E_1, E_2, \ldots, E_n , занимающих всю плоскость комплексной переменной z = x + iy, наложены одна на другую и соединены между собой без натяга и промежуточных прослоек вдоль периодической системы отрезков $l_j = [a + jT, b + jT], j = 0, \pm 1, \pm 2, \ldots$ действительной оси *x*. Пластина E_k ($k = \overline{1, n}$) имеет толщину h_k , модуль сдвига μ_k и коэффициент Пуассона ν_k . В полосе периодов пластины E_k при $y \to +\infty$ действуют расположенные в плоскости пластины напряжения ($\sigma_x^{\infty})'_k$, ($\sigma_y^{\infty})'_k$, отнесенные к единице толщины пластины, и вращение ($\omega^{\infty})'_k$, при $y \to -\infty$ — соответственно ($\sigma_x^{\infty})''_k$, ($\sigma_y^{\infty})''_k$, ($\tau_{xy}^{\infty})''_k$ и ($\omega^{\infty})''_k$.

Будем считать: 1) пластины находятся в обобщенном плоском напряженном состоянии и взаимодействуют друг с другом только через линии соединения, причем пространственный эффект концентрации напряжений на линиях соединения пренебрежимо мал и трение между пластинами отсутствует; 2) на концах отрезков l_j напряжения и производные по x от компонент смещения могут обращаться в бесконечность с порядком меньше 1, а в остальных точках они непрерывны.

На линиях соединения пластин должны выполняться условия сопряжения

$$(u+iv)_{k}^{+} = (u+iv)_{k}^{-}, \quad k = \overline{1,n}, \qquad (u+iv)_{k}^{+} = (u+iv)_{k+1}^{+}, \quad k = \overline{1,n-1},$$

$$\sum_{k=1}^{n} h_{k}(\sigma_{y} - i\tau_{xy})_{k}^{+} = \sum_{k=1}^{n} h_{k}(\sigma_{y} - i\tau_{xy})_{k}^{-},$$
(1.1)

где $(u+iv)_k$ — вектор смещения точек пластины E_k ; $(\sigma_y, \tau_{xy})_k$ — соответственно нормальное и касательное напряжения в точках пластины E_k , отнесенные к единице ее толщины. Первые 2n-1 условия в (1.1) представляют собой условие равенства смещений точек пластин E_1, E_2, \ldots, E_n на линии соединения, а последнее условие — условие равновесия точек этой линии.

Необходимо определить периодическое напряженное состояние описанного выше пакета пластин. Данная задача для двух пластин решена в [1]. Пакеты пластин, соединенных

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 01-01-00720).

вдоль конечного числа отрезков или концентрических окружностей или конечного числа разомкнутых кривых, изучены в [2–4].

В рассматриваемом случае напряжения, вращение и частные производные по x от компонент смещения в пластине E_k выражаются через две кусочно-голоморфные функции $\Phi_k(z)$ и $\Omega_k(z)$ формулами [5]

$$(\sigma_x + \sigma_y)_k = 4 \operatorname{Re} \Phi_k(z), \quad 2\mu_k \omega_k = (1 + \omega_k) \operatorname{Im} \Phi_k(z), \quad \omega_k = (3 - \nu_k)/(1 + \nu_k), (\sigma_y - i\tau_{xy})_k = \Phi_k(z) + \Omega_k(\bar{z}) + (z - \bar{z})\overline{\Phi'_k(z)},$$
(1.2)
$$2\mu_k (u' + iv')_k = \omega_k \Phi_k(z) - \Omega_k(\bar{z}) - (z - \bar{z})\overline{\Phi'_k(z)}, \qquad k = \overline{1, n}.$$

Функции $\Phi_k(z)$, $\Omega_k(z)$ периодичны с основным периодом T. В полосе периодов $0 \leq \text{Re } z \leq T$ на бесконечности эти функции, согласно теории периодических аналитических функций, имеют вид [6]

$$\Phi_k(z) = \gamma'_k + O(\mathrm{e}^{-|y|}), \quad \Omega_k(z) = \delta'_k + O(\mathrm{e}^{-|y|}) \quad \text{при} \quad y \to +\infty;$$
(1.3)

$$Φ_k(z) = γ_k'' + O(e^{-|y|}), \quad Ω_k(z) = \delta_k'' + O(e^{-|y|}) \quad \text{при} \quad y \to -\infty.$$
(1.4)

Используя формулы (1.2) и представления (1.3), (1.4), находим

$$\gamma_{k}' = \frac{1}{4} \left[(\sigma_{x}^{\infty})_{k}' + (\sigma_{y}^{\infty})_{k}' \right] + \frac{2i\mu_{k}}{1 + \omega_{k}} (\omega^{\infty})_{k}',$$

$$\delta_{k}' = \frac{1}{4} \left[3(\sigma_{y}^{\infty})_{k}'' - (\sigma_{x}^{\infty})_{k}'' \right] - i \left[(\tau_{xy}^{\infty})_{k}'' + \frac{2\mu_{k}}{1 + \omega_{k}} (\omega^{\infty})_{k}'' \right],$$

$$\gamma_{k}'' = \frac{1}{4} \left[(\sigma_{x}^{\infty})_{k}'' + (\sigma_{y}^{\infty})_{k}'' \right] + \frac{2i\mu_{k}}{1 + \omega_{k}} (\omega^{\infty})_{k}'',$$

$$\delta_{k}'' = \frac{1}{4} \left[3(\sigma_{y}^{\infty})_{k}' - (\sigma_{x}^{\infty})_{k}' \right] - i \left[(\tau_{xy}^{\infty})_{k}' + \frac{2\mu_{k}}{1 + \omega_{k}} (\omega^{\infty})_{k}' \right].$$
(1.5)

2. Решение задачи. На основе формул (1.2) и условий сопряжения (1.1) для нахождения функций $\Phi_k(z), \Omega_k(z)$ $(k = \overline{1, n})$ получим краевую задачу

в классе периодических функций с основным периодом *T*. Запишем задачу (2.1) в матричной форме

$$A\Phi^+(t) = B\Phi^-(t)$$
 или $\Phi^+(t) = A^{-1}B\Phi^-(t), \quad t \in l_0,$ (2.2)

где

$$\Phi(z) = \{\Phi_1, \Phi_2, \dots, \Phi_n, \Omega_1, \Omega_2, \dots, \Omega_n\}^{\mathrm{T}},$$
$$A = \begin{pmatrix} A_1 & E \\ A_2 & A_3 \end{pmatrix}, \qquad B = \begin{pmatrix} B_1 & E \\ B_2 & B_3 \end{pmatrix},$$
$$A_1 = \operatorname{diag} \{x_1, x_2, \dots, x_n\}, \qquad B_1 = A_1, \qquad B_2 = -A_3,$$

$$A_{2} = \begin{pmatrix} \mu_{1}^{*} x_{1} & -x_{2} & 0 & \dots & 0 & 0 \\ 0 & \mu_{2}^{*} x_{2} & -x_{3} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \mu_{n-1}^{*} x_{n-1} & -k_{n} \\ h_{1} & h_{2} & h_{3} & \dots & h_{n-1} & h_{n} \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \\ -h_{1} & -h_{2} & \dots & -h_{n} \end{pmatrix}, \quad B_{3} = \begin{pmatrix} \mu_{1}^{*} & -1 & 0 & \dots & 0 & 0 \\ 0 & \mu_{2}^{*} & -1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \mu_{n-1}^{*} & -1 \\ -h_{1} & -h_{2} & -h_{3} & \dots & -h_{n-1} & -h_{n} \end{pmatrix},$$

$$\mu_{k}^{*} = \mu_{k+1}/\mu_{k}.$$

Найдем собственные значения матрицы $A^{-1}B$. Для этого рассмотрим характеристическое уравнение $|A^{-1}B - \lambda E| = 0$, которое можно записать иначе: $|B - \lambda A| = 0$. После элементарных преобразований матрицы $B - \lambda A$ уравнение примет вид $C(1-\lambda)^{n+1}(1+\lambda)^{n-1} = 0$, $C = \text{const} \neq 0$.

Можно показать, что алгебраические кратности собственных значений матрицы $A^{-1}B$ равны их геометрическим кратностям. Следовательно, собственные векторы матрицы $A^{-1}B$ линейно независимы и матрица $S^{-1}A^{-1}BS$ (S — матрица, столбцами которой являются собственные векторы матрицы $A^{-1}B$) является диагональной с диагональными элементами $\lambda_1 = \lambda_2 = \ldots = \lambda_{n+1} = 1$, $\lambda_{n+2} = \lambda_{n+3} = \ldots = \lambda_{2n} = -1$ [7]. Тогда задача (2.2) распадается на 2n независимых задач

$$F_j^+(t) = F_j^-(t), \quad t \in L, \quad j = \overline{1, n+1}, \qquad F_j^+(t) = -F_j^-(t), \quad t \in L, \quad j = \overline{n+2, 2n}$$
 (2.3)

для компонент F_1, F_2, \ldots, F_{2n} новой кусочно-голоморфной вектор-функции $F(z) = S^{-1}\Phi(z)$. Функция F(z) на концах отрезка l_0 может обращаться в бесконечность с порядком меньше 1, а в полосе периодов на бесконечности в силу (1.3), (1.4), (2.2) имеет представления

$$F(z) = S^{-1}G' + O(e^{-|y|}) \text{ при } y \to +\infty, \quad F(z) = S^{-1}G'' + O(e^{-|y|}) \text{ при } y \to -\infty; \quad (2.4)$$

$$G' = \{\gamma'_1, \gamma'_2, \dots, \gamma'_n, \delta'_1, \delta'_2, \dots, \delta'_n\}^{\mathrm{T}}, \qquad G'' = \{\gamma''_1, \gamma''_2, \dots, \gamma''_n, \delta''_1, \delta''_2, \dots, \delta''_n\}^{\mathrm{T}},$$
(2.5)

где $\gamma'_k, \gamma''_k, \delta'_k$, δ''_k определяются формулами (1.5); $O(e^{-|y|})$ — вектор-функция, каждая компонента которой при больших y сравнима с $e^{-|y|}$.

Согласно [8] периодические решения задач (2.3), (2.4) имеют вид

$$F_{j}(z) = d_{j}, \qquad j = \overline{1, n+1},$$

$$F_{j}(z) = \chi(z) \left(c_{0j} + ic_{1j} \operatorname{ctg} \frac{\pi z}{T} \right), \qquad j = \overline{n+2, 2n},$$

$$(2.6)$$

$$(2.6)$$

$$\chi(z) = \left(\sin\frac{\pi z}{T}\right) / \sqrt{\sin\frac{\pi(z-a)}{T}} \sin\frac{\pi(z-b)}{T};$$

(S⁻¹G')_j = (S⁻¹G'')_j = d_j, j = 1, n + 1; (2.7)

$$(S^{-1}G')_j = c_{0j} + c_{1j}, \qquad (S^{-1}G'')_j = c_{0j} - c_{1j}, \qquad j = \overline{n+2,2n},$$
 (2.8)

где $(S^{-1}G')_j$ и $(S^{-1}G'')_j - j$ -е элементы векторов $S^{-1}G'$ и $S^{-1}G''$ соответственно; под функцией $\chi(z)$ понимается ветвь, однозначная в полосе $0 \leq \text{Re } z \leq T$ с разрезом вдоль отрезка [a, b], значения которой стремятся к 1 при $y \to \pm \infty$. Коэффициенты c_{0j} и c_{1j} однозначно определяются из (2.8), а равенства (2.7) накладывают n+1 комплексное условие на напряжения и вращения в полосе периодов на бесконечности, а также на характеристики пластин. С учетом (1.5), (2.5) из равенств (2.7) (аналогично случаю двух пластин [1]) получим

$$(1 + \omega_k)[(\sigma_x^{\infty})'_k - (\sigma_x^{\infty})''_k] = (3 - \omega_k)[(\sigma_y^{\infty})'_k - (\sigma_y^{\infty})''_k], \quad k = \overline{1, n},$$

$$(\tau_{xy}^{\infty})'_k - (\tau_{xy}^{\infty})''_k = -2\mu_k[(\omega^{\infty})'_k - (\omega^{\infty})''_k], \quad k = \overline{1, n},$$

$$\sum_{k=1}^n h_k[(\tau_{xy}^{\infty})'_k - (\tau_{xy}^{\infty})''_k] = 0, \quad \sum_{k=1}^n h_k[(\sigma_y^{\infty})'_k - (\sigma_y^{\infty})''_k] = 0.$$
(2.9)

В дальнейшем будем считать, что эти условия выполнены.

3. Коэффициент интенсивности напряжений (КИН). Так как $\Phi(z) = SF(z)$, согласно (2.6) функции $\Phi_k(z)$, $\Omega_k(z)$ вблизи точки z = b имеют вид

$$\Phi_k(z) = A_k(z-b)^{-1/2} + O(1), \qquad \Omega_k(z) = -\varpi_k A_k(z-b)^{-1/2} + O(1),$$

$$A_k = \sin \frac{\pi b}{T} \sum_{j=n+2}^{2n} s_{kj} \Big(c_{0j} + ic_{1j} \operatorname{ctg} \frac{\pi b}{T} \Big) \Big/ \sqrt{\frac{\pi}{T}} \sin \frac{\pi (b-a)}{T},$$
(3.1)

где s_{kj} — элементы матрицы S; под $\sqrt{z-b}$ понимается ветвь, однозначная в плоскости с разрезом по лучу $(-\infty, b]$ действительной оси, значение которой равно 1 при z - b = 1.

Из (3.1) следует, что комплексные потенциалы $\Phi_k(z)$, $\Omega_k(z)$ вблизи конца линии соединения имеют тот же вид, что и вблизи конца жесткого тонкого остроугольного включения [9]. Поэтому КИН вблизи точки z = b в пластине E_k определяется формулой

$$(k_1 - ik_2)_k(b) = -2\omega_k \lim_{z \to b} \sqrt{2\pi(z-b)} \Phi_k(z) = -2\sqrt{2\pi}\omega_k A_k$$

Тогда распределение напряжений вблизи концов линий соединения пластин будет таким же, как вблизи вершин жесткого тонкого остроугольного включения в одной пластине.

ПРИМЕР 1. Пусть две пластины E_1 , E_2 одинаковой толщины $h_1 = h_2 = 1$ с упругими характеристиками $\omega_1 = 2,1$, $\omega_2 = 2,3$ соединены вдоль отрезков $[-b + \pi j, b + \pi j]$, $j = 0, \pm 1, \ldots$ Приведем зависимости КИНа от отношения μ_2/μ_1 для следующих случаев.

1. При $y \to +\infty$ и $y \to -\infty$ в пластинах E_1 и E_2 действуют напряжения $(\sigma_y^{\infty})'_1 = \sigma$, $(\sigma_x^{\infty})''_1 = \sigma(x_1 - 3)/(1 + x_1)$ и $(\sigma_y^{\infty})''_2 = \sigma, (\sigma_x^{\infty})'_2 = \sigma(x_2 - 3)/(1 + x_2)$, а все остальные напряжения и вращения на бесконечности исчезают. При этом условия (2.9) выполняются. На рис. 1, *a* приведены зависимости коэффициента k_{11}/σ от отношения μ_2/μ_1 для точек $z = \pm b$ пластины E_1 при различных значениях *b*. На рис. 1 кривая 1 соответствует $b = 0, 1\pi, 2 - b = 0, 2\pi, 3 - b = 0, 3\pi, 4 - b = 0, 4\pi$. При этом коэффициент $k_2 = k_{21}$ для пластины E_1 при любом значении *b* не зависит от отношения μ_2/μ_1 , а КИНы для пластины E_2 получаются умножением соответствующих коэффициентов для пластины E_1 на -1,029. В таблице приведены значения коэффициента k_{21}/σ , соответствующие различным значениям *b*.

2. В пластине E_1 при $y \to +\infty$ и $y \to -\infty$ действуют напряжения $(\sigma_y^{\infty})'_1 = (\sigma_y^{\infty})''_1 = \sigma$, остальные исходные данные нулевые. Тогда для пластины E_1 коэффициент $k_{21} = 0$. На рис. 1,6 приведены зависимости коэффициента k_{11}/σ от отношения μ_2/μ_1 для точек $z = \pm b$ пластины E_1 при различных значениях b. КИНы для пластины E_2 получаются умножением соответствующих коэффициентов для пластины E_1 на -1,029.

Рис. 1

ПРИМЕР 2. Пусть три пластины E_1 , E_2 , E_3 одинаковой единичной толщины с упругими характеристиками $x_1 = x_3 = 2,1$, $x_2 = 2,3$, $\mu_1 = \mu_3$ соединены в пакет вдоль отрезков $[-b + \pi j, b + \pi j]$, $j = 0, \pm 1, \ldots$ Приведем зависимости КИНа от отношения μ_2/μ_1 для следующих случаев.

1. В пластине E_2 при $y \to +\infty$ и $y \to -\infty$ действуют напряжения $(\tau_{xy}^{\infty})'_2 = (\tau_{xy}^{\infty})''_2 = \tau$, остальные исходные данные нулевые. Тогда для всех пластин коэффициент $k_1 = 0$. На рис. 1,6 приведены зависимости коэффициентов $k_{21}/\tau = k_{23}/\tau$ от отношения μ_2/μ_1 для точек $z = \pm b$ пластин E_1 и E_3 при различных значениях b. При этом КИНы для пластины E_2 получаются умножением КИНов для пластины E_1 на -2,058.

2. В пластинах E_1 при $y \to +\infty$ и E_3 при $y \to -\infty$ действуют касательные напряжения $(\tau_{xy}^{\infty})'_1 = (\tau_{xy}^{\infty})''_3 = 2\tau$ и вращения $(\omega^{\infty})''_1 = \tau/\mu_1, (\omega^{\infty})'_3 = \tau/\mu_3$, остальные исходные данные нулевые. Тогда для пластины E_1 коэффициент $k_1 = k_{11}$ при любом значении b не зависит от отношения μ_2/μ_1 (значения k_{11}/τ при различных значениях b приведены в таблице). На

b	k_{21}/σ	k_{11}/τ
$_{0,1\pi}$	-2,307	4,614
$0,2\pi$	-1,543	$3,\!086$
$0,3\pi$	-1,121	2,242
$0,4\pi$	-0,750	$1,\!499$

Рис. 2

рис. 1, ϵ приведена зависимость коэффициента k_{21}/τ от отношения μ_2/μ_1 при различных значениях b. При этом КИНы для пластин E_1 и E_3 совпадают, а КИНы для пластины E_2 получаются умножением КИНов для пластины E_1 на -2,058.

ПРИМЕР 3. Пусть пластины E_1, E_2, \ldots, E_n одинаковой толщины с одинаковыми упругими характеристиками x, μ соединены в пакет вдоль отрезков $[-b + \pi j, b + \pi j]$. В пластинах E_1, E_n при $y \to +\infty$ и $y \to -\infty$ действуют напряжения $(\sigma_y^{\infty})'_1 = (\sigma_y^{\infty})'_n = \sigma, (\sigma_x^{\infty})'_1 = (\sigma_x^{\infty})'_n = \sigma(x_1 - 3)/(1 + x_1)$, остальные исходные данные нулевые. Тогда в случае двух пластин коэффициент $k_1 = 0$, а в случаях трех — пяти пластин зависимости этого коэффициента от b для пластин E_1 и E_2 приведены на рис. 2, a, b соответственно.

ЛИТЕРАТУРА

- 1. Сильвестров В. В., Иванов И. А. Растяжение двух упругих пластин, соединенных друг с другом вдоль периодической системы отрезков // Изв. инж.-технол. Акад. Чуваш. Респ. 1998. № 3/4; 1999. № 1/2. С. 42–46.
- Сильвестров В. В., Чекмарев Г. Е. Пакет тонких упругих пластин, соединенных вдоль коллинеарных отрезков // Исследования по краевым задачам и их приложениям. Чебоксары: Изд-во Чуваш. ун-та, 1992. С. 38–42.
- 3. Сильвестров В. В., Шумилов А. В. Пакет тонких упругих пластин, соединенных вдоль концентрических окружностей // Изв. инж.-технол. Акад. Чуваш. Респ. 1997. № 1/2. С. 142–148.
- 4. Сильвестров В. В., Шумилов А. В. К задаче соединения упругих пластин в пакет вдоль кривых // Изв. РАН. Механика твердого тела. 2000. № 5. С. 166–174.
- 5. Мусхелишвили Н. И. Сингулярные интегральные уравнения. М.: Наука, 1968.
- 6. Маркушевич А. И. Теория аналитических функций. М.: Наука, 1968. Т. 2.
- 7. Ланкастер П. Теория матриц. М.: Наука, 1978.
- 8. **Чибрикова Л. И.** Основные граничные задачи для аналитических функций. Казань: Изд-во Казан. ун-та, 1977.
- 9. Бережницкий Л. Т., Панасюк В. В., Стащук Н. Г. Взаимодействие жестких линейных включений и трещин в деформируемом теле. Киев: Наук. думка, 1983.

Поступила в редакцию 4/V 2000 г.