УЛК 539.219.3:620.186:539.376

Диффузионная проницаемость и механические свойства объемных наноструктурных материалов, полученных воздействием интенсивной пластической деформации

Ю. Р. КОЛОБОВ, Г. П. ГРАБОВЕЦКАЯ, К. В. ИВАНОВ, М. Б. ИВАНОВ

Институт физики прочности и материаловедения Сибирского отделения РАН, проспект Академический, 2/1, Томск 634021 (Россия)

E-mail: kolobovispms@mail.tomsknet.ru

Аннотация

Исследованы термостабильность структуры, диффузионная проницаемость и особенности механических свойств наноструктурных меди, никеля и композита $\mathrm{Cu-Al_20_3}$ (массовая доля 0.5~%). На примере наноструктурного никеля изучено влияние состояния границ зерен на диффузионную проницаемость металлических материалов в наноструктурном состоянии. Рассмотрена роль дисперсного упрочнения в стабилизации наноструктуры и ее свойств при ползучести, в том числе в условиях воздействия зернограничных диффузионных потоков атомов примеси из внешней среды.

ВВЕДЕНИЕ

В последние годы активно разрабатываются и исследуются объемные ультрамелкозернистые материалы, в которых формирование наноструктуры (размер зерен 0.1-0.3 мкм) достигается воздействием интенсивной пластической деформации (ИПД) [1-3]. Интерес к таким материалам обусловлен их уникальными механическими и физико-химическими свойствами. Они обладают высокой прочностью при сохранении удовлетворительной пластичности и проявляют при определенных условиях низкотемпературную и/или высокоскоростную сверхпластичность [1, 4]. В наноструктурных (НС) материалах обнаружено изменение фундаментальных, обычно структурно-нечувствительных свойств - упругих модулей, температуры Кюри и Дебая, удельной теплоемкости и других [1, 5, 6]. Имеются также данные об увеличении коэффициентов зернограничной диффузии в рассматриваемых материалах [7].

Широкое применение металлических НСматериалов, полученных воздействием ИПД, сдерживается двумя важными проблемами. Вопервых, это нестабильность неравновесной структуры таких материалов, связанная с высокой энергией, накопленной при ИПД [1]. Известно, что такая нестабильность является причиной интенсивного разупрочнения при относительно низкой температуре. Эта температура для некоторых НС-металлов, например меди, относительно низка и близка к 373 К [8]. Во-вторых, увеличение коэффициентов диффузии в НС-состоянии по сравнению с таковыми для крупнозернистого ведет к высокой чувствительности таких материалов к воздействию внешней среды [9]. Одним из эффективных способов повышения термостабильности структуры и улучшения механических свойств металлов и сплавов является дисперсное упрочнение. В последние годы начаты исследования по разработке и созданию НС-композитов, в матрице которых наряду с упрочнением частицами высокостабильных оксидных, карбидных или других фаз наноразмеров (10-15 нм) воздействием ИПД формируют наноструктурное состояние (размер зерен 0.1-0.3 мкм). Низкая растворимость упрочняющих фаз и их высокая устойчивость к процессам коагуляции дают основание предполагать, что нанокомпозиты будут иметь не только высокий уровень механических свойств,

но и высокую стабильность структуры в условиях одновременного воздействия температуры и нагрузки.

В связи с вышеизложенным в работе проведены комплексные исследования стабильности структуры, физических и механических свойств (в том числе при ползучести в условиях воздействия зернограничными диффузионными потоками атомов меди и алюминия из внешнего источника (покрытия)) наноструктур никеля, меди и композита на основе меди, полученных методами интенсивной пластической деформации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследовали никель (99.95 %), медь (99.90 %) и композит $Cu-Al_2O_3$ (массовая доля 0.5 %) (Glid Cop Al-25, CША) в HC-состоянии. Для сравнения исследовали крупнозернистый никель ($d \sim 20$ мкм), медь ($d \sim 10$ мкм) и композит в исходном экструдированном состоянии ($d \sim 0.6$ мкм). Композит Cu-0.5 % Al_2O_3 изготовлен путем внутреннего окисления смеси порошков меди и алюминия [10]. Наноструктуру в исследуемых материалах получали методами кручения под давлением и равноканального углового (РКУ) прессования [1].

Электронно-микроскопические исследования тонкой фольги исследуемых материалов проводили в просвечивающем электронном микроскопе $\rm 3M\textsubsepansure{3}$ и Зучение распределения частиц $\rm Al_2O_3$ в объеме матрицы композита и по размерам проводили методом экстракционных реплик на электронном микроскопе $\rm 3M\textsubsepansure{3}$ при ускоряющем напряжении $\rm 100~kB$. Металлографические исследования осуществляли на оптическом микроскопе Neophot $\rm 21$.

Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузке 100 г. Удельное электросопротивление определяли потенциометрическим четырехточечным методом на образцах размерами 12´0.09´0.016 см при температуре 77 К. Погрешность измерения составляла 7 %.

Испытания на активное растяжение при $293-673~{\rm K}$ и ползучесть в интервале температур $398-673~{\rm K}$ в вакууме $10^{-2}~{\rm \Pi a}$ проводили на модифицированной испытательной ма-

шине ПВ-3012М. Растворимость оксида ${\rm Al_2O_3}$ в медной матрице в используемом интервале температур, по данным [11], не превышает 10^{-18} атомных долей. Образцы для испытаний в форме двойной лопатки вырезали электроискровым способом. Перед испытанием с поверхности образцов удаляли слой толщиной около 50 мкм механической шлифовкой и последующей электролитической полировкой.

Коэффициенты зернограничной диффузии меди в никеле определяли по кривым зависимости концентрации меди от глубины проникновения в объем образцов за время диффузионного отжига. Диффузионный отжиг никеля, покрытого пленкой меди, проводили в вакууме 10^{-2} Па при 423, 573, 773, 823 и 873 К в течение 3 и 5 ч. Образцы НС-никеля отжигали также на воздухе при 373 К в течение 95 ч. Концентрацию меди в никеле измеряли методом вторичной ионной масс-спектроскопии (ВИМС) на приборе МС-7201. Общая ошибка определения концентрации меди в слое не превышала 20 %.

Исследование влияния диффузионных потоков атомов примеси из внешней среды на ползучесть НС-материалов проводили на примере ползучести никеля с медным покрытием (система Ni(Cu), здесь и далее в скобках указана примесь-диффузант) и меди и композита с алюминиевым покрытием (системы Cu(Al), $Cu-Al_2O_3(Al)$). Слой меди толщиной 12-15 мкм наносили на поверхность образцов электролитически. Слой алюминия толщиной 10 мкм наносили методом ионно-плазменного напыления.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Электронно-микроскопические исследования тонкой фольги показали, что микроструктура никеля и меди после интенсивной пластической деформации имеет сложный дифракционный контраст, который не позволяет различить детали дислокационной структуры (рис. 1). В объеме зерен часто наблюдаются контуры экстинкции, что свидетельствует о наличии внутренних напряжений. Последние могут быть связаны с наличием упругих напряжений на границах зерен [12]. Средний

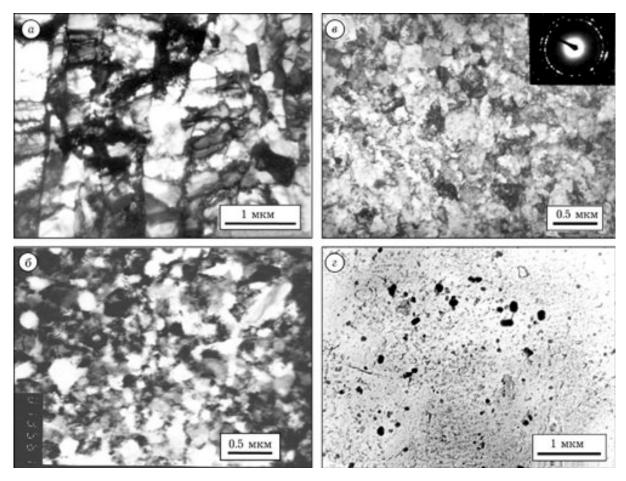


Рис. 1. Микроструктура наноструктурных образцов никеля (a), меди (δ) и композита $\mathrm{Cu}{-0.5}~\%~\mathrm{Al_2O_3}$: e — тонкая фольга [9], e — реплика с экстракцией частиц.

размер зерен, определяемый по темнопольному изображению, для HC-никеля составляет (0.26±0.08) мкм, для меди — (0.30±0.06) мкм. На электронограммах, снятых с площади 1 мкм², наблюдается большое количество рефлексов, расположенных по окружности, при этом некоторые из них имеют азимутальное размытие. Такой вид электронограмм свидетельствует о наличии большеугловых разориентировок между элементами наноструктуры и присутствии упругих напряжений в отдельных зернах.

Отжиг НС-никеля в интервале температур 398-548 К не приводит к заметному изменению структуры, в том числе размера зерен, определяемого электронно-микроскопически. Однако после отжига при 523 и 548 К имеет место увеличение (до 10-20 %) числа границ зерен с полосчатым контрастом и исчезновение контуров экстинкции внутри зерен, окруженных такими границами. Анало-

гичные изменения в структуре HC-меди наблюдаются в интервале температур 373-448 К. Это свидетельствует о развитии процессов релаксации напряжений на указанных границах зерен при неизменном размере зерен. Рекристаллизация HC-никеля происходит при температуре 573 K, HC-меди — при 473 K.

Наноструктурный композит $\text{Cu}-0.5\,\%\ \text{Al}_2\text{O}_3$ имеет ультрамелкозернистую структуру с размером зерен 0.2 мкм. Методом экстракционных реплик установлено, что дисперсные частицы Al_2O_3 размером менее 20 нм равномерно распределены в объеме материала. В образцах имеются также отдельные области, содержащие более крупные частицы Al_2O_3 (50–100 нм).

Отжиг в интервале температур $423-1073~{\rm K}$ не изменяет размеров упрочняющих частиц ${\rm Al_2O_3}$ и их распределения по объему образца, однако приводит к изменению структуры медной матрицы. Эти результаты согла-

суются с данными авторов [11], которые установили, что оксид Al₂O₃ не меняет свои размеры и конфигурацию в медной матрице при отжиге вплоть до 1273 К. В процессе отжига при температурах ниже 673 К размер зерен медной матрицы не изменяется. При этом в медной матрице НС-композита интенсивно развиваются процессы возврата. Снижение внутренних напряжений может быть обусловлено перераспределением и аннигиляцией зернограничных и решеточных дислокаций в границах зерен и в приграничных областях [13]. Первые рекристаллизованные участки появляются в образцах композита Cu-0.5 % Al_2O_3 после отжига при температуре 673 К в течение 1 ч. Процесс рекристаллизации в исследуемом композите развивается медленно и повышение температуры отжига от 673 до 873 К не приводит к полной рекристаллизации материала. Полная рекристаллизация медной матрицы композита происходит в результате отжига при 1073 К в течение 1 ч. При этом средний размер матрицы составляет 2.5 мкм. Для сравнения, температура рекристаллизации чистой НС-меди составляет 448 К.

Измерение микротвердости $(H_{\rm m})$ наноструктурных никеля и меди показали, что формирование наноструктуры методами ИПД значительно увеличивает значение $H_{\rm m}$ по сравнению с обычным крупнозернистым состоянием. Изменение указанной величины с температурой отжига немонотонно (рис. 2).

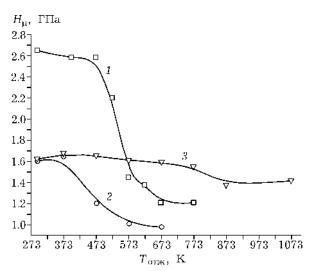


Рис. 2. Зависимость микротвердости наноструктурных образцов никеля (1), меди (2) и композита ${\rm Cu}{-}0.5~\%$ ${\rm Al}_2{\rm O}_3$ (3) от температуры предварительного отжига.

После отжига при температурах, близких к температурам рекристаллизации, значение $H_{\rm m}$ наноструктурных никеля и меди резко уменьшается. При дальнейшем увеличении температуры отжига $H_{\rm m}$ постепенно снижается до значений, соответствующих крупнозернистому состоянию.

Важной особенностью исследованного НС-композита является высокая термостабильность $H_{\rm m}$ по сравнению с чистой крупнозернистой и наноструктурной медью (см. рис. 2). Например, в исходном состоянии и после отжига в интервале температур $673-873~{\rm K}$ микротвердость композита равна $1.60-1.67~{\rm \Gamma IIa}$. После отжига при более высоких температурах ($923-1073~{\rm K}$) значение $H_{\rm m}$ уменьшается до $1.40~{\rm \Gamma IIa}$, но остается в 3 раза выше, чем у рекристаллизованной меди ($0.5~{\rm \Gamma IIa}$).

Немонотонно с температурой отжига изменяются и другие физические и механические свойства наноструктурных никеля и меди. На рис. З представлены кривые зависимости удельного электросопротивления от температуры предварительного отжига. Видно, что резкое изменение значений удельного электросопротивления наноструктурных никеля и меди и их приближение к соответствующим значениям для крупнозернистых находятся в температурном интервале, где рост зерен не наблюдается, а имеют место, как отмечалось выше, только процессы возврата в структуре границ зерен. Существенное изменение

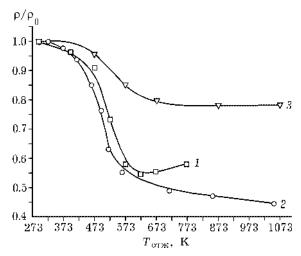


Рис. 3. Зависимость удельного электросопротивления наноструктурных образцов никеля (1), меди (2) и композита $\mathrm{Cu}{-}0.5~\%~\mathrm{Al_2O_3}$ (3) от температуры предварительного отжига: r_0 — удельное электросопротивление неотожженных образцов.

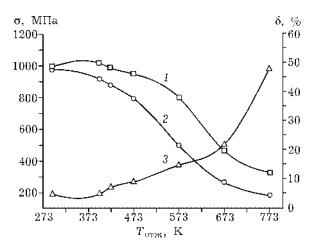


Рис. 4. Зависимость пределов прочности (1), текучести (2), деформации до разрушения (3) наноструктурного никеля от температуры предварительного отжига ($T_{\rm исп}=293~{\rm K}$).

электросопротивления HC-композита (на 20 %) наблюдается в том же температурном интервале, что и у HC-меди (см. рис. 3).

Зависимости предела прочности $s_{\rm B}$, предела текучести $s_{0,2}$ и деформации до разрушения d HC-никеля от температуры отжига, представленные на рис. 4, показывают, что существенное уменьшение $s_{0,2}$ происходит в интервале температур, где отсутствует рост зерен, тогда как $s_{\rm B}$ и d изменяются в основном после начала роста зерен.

Сравнительные испытания на растяжение композита в наноструктурном и исходном экструдированном состоянии показали, что формирование в композите $\mathrm{Cu-0.5}~\%~\mathrm{Al_2O_3}$ наноструктуры приводит к увеличению его пределов прочности и текучести при комнатной температуре на 20 и 35 % соответственно. Деформация до разрушения при этом уменьшается в 4 раза. Отжиг HC-композита при температурах 673 и 873 К в течение 1 ч приводит к уменьшению $\mathrm{s_B}$ и $\mathrm{s_{0.2}}$ и увеличению d

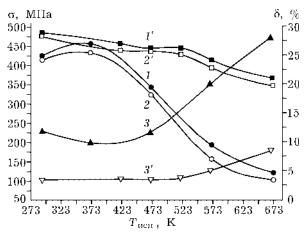


Рис. 5. Зависимость предела прочности (1, 1 $\$, предела текучести (2, 2 $\$) и пластичности (3, 3 $\$) от температуры испытаний для наноструктурной меди (1–3) и композита Cu-0.5 % Al_2O_3 (1 $\$ -3 $\$).

Однако даже после отжига при 873 K прочностные свойства композита в указанном состоянии выше таковых для HC-меди.

На рис. 5 представлена температурная зависимость s_в, s_{0.2} и d для HC-меди и композита Cu-0.5 % Al₂O₃. Видно, что при комнатной температуре значения $s_{_{\rm B}}$ и $s_{_{0.2}}$ НС-меди близки к таковым для композита и превышают соответствующие крупнозернистой меди в 1.6 и 2 раза соответственно (табл. 1). С увеличением температуры испытаний значения s_{B} и $s_{0.2}$ монотонно уменьшаются, а d – растут. Следует отметить, что в случае композита зависимость механических характеристик от температуры испытаний гораздо меньше, чем в случае чистой НС-меди. По-видимому, это связано с присутствием в структуре исследуемого композита дисперсных частиц упрочняющей фазы, блокирующих такие дефекты структуры, как дислокации, границы зерен, препятствуя таким образом рекристаллизации, ведущей к разупрочнению.

ТАБЛИЦА 1 Зависимость механических свойств HC-меди и композита $Cu-0.5~\%~Al_2O_3$ от температуры отжига

Материал	Состояние	s _в ±10, МПа	s _{0.2} ±10, МПа	d±0.5, %
Медь	нс	369	352	7.2
	HC+отжиг (353 K, 1 ч)	358	309	8.3
	Крупнозернистое	225	180	5.0
Cu=0.5 $\%$ Al ₂ O ₃	HC	510	475	6.2
	HC+отжиг (673 K, 1 ч)	474	429	11.8
	HC+отжиг (873 K, 1 ч)	423	355	21.6

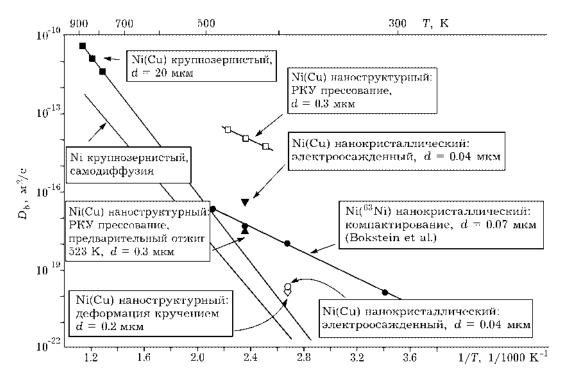


Рис. 6. Аррениусовская зависимость коэффициентов зернограничной диффузии меди в никеле с различной структурой.

Диффузионную проницаемость НС-материалов исследовали на примере системы Ni(Cu). На рис. 6 представлены температурные зависимости коэффициентов зернограничной диффузии меди в НС-никеле. Здесь же для сравнения представлены данные по самодиффузии в крупнозернистом и нанокристаллическом (полученном методом консолидации порошков) никеле [14]. Коэффициенты зернограничной диффузии (D_b) рассчитывали по профилям концентрации меди по глубине с учетом того, что границы зерен в НС-никеле при данном диффузионном отжиге (по данным электронной микроскопии) не мигрируют, а объемную диффузию можно считать "замороженной" [15]. При расчете величины D_b для крупнозернистого никеля учитывали, что в интервале температур 773-873 К границы зерен мигрируют.

Как видно из рис. 6, значения D_b для крупнозернистого никеля и никеля в наноструктурном и нанокристаллическом состоянии могут отличаться на $1{\text -}5$ порядков. При этом колебания значений D_b HC-никеля при одной и той же температуре в различных экспериментах составляют $2{\text -}3$ порядка. Такой разброс значений D_b HC-никеля можно отнести

за счет разных методов получения и различной чистоты используемых в экспериментах НС-материалов. Кроме того, как видно из рис. 6, диффузионные процессы в НС-никеле существенно зависят от состояния границ зерен.

В табл. 2 представлены значения скорости установившейся ползучести наноструктурных образцов никеля, меди и композита Cu-0.5 % $\mathrm{Al_2O_3}$ в состоянии после воздействия ИПД и после дорекристаллизационного отжига при $T = 423 \text{ K и s} = (0.6-0.65) \text{ s}_{0.2} \text{ (s - напряже-}$ ние). Здесь же приведены значения скорости ползучести для композита в исходном экструдированном состоянии. Видно, что после дорекристаллизационного отжига сопротивление ползучести НС-материалов уменьшается. Наличие в НС-матрице композита дисперсных наноразмерных частиц Al₂O₃ приводит не только к значительному увеличению сопротивления ползучести, но и к росту термической стабильности указанной величины.

Как уже отмечалось выше, увеличение коэффициентов диффузии в наноструктурном состоянии ведет к высокой чувствительности такой структуры к воздействию внешней среды. В этой связи представляет интерес иссле-

Материал	s, МПа	Состояние	e, c ⁻¹
Никель	630	нс	2.8×10^{-7}
		HC+отжиг (398 K, 1 ч)	1.1×10^{-6}
Медь	130	HС	2.3×10^{-7}
		HC+отжиг (353 K, 1 ч)	2.2×10^{-6}
Cu-0.5 % Al ₂ O ₃	285	HС	4.3×10^{-7}

ТАБЛИЦА 2 Скорость установившейся ползучести наноструктур никеля, меди и композита $Cu-0.5~\%~Al_2O_3~$ при 423 K

дование влияния диффузии атомов примеси из покрытия на ползучесть НС-материалов. Изучение ползучести систем Ni(Cu) и Cu(Al) при температурах 373-523 К показало, что в узком интервале температур (398-473 К) наличие диффузионных потоков примеси с поверхности в глубь рассматриваемых НСметаллов приводит к значительному увеличению скорости их ползучести и деформации до разрушения. Ранее было показано [1], что аналогичный эффект для крупнозернистых никеля и меди наблюдается в интервалах температур 773-923 и 573-673 К соответственно. Таким образом, эффект активации ползучести диффузионными потоками атомов примеси замещения из внешнего источника для НС-металлов имеет место при существенно более низких температурах, чем для крупнозернистых. Последнее может быть обусловлено большими значениями коэффициентов зернограничной диффузии в НС-материалах по сравнению с крупнозернистыми.

Испытания на ползучесть системы Cu-Al₂O₃(Al) показали отсутствие влияния диффузии алюминия с поверхности на скорость ползучести композита. Ранее было показано [9], что эффект активации ползучести поликристаллов зернограничными диффузионными потоками атомов примеси связан с активацией зернограничного проскальзывания и увеличением его вклада в общую деформацию. Можно предполагать, что отсутствие указанного эффекта при ползучести композита Cu-0.5 % Al₂O₃ в условиях диффузии атомов алюминия с поверхности вызвано известным эффектом подавления зернограничного проскальзывания дисперсными частицами, располагающимися на границах зерен [16].

выводы

HC+отжиг (353 K, 1 ч)

1. Методы интенсивной пластической деформации позволяют сформировать в поликристаллических материалах наноструктуру с размером зерен менее 0.5 мкм. Такие наноструктурные материалы обладают более высокими механическими свойствами по сравнению с крупнозернистыми.

 6.2×10^{-7}

- 2. На примере зернограничной диффузии меди в никеле показано, что диффузионная проницаемость наноструктурных материалов, полученных воздействием интенсивной пластической деформации, на 1-5 порядков превышает таковую для крупнозернистого состояния.
- 3. Эффект активации ползучести наноструктурных никеля и меди зернограничными диффузионными потоками атомов примеси из внешней среды имеет место в интервале значительно более низких температур, чем для крупнозернистых. По-видимому, это обусловлено существенным увеличением диффузионной проницаемости металлов в наноструктурном состоянии по сравнению с крупнозернистым.
- 4. Введение наноразмерных частиц упрочняющей фазы ${\rm Al_2O_3}$ в наноструктурную медную матрицу приводит к повышению термостабильности структуры и механических свойств наноструктурной меди. При этом подавляется эффект активации ползучести, связанный с воздействием зернограничных диффузионных потоков атомов примеси из внешней среды.

Работа выполнена при финансовой поддержке ИНТАС (грант 99–1216) и РФФИ (00–02–17937). Авторы выражают благодарность Р. З. Валиеву за предоставленные материалы и обсуждения результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1 Ю. Р. Колобов, Р. З. Валиев, Г. П. Грабовецкая и др., Зернограничная диффузия и свойства наноструктурных материалов, Наука, Новосибирск, 2001.
- 2 Р. З. Валиев, И. В. Александров, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва, 2000.
- 3 Р. З. Валиев, Р. К. Исламгалиев, ΦMM , 85 (1998)
- 4 S. X. McFadden, R. S. Mishra, R. Z. Valiev *et al.*, *Nature*, 398 (1999) 684.
- 5 Р. З. Валиев, А.В. Корзников, Р. Р. Мулюков, ΦMM , 85 (1992) 70.
- 6 Г. А. Салищев, Р. М. Галиев, С. П. Малышева и др., Там же, 85 (1998) 178.
- 7 Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov et al., Scripta materialia, 44 (2001) 873.

- 8 A. Korznikov, O. Dimitrov, G. Korznikova, Annales de Chimie. Science des Materiaux, 21 (1996) 443.
- 9 Ю. Р. Колобов, Диффузионно-контролируемые процессы на границах зерен и пластичность металлических поликристаллов, Наука, Новосибирск, 1998.
- 10 W. Buchgraber, R. K. Islamgaliev, Yu. R. Kolobov et al., High Technology, 80 (2000) 267.
- Е. П. Данелия, В. М. Розенберг, Внутренне-окисленные сплавы, Металлургия, Москва, 1978.
- 12 J. P. Monchoux, J. L. Derep, M. Sarfati, Annales de Chimie. Science des Materiaux, 21 (1996) 503.
- 13 J. Languillaume, F. Chmelik, G. Kapelski et al., Acta Met. Materialia, 41 (1993) 2953.
- 14 B. S. Bokstein, H. D. Brose, L. I. Trusov and T. P. Khvostantseva, Nanostruct. Mater., 6 (1995) 873.
- 15 I. Kaur, Yu. Mishin and W. Gust, Fundamentals of Grain and Interface Boundary Diffusion, J. Wiley, Chichester, 1995.
- 16 R. Raj, M. F. Ashby, Met. Trans., 3 (1972) 1937.