УДК 532.526

РАЗВИТИЕ ЕСТЕСТВЕННЫХ ВОЗМУЩЕНИЙ В ГИПЕРЗВУКОВОМ ПОГРАНИЧНОМ СЛОЕ ОСТРОГО КОНУСА

Д. А. Бунтин, А. А. Сидоренко, А. Н. Шиплюк

Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск

Приводятся экспериментальные данные о положении области ламинарно-турбулентного перехода и развитии естественных возмущений в ламинарном гиперзвуковом пограничном слое острого теплоизолированного конуса с углом полураствора 7°. Подтверждено существование второй моды возмущений. Показано, что переход определяется первой модой возмущений. Получено хорошее соответствие экспериментальных данных теоретическим расчетам.

Для развития космической техники и авиации необходимо исследование процессов, происходящих в гиперзвуковом пограничном слое и вызывающих ламинарно-турбулентный переход. К настоящему времени механизмы перехода при гиперзвуковых скоростях изучены слабо. Это связано с большой сложностью экспериментов и теоретического анализа. Физические процессы ламинарно-турбулентного перехода при гиперзвуковых скоростях качественно отличаются от процессов, характерных для дозвуковых и сверхзвуковых течений. Основной причиной такого отличия является возникновение теоретически предсказанных Л. М. Мэком мод неустойчивости акустического типа (вторая, третья моды и т. д.). Согласно расчетам [1] доминирующую роль в ламинарно-турбулентном переходе начиная со значения числа Маха М \approx 4 должна играть вторая мода возмущений.

Впервые вторую моду возмущений обнаружил Дж. М. Кендалл в 1967 г. в экспериментах на плоской пластине. В работе [2] на модели конуса показано, что этот тип неустойчивости играет определяющую роль в ламинарно-турбулентном переходе для M=8.5. В то же время для M = 4.5 и M = 5.6 ожидаемое доминирование второй моды не наблюдалось. Полученные данные для указанных значений числа Маха качественно совпали с расчетами Мэка [1]. В экспериментах [3] подтверждено существование второй моды возмущений, а также получены дополнительные сведения об устойчивости гиперзвукового пограничного слоя. В частности, подтвержден вывод Мэка о дестабилизации второй моды при охлаждении поверхности модели. Исследования авторов работы [4] на цилиндре и конусах с углом полураствора 7° при M=8 можно назвать наиболее полными. В экспериментах получены степени нарастания амплитуды для возмущений с частотами, соответствующими первой и второй модам, а также кривые нейтральной устойчивости. Кроме того, на конусах изучалось влияние затупления носика и угла атаки модели на устойчивость пограничного слоя. Показана доминирующая роль второй моды при ламинарно-турбулентном переходе для острого конуса. В экспериментах на полом цилиндре [5] ожидаемого доминирования второй моды не обнаружено. Расчеты М. Р. Малика [6] показывают, что для адиабатической стенки на остром конусе возмущения первой моды могут оказывать решающее влияние на ламинарно-турбулентный переход до значений $M \approx 7$. В работе [7] на плоской пластине при M=5 возмущений второй моды не обнаружено, что, возможно, связано с ограниченным частотным диапазоном используемого датчика. Исследования

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 98-01-00735) и Международного научно-технического центра (грант N° 128).

устойчивости пограничного слоя с неблагоприятным градиентом давления (давление растет вниз по потоку) на конусе при M=5,91 проводились в NASA на малошумной трубе M6NTC [8]. Полученные данные подтверждают основные выводы расчетов Мэка. В работе [8] утверждается, что переход обусловлен второй модой, однако из приведенных в ней данных однозначного вывода об этом сделать нельзя.

Целью настоящей работы является получение дополнительных экспериментальных данных по устойчивости гиперзвукового пограничного слоя: определение чисел Рейнольдса перехода, средних и пульсационных характеристик пограничного слоя, степеней нарастания возмущений.

1. Экспериментальное оборудование. Эксперименты проводились в гиперзвуковой аэродинамической трубе баллонно-эжекторного типа Т-326 Института теоретической и прикладной механики СО РАН при значении числа Маха набегающего потока $\mathrm{M}_{\infty}=5.92$, единичном числе Рейнольдса $\mathrm{Re}_{1\infty}=12.5\cdot 10^6~\mathrm{m}^{-1}$, давлении в форкамере $P_0=9.8\cdot 10^5$ Па и температуре в форкамере $T_0=380~\mathrm{K}$. Значения параметров в форкамере P_0 и T_0 поддерживались постоянными в течение эксперимента со следующими погрешностями: температура — 0.9~%, давление — 0.1~%. Характеристики набегающего потока M_{∞} , $\mathrm{Re}_{1\infty}$ определялись по измеренным P_0 , T_0 и известной зависимости $\mathrm{M}_{\infty}=f(P_0)$, полученной при исследовании поля течений в рабочей части трубы Т-326. Пульсации измерялись с помощью термоанемометра постоянного сопротивления, имеющего частотный диапазон от 0 до $500~\mathrm{k}$ Гц. Применялись однониточные датчики длиной $1.3~\mathrm{km}$, изготовленные из вольфрамовой проволоки диаметром $5~\mathrm{km}$. Перегрев нити $\tau=(T_w-T_e)/T_0=0.4$ (T_w — температура проволоки, T_e — температура восстановления газа на проволоке), поэтому при обработке считалось, что термоанемометр чувствителен только к пульсациям массового расхода, коэффициент чувствительности принимался равным 0.25~[9].

При измерении поперечных распределений в пограничном слое датчик термоанемометра перемещался в направлении от стенки модели с шагом 0.05 мм. Погрешность определения координаты составляла 0.01 мм. Нулевое положение датчика у поверхности модели фиксировалось по электрическому контакту.

В ходе эксперимента переменная и постоянная составляющие электрического сигнала с выхода термоанемометра при помощи двух 12-битных АЦП записывались в память персонального компьютера. Для получения спектров пульсаций переменный сигнал оцифровывался с частотой $1,25~\mathrm{M}\Gamma$ ц, что позволяло проводить спектральный анализ до частоты $612~\mathrm{k}\Gamma$ ц.

Модель представляла собой острый стальной конус длиной $0.5\,\mathrm{m}$ с углом полураствора 7° . Радиус затупления носика модели не превышал $0.1\,\mathrm{mm}$. Для установки модели под нулевым углом атаки и нулевым углом скольжения в ней по радиусу на одинаковом расстоянии друг от друга были сделаны четыре дренажных отверстия. Нулевой угол определялся из условия равенства статических давлений во всех отверстиях. Погрешность угла наклона модели составляла 0.1° . В начале эксперимента ввиду массивности модель не успевала прогреваться, поэтому для выполнения условия адиабатичности в нее был вмонтирован электрический нагреватель. Температура стенок $T_w \approx 320\,\mathrm{K}$ контролировалась термопарой, встроенной в модель и расположенной у ее поверхности.

2. Положение ламинарно-турбулентного перехода. Данные по ламинарно-турбулентному переходу получены с помощью насадка Пито, толщина которого равнялась 0.7 мм. Для измерений использовался тензодатчик давления с диапазоном измерения $0 \div 10^5$ Па. Погрешность измерения составляла 0.5%.

Во время эксперимента насадок перемещался внутри пограничного слоя по поверхности конуса вдоль его образующей. Погрешность определения координаты составляла $0.1~\mathrm{mm}$.

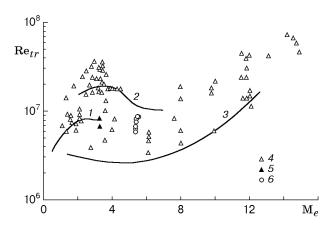


Рис. 1. Зависимость числа Рейнольдса перехода от числа Маха на границе пограничного слоя:

1, 2 — расчет по методу $\mathrm{e}^n~(n=10)$ для адиабатической и охлаждаемой стенок соответственно; 3 — экспериментальные данные для обычных аэродинамических труб; 4 — результаты летных исследований; 5 — экспериментальные данные для малошумных аэродинамических труб; 6 — результаты настоящих исследований для установки $\mathrm{T}\text{-}326$ при $\mathrm{Re}_{1\infty}=(12,2\div2,6)\cdot10^6~\mathrm{m}^{-1}$

Максимум в распределении давления за прямым скачком уплотнения P_0' по координате x соответствует концу ламинарно-турбулентного перехода. Измерения выполнены в диапазоне $\mathrm{Re}_{1\infty} = (12.2 \div 22.6) \cdot 10^6 \ \mathrm{m}^{-1} \ (P_0 = (9.8 \div 19.5) \cdot 10^5 \ \Pi \mathrm{a}).$

На рис. 1 представлена зависимость числа Рейнольдса перехода Re_{tr} , вычисленного по параметрам на границе пограничного слоя, от числа Маха на границе пограничного слоя. Рис. 1 взят из работы [6], на него нанесены данные, полученные в настоящих исследованиях.

Видно, что числа Рейнольдса перехода, полученные в аэродинамической трубе Т-326 (которая не является малошумной установкой), лежат намного выше кривой 3. Возможные причины этого обсуждаются ниже.

3. Спектры пульсаций в пограничном слое. Измерения распределения спектров возмущений в пограничном слое проводились в 17 сечениях. Для шести из них на рис. 2 показано распределение среднеквадратичных амплитуд интегральных пульсаций массового расхода $\langle \rho u \rangle$, нормированных на средние значения массового расхода (рис. 2,a), и средних скоростей U (рис. 2,6). По оси ординат отложена координата y, нормированная на толщину пограничного слоя δ . Координата y отсчитывалась от поверхности модели перпендикулярно ее оси, R обозначает корень из числа Рейнольдса: $R = \sqrt{\text{Re}_{1e}x}$ (Re_{1e} единичное число Рейнольдса, рассчитанное по параметрам на границе пограничного слоя; x — координата вдоль образующей конуса). Параметры на границе пограничного слоя находились из расчета невязкого конического течения. Толщина пограничного слоя определялась по распределению средней скорости из условия $U=0.99U_e$, где U_e — скорость в свободном потоке возле верхней границы пограничного слоя. Кривая 1 на рис. $2, \delta$ соответствует профилю скорости для ламинарного пограничного слоя, рассчитанному на основе уравнений пограничного слоя; кривая 2 — расчету профиля скорости для турбулентного пограничного слоя по формуле $U/U_e=(y/\delta)^{1/7}$ с учетом существования ламинарного подслоя; точки — экспериментальные данные. На рис. 2, δ видно, что при R < 2300, пограничный слой остается ламинарным: измеренные профили скорости совпадают с расчетным ламинарным профилем (кривая 1), пульсации малы и сосредоточены в довольно узкой области в окрестности $y \approx 0.8\delta$. При R > 2300 происходит наполнение профилей средних скоростей и амплитуд интегральных пульсаций, увеличение уровня пульсаций

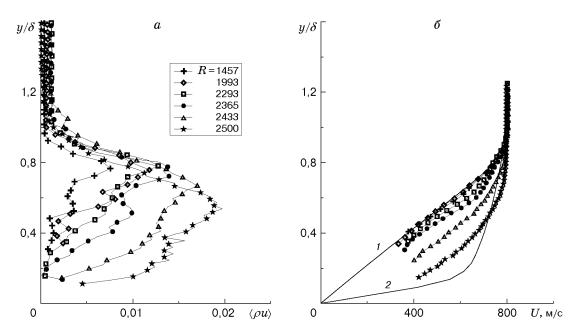


Рис. 2. Распределение среднеквадратичных интегральных пульсаций (a) и средней скорости (δ) поперек пограничного слоя

примерно в два раза по сравнению с ламинарной областью, что свидетельствует о начале турбулизации пограничного слоя. Кроме того, наблюдалось резкое увеличение толщины пограничного слоя.

Для определения степеней нарастания волн неустойчивости проведены измерения по стандартной методике (см., например, [10]) в слое максимальных пульсаций. Из полученных экспериментальных данных следует, что относительная вертикальная координата y/δ положения слоя максимальных пульсаций и среднее напряжение на датчике термоанемометра, находящемся в этом слое, являются постоянными для гиперзвукового ламинарного пограничного слоя. Поэтому дальнейшие эксперименты проводились следующим образом. Вначале определялись положение слоя максимальных пульсаций и значение среднего напряжения в этом слое. Затем датчик перемещался вдоль образующей конуса так, что напряжение оставалось постоянным. С шагом примерно 2 мм по координате x снимался спектр пульсаций. В ходе эксперимента несколько раз проверялось положение максимума пульсаций, при необходимости положение датчика корректировалось. В области перехода и развитой турбулентности подобные измерения не проводились.

Полученные распределения спектров естественных возмущений в слое максимальных пульсаций представлены на рис. З (A — фурье-амплитуда пульсаций массового расхода). На рис. З видно, что возмущения всех частот растут. Отметим, что на частотах 250–350 к Γ ц наблюдается пик возмущений. Оценка длины волны λ этих колебаний с использованием фазовой скорости, рассчитанной по линейной локально-параллельной теории устойчивости, показывает, что λ равна примерно двум толщинам пограничного слоя (фазовая скорость $C_x = 0.92$, методика расчета C_x аналогична методике, используемой в [11]). Это значение λ соответствует теоретическим [1], а также экспериментальным значениям длины волны второй моды возмущений [12]. Найденная безразмерная частота $F = 2\pi f/(\mathrm{Re}_{1e}U_e) = (1.0 \div 1.5) \cdot 10^{-4}$ так же соответствует частоте второй моды. Следовательно, пик на высоких частотах соответствует второй моде возмущений. Можно проследить эволюцию этого пика: видно увеличение амплитуды и смещение максимума пульсаций в сторону низких частот. Такое поведение характерно для возмущений второй

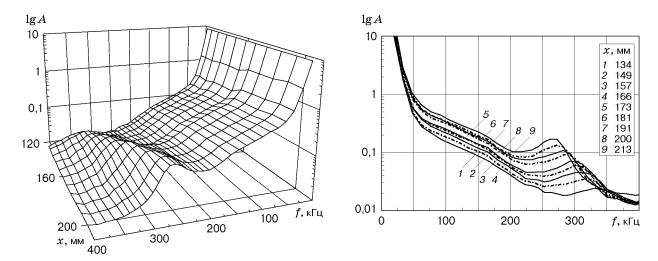


Рис. 3. Распределение спектра естественных возмущений в слое максимальных пульсаций

моды. Как отмечалось выше, длина волны этой моды составляет примерно 2δ , поэтому при увеличении δ вниз по потоку длина волны возрастает, а следовательно, частота уменьшается.

4. Степени нарастания возмущений. Для вычисления степеней нарастания волн возмущений распределения амплитуд пульсаций по R, измеренные в максимуме пульсаций (рис. 3), сглаживались и аппроксимировались полиномом. Степени нарастания вычислялись по следующей формуле: $-\alpha_i = 1/(2A)(\partial A/\partial R)$.

Результаты обработки приведены на рис. 4–6. На рис. 4 видно, что степени нарастания низкочастотных возмущений, соответствующих первой моде, практически не меняются и во всем диапазоне измерений больше нуля. Степени нарастания высокочастотных возмущений имеют явно выраженный максимум и с увеличением R становятся отрицательными. На рис. 5, 6 хорошо виден пик в области частот, соответствующих второй моде возмущений. Хотя основная энергия пульсаций приходится на низкочастотные колебания, наиболее неустойчивыми оказались волны второй моды, что соответствует теоретическим предсказаниям. На рис. 5 с увеличением R для колебаний с максимальными степенями роста амплитуды наблюдается уменьшение частоты, что также согласуется с теоретическими результатами. На рис. 6 видно удовлетворительное качественное и количественное соответствие расчетных и экспериментальных данных по α_i . Расчет проводился по линейной локально-параллельной теории устойчивости. На рис. 6 также заметно несовпа-

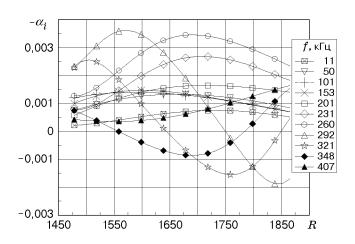


Рис. 4. Распределение степеней нарастания волн возмущений для различных частот

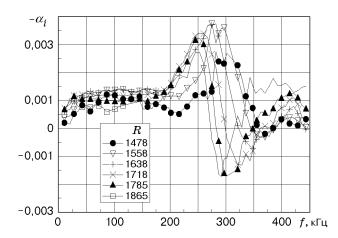


Рис. 5. Распределение степеней нарастания воли возмущений для различных значений R

дение экспериментальных и теоретических частот, соответствующих амплитудам волн с максимальной степенью нарастания. Это может быть связано с тем, что в расчетах не учитывалось влияние непараллельности течения на устойчивость пограничного слоя.

Различие экспериментальных и теоретических значений α_i , которое также наблюдалось в работе [12], может быть связано с их некорректным сравнением. Расчетные данные получены для волны с определенным углом наклона θ , значения α_i , вычисленные на основе экспериментальных данных, определялись по распределениям интегральной амплитуды, так как при измерении характеристик естественных пульсаций невозможно выделить волны с определенным углом наклона. Для корректного сравнения необходимо проводить эксперименты с использованием методики искусственных возмущений или корреляционные измерения.

Из полученных данных (см. рис. 3) следует, что основная энергия пульсаций свободного потока сосредоточена на низких частотах. Поэтому начальные амплитуды возмущений первой моды в пограничном слое намного выше амплитуд второй моды. Хотя возмущения второй моды растут быстрее (см. рис. 4–6), из-за малых начальных амплитуд этих возмущений определяющую роль в ламинарно-турбулентном переходе играют медленно растущие пульсации первой моды, вследствие чего, возможно, и сдвигается область перехода

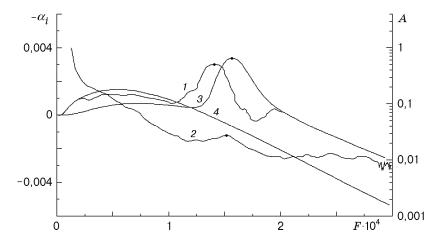


Рис. 6. Зависимость степеней нарастания (кривые $1,\,3,\,4$) и амплитуд волн (кривая 2) от безразмерной частоты для R=1600:

1, 2 — эксперимент; 3, 4 — расчет (3 — $\theta=0$; 4 — $\theta=50^\circ$); точки — локальные максимумы, соответствующие второй моде

вниз по потоку. Это свидетельствует о том, что влияние возмущений первой и второй мод на ламинарно-турбулентный переход нельзя оценивать без учета уровня и спектра начальных возмущений пограничного слоя. Поэтому необходимо исследовать чувствительность пограничного слоя к возмущениям свободного потока, так как уровень и спектр пульсаций пограничного слоя зависят от возмущений в набегающем потоке.

Заключение. Таким образом, в работе экспериментально подтверждено существование возмущений второй моды. Определены степени нарастания амплитуд волн для первой и второй мод неустойчивости. Показано, что возмущения второй моды имеют большие степени нарастания, но несмотря на это переход определяется первой модой. Получено хорошее соответствие экспериментальных данных результатам расчета по линейной локально-параллельной теории устойчивости.

ЛИТЕРАТУРА

- 1. Mack L. M. Boundary layer stability theory. Pasadena, 1969. (Doc. / JPL; 900-277, Rev. A).
- 2. **Kendall J. M.** Wind tunnel experiments relating to supersonic and hypersonic boundary layer transition // AIAA J. 1975. V. 13. P. 290–299.
- 3. **Demetriades A.** Boundary layer instability observations at Mach number 7 // Trans. ASME. Ser. E. J. Appl. Mech. 1977. V. 44, N 1. P. 7–10.
- 4. **Stetson K., Kimmel R.** On hypersonic boundary-layer stability. N. Y., 1992. (Paper / AIAA; N 92-0737).
- 5. Stetson K., Thompson E., Donaldson J., Siler L. A comparison of planar and conical boundary layer stability and transition at Mach number 8. N. Y., 1991. (Paper / AIAA; N 91-1639).
- Malik M. R. Prediction and control of transition in supersonic and hypersonic boundary layers // AIAA J. 1989. V. 27, N 11. P. 1487–1493.
- 7. Wendt V., Simen M. An experimental and theoretical investigation of instabilities in hypersonic flat plate boundary layer flow // Phys. Fluids. 1995. N 7. P. 877–887.
- 8. Wilkinson S. A review of hypersonic boundary layer stability experiments in a quiet Mach 6 wind tunnel. N. Y., 1997. (Paper / AIAA; N 97-1819).
- 9. **Bestion D., Gaviglio J., Bonnet J. P.** Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows // Rev. Sci. Instrum. 1983. V. 54, N 11. P. 1513–1524.
- 10. **Lebiga V. A., Maslov A. A., Pridanov V. G.** Experimental investigation of the stability of supersonic boundary layer on a flat insulated plate // Arch. Mech. 1979. V. 31, N 3. P. 397–405.
- 11. **Гапонов С. А., Маслов А. А.** Устойчивость сжимаемого пограничного слоя при дозвуковых скоростях // Изв. СО АН СССР. Сер. техн. наук. 1971. Вып. 1, № 3. С. 24–27.
- 12. **Stetson K. F., Thompson E. R., Donaldson J. C., Siler L. G.** Laminar boundary layer stability experiments on a cone at Mach 8. Pt 1. Sharp cone. N. Y., 1983. (Paper / AIAA; N 83-1761).

Поступила в редакцию 27/III 2000 г.