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Чувствительность твердых топлив к удару является важным фактором при их производстве,
применении и хранении. Для исследования чувствительности и последующей реакции топлив
на основе сополимера 3,3-бис(азидометил)оксетана (BAMO) и тетрагидрофурана (THF) (PBT-
топлива) при ударе с низкой скоростью проведено 20 Susan-тестов и разработана математи-
ческая модель. Результаты показывают, что реакция при ударе инициируется экструзионным
пиролизом PBT-топлив. При скоростях удара 120 ÷ 300 м/с относительная выделяющаяся энер-
гия в Susan-тестах больше 20 %, она увеличивается с ростом скорости удара и достигает в мак-
симуме 57.67 %. PBT-топлива демонстрируют сильную реакцию на удар с низкой скоростью и
чувствительны к условиям разрушения при ударе. Согласно результатам моделирования проте-
кание реакции экструдированного топлива в снаряде Susan-теста зависит как от скорости удара,
так и от характеристик оболочки. Результаты моделирования хорошо согласуются с экспери-
ментальными и показывают, что частичная детонация инициируется при начальной скорости
удара около 260 м/с.
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ВВЕДЕНИЕ

Твердые топлива на основе сополимера

3,3-бис(азидометил)оксетана (BAMO) и тет-
рагидрофурана (THF) — высокоэнергетиче-
ские малочувствительные вещества, содержа-
щие Al, октоген и перхлорат аммония, (да-
лее PBT-топлива) имеют хорошие перспекти-
вы в плане применения. В связи с этим вопросы
безопасности обработки, хранения и транспор-
тировки этих топлив требуют изучения их чув-
ствительности к удару. Ранее было показано,
что удар с низкой скоростью может иницииро-
вать многие топлива и перейти в опасные собы-
тия [1]. Для конкретных сценариев аварий раз-
работано несколько тестов [2–5]: тест с модифи-
цированным падающим грузом [6], испытание
на хрупкость [7], Spigot-тест [8], Steven-тест [9],
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Susan-тест [1, 10–15]. Susan-тест предназначен
для оценки чувствительности замкнутого заря-
да взрывчатого вещества (ВВ) и представляет
собой удар разрушающегося снаряда по мише-
ни.

С его помощью можно оценить опасность

случайного сброса взрывной системы в корпусе

с большой высоты, например с самолета, и уда-
ра по цели с определенной скоростью [1, 10, 15].
В связи с тем, что деформация образцов топли-
ва в Susan-тесте близка к реальной ситуации,
знание реакции PBT-топлив в этом тесте име-
ет большое практическое значение для оцен-
ки степени безопасности при ударе взрывоопас-
ных объектов по мишени [1, 10]. Авторы рабо-
ты [15] провели Susan-тесты с рядом пластиче-
ских ВВ на основе октогена. Общее описание
наблюдаемого механизма удара включает в се-
бя четыре процесса: удар, разрыв корпуса, про-
должающееся разрушение, окончательное сжа-
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тие. Получена информация о времени реакции
ВВ, движении снаряда и поведении алюминие-
вой защитной оболочки при разрушении.

Авторы [10] изучали реакцию пластиче-
ских ВВ LX-14 (95.5 % (мас.) октогена) и

DXD-59 (92 % октогена) на удар с низкой

скоростью. Образец LX-14 продемонстрировал
неустойчивое поведение и сильную реакцию

при низкой скорости удара и, таким образом,
очень высокую чувствительность к условиям

разрушения при ударе. При испытании ВВ

DXD-59 зарегистрированы линейно возраста-
ющее давление и умеренная чувствительность

к удару. Как известно из литературы [1, 10–
15], основная цель Susan-теста состоит в том,
чтобы оценить влияние компонентов, скорости
удара и т. д. на реакцию топлива в снаряде

при низких скоростях удара, в то время как
механизму реакции и процессам, доминирую-
щим в нем, уделяется меньше внимания. Что-
бы исследовать механизм и доминирующую ре-
акцию в Susan-тесте, необходимо всесторонне
контролировать реакцию топлива после уда-
ра, но из-за экранирования заряда алюминие-
вой оболочкой и стальным корпусом это слож-
но сделать. Для моделирования процесса удар-
ного инициирования и быстрого перехода в де-
тонацию энергетических материалов часто ис-
пользуется модель Ли — Тарвера [16–27]. Ав-
торы статьи [24] изучали индуцированную уда-
ром детонацию бризантных ВВ, заключенных
в стальной цилиндр с открытым торцом, с по-
мощью трехмерного анализа методом конечных

элементов. Были обсуждены пороговые усло-
вия детонации, предсказываемые различными
уравнениями состояния и моделями разруше-
ния стальной оболочки и снаряда. В работе [27]
с использованием программного обеспечения

ANSYS/LS-DYNA и нелинейного метода конеч-
ных элементов были исследованы характери-
стики инициирования ракетных двигателей на

твердом топливе (РДТТ) при ударе осколками.
По рассчитанным значениям давления и реак-
ционной способности заряда твердого топли-
ва определены критическая ударная скорость

инициирования РДТТ и ее изменение при раз-
личных формах осколков и условиях соударе-
ния. Как показали исследования [28–32], модель
Ли— Тарвера позволяет хорошо моделировать

ударное воспламенение и реакцию после вос-
пламенения твердых топлив.

В представленной нами работе Susan-тест
применялся для анализа характеристик реак-

ции топлива при скорости удара 120 ÷ 300 м/с.
Для описания всех процессов в Susan-тесте ис-
пользовалась численная модель Ли — Тарве-
ра. Путем объединения экспериментальных и

численных результатов изучены механизм ре-
акции и доминирующий в нем процесс.

1. ЭКСПЕРИМЕНТ

Размер образца топлива PBT — ∅50 ×
100 мм, масса около 345 г. Топливо PBT состо-
ит из связующего PBT (BAMO : THF = 3 : 2,
средняя молекулярная масса 5 500, 17 %), пер-
хлората аммония (39 %), алюминия (19 %),
3,5,7-тетранитро-1,3,5,7-тетразоцина (октоген,
20 %) и пластификатора А3 (5 %). Плотность
заряда 1.763 г/см3.

Ударные испытания PBT-топлив проведе-
ны в соответствии с GJB 8142 со стандарт-
ным методом 8 [33] и рекомендациями Органи-
зации Объединенных Наций по перевозке опас-
ных грузов (Руководство по испытаниям и кри-
териям, часть 1, серия 7, тип (c)) [34] (рис. 1).

Снаряд в Susan-тесте массой около 5.4 кг
состоит из трех частей: стальной корпус,

Рис. 1. Схема постановки Susan-теста:

A — 82-миллиметровая пушка, B — снаряд,
C — лазерный измеритель скорости, D — мишень

(толщина 6.4 см), E — датчики давления, F и G—
высокоскоростные камеры
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Рис. 2. Численная модель

PBT-топливо и алюминиевый стакан. Выстрел
проводится из 82-миллиметрового орудия. Дат-
чики воздушной ударной волны расположены

на расстоянии 4 м от мишени. Для измерения
скорости снаряда используются камера F с ча-
стотой 10 000 кадр/с (FASTCAM Mini AX200-
200K-C-16, 1 024× 672) и лазерные измерители
скорости, момент удара регистрируется каме-
рой G с частотой 190 000 кадр/с (PHANTOM
V1212, 256 × 128).

2. ЧИСЛЕННАЯ МОДЕЛЬ

Для моделирования реакции PBT-топлива
при низкоскоростном ударе использовано

программное обеспечение ANSYS/AUTODYN.
Для упрощения расчетов задача рассматри-
валась в симметричном по осям Y и Z виде.
Расчетная схема показана на рис. 2. Для

описания неидеальной детонации основного

заряда используются модель высокоэнерге-
тического сгорания и уравнение состояния

Джонса — Уилкинса — Ли (JWL). Стальной
корпус, PBT-топливо, алюминиевый стакан и
мишень — это все элементы Лагранжа. Чтобы
облегчить анализ воспламенения и последую-
щей реакции, в центре заряда устанавливается
ряд датчиков давления в направлении дви-
жения снаряда. Расстояние между двумя

смежными датчиками составляет 10 мм, во
всем ряду от датчика 1 до датчика 11.

Та блиц а 1

Параметры уравнения состояния PBT-топлив

Реагирующее ВВ Нереагирующее ВВ

ρ, г/см3 B, Мбар R2 A, Мбар R1 ω γ0 c0 S1

1.763 0.3236 1.76 10.221 4.7 0.39 0.8 0.199 3.05

3. МОДЕЛЬ ОПИСАНИЯ МАТЕРИАЛОВ

Процесс расширения продуктов взрыва

описывается уравнением JWL (уравнение (1)
в [24]):

P = A
(

1 − ω

R1V

)
exp (−R1V ) +

+B
(

1 − ω

R2V

)
exp (−R2V ) +

ωE

V
, (1)

где p — давление, V = v/v0 — относительный

объем, ω — коэффициент Грюнайзена, E —
удельная внутренняя энергия, A, B, R1, R2 —
эмпирические параметры, определяемые в экс-
перименте.

Кроме уравнения состояния JWL, исполь-
зуется программа BKW продуктов детонации

для получения данных об изоэнтропическом

расширении, которые нужны для получения

параметров уравнения JWL [35]. Рассчитанные
параметры продуктов реакции PBT-топлива
представлены в табл. 1. Для газообразных про-
дуктов PBT-топлива используется уравнение
JWL (1), для непрореагировавшего твердого
вещества используется уравнение состояния

Ми— Грюнайзена. Поскольку точное давление
непрореагировавшего PBT-топлива не являет-
ся каким-то особенным [35], параметры для

него даются напрямую уравнением [24]

P = PH + Γρ(ei − eiH), PH =
ρ0c0µ(1 + µ)

[1 − (s− 1)µ]2
,

eiH =
pH
2ρ0

µ

1 + µ
, ρΓ = ρ0Γ0, µ =

ρ

ρ0
− 1,

(2)

где Γ — коэффициент Грюнайзена, ei — внут-
ренняя энергия, PH — давление Гюгонио,
eiH — внутренняя энергия Гюгонио, Γ0, c0, s —
константы.

Для описания горения в зоне реакции при-
нята модель Ли — Тарвера [24–32]:
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Та блиц а 2

Параметры уравнения скорости реакции PBT-топлив

I, мкс−1 G1 G2 b c e a d g x y z

7.4 · 1011 20.5 750 0.3333 0.6667 0.6667 0 0.3333 0.6667 20 1.5 2

∂F

∂t
= I(1 − F )b

( ρ

ρ0
− 1 − a

)x
+

+G1(1 − F )cF dP y +G2(1 − F )eF gP z, (3)

где F — доля реагирующего ВВ; t — время,
мкс; P — давление, Мбар; ρ — текущая плот-
ность, г/см3; ρ0 — начальная плотность; I, b,
x — параметры члена, описывающего воспла-
менение; a — критическое сжатие, при кото-
ром нет воспламенения (заряд воспламеняет-
ся, когда ρ/ρ0 > 1 + a); G1, c, d, y — па-
раметры начального роста реакции после вос-
пламенения; G2, e, g, z — параметры для

определения скорости реакции высокого давле-
ния. В уравнении (3) большинство параметров
PBT-топлива такие же, как и у топлив на ос-
нове HTPB/RDX/Al/AP [29], некоторые пара-
метры, такие как G1 и G2, определяются мето-
дом, описанным в [35] (табл. 2). Параметры Al
взяты из библиотеки материалов AUTODYN
(Al-6061-T6). Стальной корпус и мишень изго-
товлены из стали 45 c параметрами из рабо-
ты [29]: плотность 7 900 кг/м3, скорость зву-
ка c0 = 0.457 см/мкс, константа S1 = 1.49,
коэффициент Грюнайзена 2.17, модуль сдвига
81.8 ГПа, предел текучести 0.35 ГПа.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

4.1. Susan-тест

При скоростях удара v = 120 ÷ 300 м/с
проведено в общей сложности 20 тестов и рас-
считана относительная высвобождаемая энер-
гия (η) PBT-топлива, которая представляет со-
бой отношение высвобожденной в ходе реакции

энергии к общей энергии топлива и может ко-
личественно определять реакцию топлива.

На рис. 3 представлена зависимость вы-
свобождаемой энергии η от скорости удара v.
Видно, что с ростом скорости значение η уве-
личивается от минимального 24.31 % до макси-
мального 57.67 %. Все значения η превышают
20 %, и это показывает, что топливо PBT про-
являет сильную реакцию на удар с низкой ско-
ростью и чувствительно к условиям разруше-

Рис. 3. Соотношение между скоростью удара

и относительной высвобождаемой энергией

ния. С увеличением скорости удара интенсив-
ность реакции топлива возрастает существен-
но, но зависимость нелинейная.

При скоростях удара v < 240 м/с зна-
чение η растет медленнее, чем при большей

скорости. Кроме того, в этом случае наблю-
дается значительный разброс значений η, что
свидетельствует о нестабильной реакции топ-
лива при ударе. При скоростях удара v >
240 м/с большинство полученных точек нахо-
дится ближе к аппроксимирующей кривой, ре-
акция более стабильна и интенсивна. Количе-
ство высвобождаемой энергии η хорошо описы-
вает реакционное поведение в целом, но не поз-
воляет представить в деталях механизмы реак-
ции и воспламенения некоторой части топлива.

Время от момента удара до появления све-
чения составляет 52.6 ÷ 105.2 мкс и умень-
шается с ростом скорости. Свечение вызвано
воспламенением из-за термического разложе-
ния топлива на поверхности удара за счет вы-
давливания, трения потока и т. д. Анализ пока-
зал, что с увеличением скорости удара алюми-
ниевый стакан разрушается быстрее и на по-
верхности удара появляется больше точек вос-
пламенения, в результате чего свечение реги-
стрируется раньше, становится более равно-
мерным и расширяется быстрее.
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Рис. 4. Фотографии экструдированной поверхности и зависимость длины стального корпуса от
скорости после удара

Поскольку последующий ход реакции

нельзя оценить по изображениям, записанным
высокоскоростной камерой, можно проанализи-
ровать состояние стального корпуса после уда-
ра и контактную поверхность между ним и

образцом топлива (экструдированная поверх-
ность). Как видно на рис. 4, на экструдиро-
ванной поверхности появляются следы реак-
ции, которые возникают из-за воспламенения
топлива. Количество точек воспламенения и
их расположение в различных опытах сильно

отличаются. На среднем снимке видны точ-
ки воспламенения на экструдированной поверх-
ности, на нижнем — точки воспламенения со

следами распространения пламени, на верхнем
снимке — одна точка воспламенения в центре

экструдированной поверхности. Количество и
расположение точек воспламенения влияет на

протекание реакции, являясь одной из причин
нестабильности процесса.

Интенсивность реакции PBT-топлив на

основании работы [34] условно подразделяет-
ся на несколько уровней: отсутствие реакции,
горение, дефлаграция, взрыв, частичная дето-
нация, устойчивая детонация. Интенсивность
можно оценить по степени повреждения сталь-
ного корпуса после удара. Зависимость длины
оставшейся части стального корпуса от скоро-
сти удара показана на рис. 4.

При скоростях удара менее 200 м/с все
обручи стальных корпусов были разорваны, а

длина корпусов существенно не изменилась.
С увеличением скорости удара длина стальных

корпусов меняется значительно— топливо реа-
гирует сильнее, реакция взрывоопасна. В опы-
тах со скоростями удара 292.4, 260.3, 262.6,
272.5 и 285.3 м/с длина стальных корпусов су-
щественно меньше начальной и равна 90.02,
91.62, 89.14, 89.51 и 91.44 мм соответственно.
Пластическая деформация некоторых корпусов

показывает, что уровень реакции — частичная

детонация. Таким образом, при скорости уда-
ра меньше 200 м/с уровень реакции — горение

и дефлаграция, при скорости 200 ÷ 260 м/с —
взрыв, а при 260 ÷ 270 м/с — частичная дето-
нация.

4.2. Численное моделирование

Как уже отмечалось выше, в заряде (см.
рис. 2) устанавливался ряд измерительных то-
чек, в которых рассчитывались профили дав-
ления. При скорости удара 120 ÷ 300 м/с дав-
ление на датчике 11, находящемся на ударной
поверхности, составляет 0.37 ÷ 0.98 ГПа. По-
сле воспламенения топлива давление на удар-
ной поверхности (датчик 11) не может достичь
значений, соответствующих переходу в устой-
чивую детонацию. По мере развития процесса
давление, возникающее при ударе, непрерыв-
но передается от ударной поверхности (дат-
чик 11) к датчику 1, находящемуся в центре
заряда, но оно падает, и это указывает на то,
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что точки воспламенения на поверхности удара

не расширяются, усиливая реакцию.
В течение примерно 40 ÷ 50 мкс после уда-

ра давление внутри заряда непрерывно растет

(датчик 1), что свидетельствует о воспламене-
нии топлива в результате экструзии, а не уда-
ра. Топливо воспламеняется на экструдирован-
ной поверхности, давление при воспламенении
составляет 1.52 ÷ 4.58 ГПа, уровень начальной
реакции в результате воспламенения от экс-
трузии — взрыв. Воспламенение вызвано не
давлением после удара, а экструзией топлива
в стальном корпусе. С ростом скорости удара
давление на датчике 1 увеличивается из-за вос-
пламенения в результате экструзии.

При скоростях удара v 6 240 м/с пло-
щадь реагирующей поверхности топлива уве-
личивается, максимальное давление составля-
ет 1.52 ÷ 2.76 ГПа и достигает максимального
значения на датчике 1, при этом оно непрерыв-
но снижается по направлению к датчику 11.
Давление воспламенения из-за экструзии име-
ет единственный пик — в области положения

датчиков 1–7 на длине заряда 60 мм.
При скоростях удара v > 240 м/с реак-

ция топлива заключается не только в быстром

расширении площади, но и в повышении ин-
тенсивности реакции, при этом максимальное
давление составляет 3.03 ÷ 4.58 ГПа. Давле-
ние воспламенения имеет два пика. Это ука-
зывает на то, что критическая скорость уда-
ра при частичной детонации равна примерно

260 м/с, что хорошо согласуется с эксперимен-
тальными результатами. При скоростях уда-
ра v > 280 м/с давление увеличивается в на-
правлении от датчика 1 до датчика 4, при
этом максимальное давление достигается в ме-
сте расположения датчика 4 или 5, но начи-
ная с датчика 6 оно уменьшается вплоть до

датчика 11. Это связано с наличием стальной
оболочки между датчиками 1 и 5, энергия лег-
ко накапливается, и после воспламенения ре-
акция сильно интенсифицируется. Когда плос-
кость реакции пересекает датчик 5, стальная
оболочка заменяется алюминиевым стаканом

(см. рис. 2), прочность которого меньше, по-
этому давление и уровень реакции также па-
дают. Уровень реакции топлива, ограничен-
ного оболочкой, зависит от скорости удара и
прочности оболочки. Экспериментальные ре-
зультаты Susan-теста подтверждают этот вы-
вод. Как показано на рис. 5, алюминиевый ста-
кан и топливо деформировались после удара,

а затем расширились по ударной поверхности

наружу в радиальном направлении. На ранней
стадии деформации внешняя поверхность сна-
ряда выглядит как правильный круговой ци-
линдр, алюминиевый стакан и заряд топли-
ва изменились только по форме, и алюмини-
евый стакан по-прежнему сохраняет вид це-
лого. По мере того, как снаряд приближает-
ся к мишени, нагрузка от стального корпу-
са приводит к появлению продольных трещин

на ударной поверхности алюминиевого стака-
на, открывая проходы, через которые вытал-
кивается топливо и появляется свечение. Энер-
гия разрыва, связанная с кольцевой нагрузкой
и ведущая к разрушению корпуса, является ос-
новным фактором, приводящим к ранним из-
менениям зазоров, наблюдаемых при смеще-
нии снаряда. Зазоры проходят только в слег-
ка напряженную толстостенную область алю-
миниевого стакана. По мере того, как снаряд
продолжает продвигаться к мишени, в началь-
ной стадии сегменты гильзы могут изгибать-
ся вверх с небольшим дальнейшим проникно-
вением в ранние трещины. Соотношение меж-
ду раскрытием зазора и скоростью потока бу-
дет меняться в зависимости от скорости удара.
Очаги воспламенения, вызванные ударом о по-
верхность, распространяются медленно, уро-
вень реакции — непрореагировавшее топливо,
горение и дефлаграция, что указывает на то,
что общий уровень реакции топлив PBT фор-
мируется не за счет развития воспламенения

на ударной поверхности.
В период времени 50 ÷ 80 мкс на экструди-

рованной поверхности появляются точки вос-
пламенения, уровень реакции — горение или

дефлаграция. Эта часть Susan-теста называет-
ся экструдированной стадией. На этом этапе

частицы топлива на экструдированной поверх-
ности попадают между другими частями топ-
лива и стальным корпусом, начавшаяся низ-
коуровневая реакция (горение или дефлагра-
ция) усиливается в экструдированной стадии
до взрыва или частичной детонации.

На основе экспериментальных и числен-
ных результатов реакцию PBT-топлив можно
свести к двум основным стадиям. Первая —
воспламенение при ударе и последующее усиле-
ние реакции, вторая — воспламенение при экс-
трузии и после этого также усиление реакции.
Механизмы воспламенения в Susan-тесте в ос-
новном заключаются в термическом разложе-
нии твердых наполнителей, таких как Al, пер-
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Рис. 5. Поля реагирования топлива (α) при моделировании ударов со скоростями 120, 180, 240,
260, 280 и 300 м/с

хлорат аммония (ПХА) и октоген, при удар-
ной экструзии, трении в потоке и т. д. Заря-
ды PBT-топлив без оболочки могут воспламе-
няться при ударе о стальную пластину со ско-
ростью 136 м/с [7]. Низкотемпературное раз-
ложение ПХА вызывает экзотермический пик

октогена, а газообразные продукты, выделяю-
щиеся при его разложении, ускоряют дальней-
шее разложение ПХА. Следовательно, в Susan-
тесте PBT-топлив образование точек воспла-
менения на ударной поверхности начинается с

разложения ПХА. При дальнейшем движении
снаряда к мишени топливо не может расте-
каться по ударной поверхности из-за наличия
стальной оболочки. Давление реакции топли-
ва и давление экструзии стальным корпусом

растут, что приводит к резкому повышению
уровня реакции, вплоть до взрыва и даже ча-
стичной детонации. Чем выше скорость удара,
тем интенсивнее экструзионное воспламенение

PBT-топлива, и чем прочнее оболочка, тем вы-
ше уровень реакции. Уровень реакции части

топлива (длиной около 40 мм), ограниченной
стальной оболочкой, доминирует над общим

уровнем реакции в Susan-тесте. Таким обра-
зом, доминирующим процессом реакции PBT-
топлива в Susan-тесте является воспламенение
путем экструзии и нарастание интенсивности

реакции после воспламенения.

ЗАКЛЮЧЕНИЕ

Результаты Susan-тестов вместе с числен-
ными расчетами по модели Ли — Тарвера

позволили определить чувствительность PBT-
топлива к удару и его поведение после уда-
ра. Предложены механизмы воспламенения и

объяснена доминирующая стадия реакции, что
имеет большое значение для безопасного об-
ращения с PBT-топливами. Основные выводы
следующие.

(1) По мере увеличения скорости удара в
диапазоне 120 ÷ 300 м/с относительная вы-
свобождаемая энергия возрастает, в 20 прове-
денных Susan-тестах она изменялась от мини-
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мального значения 24.31 % до максимального

57.67 %. PBT-топлива проявляют сильную ре-
акцию при ударе с низкой скоростью и чувстви-
тельны к условиям разрушения.

(2) Судя по стальным частям сборки, по-
сле удара с низкой скоростью уровень реак-
ции PBT-топлив — взрыв и даже частичная

детонация, при этом уровень повышается с

увеличением скорости удара. Пороговая ско-
рость удара при частичной детонации состав-
ляет примерно 260 м/с, что совпадает как с
экспериментальными, так и с численными ре-
зультатами.

(3) Воспламенение PBT-топлива происхо-
дит в результате двух процессов: удара и экс-
трузии. Термическое разложение твердых на-
полнителей PBT-топлива, таких как алюми-
ний, перхлорат аммония и октоген, обусловле-
но процессами ударного выдавливания, трения
потока и т. д.

(4) Сильная реакция PBT-топлива возни-
кает в результате сочетания удара и ограниче-
ния части заряда стальным корпусом (длиной
около 40 мм), стянутым кольцами. При уда-
ре с низкой скоростью экструдированное PBT-
топливо доминирует в реакции Susan-теста.
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