УДК 536.46

ДИНАМИКА ФРОНТА ЛАМИНАРНОГО ПЛАМЕНИ ГОМОГЕННОЙ ПРОПАНОВОЗДУШНОЙ СМЕСИ ПРИ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОМ ВОЗДЕЙСТВИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

С. С. Воронцов, О. В. Ганеев, П. К. Третьяков, А. В. Тупикин

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск lab2@itam.nsc.ru

Приведены результаты экспериментального исследования динамики фронта пламени гомогенной пропановоздушной смеси при импульсном воздействии электрического поля. Установлено, что скорость движения участков поверхности фронта, обращенных к разнополярным электродам, неодинакова. Наблюдаемые эффекты можно объяснить гидродинамическим действием ионного ветра.

Ключевые слова: ламинарный режим горения, импульсно-периодическое электрическое поле, динамика фронта пламени.

Применение электрических полей для управления различными процессами в реагирующих средах (устойчивостью горения, сажеобразованием, образованием оксидов азота, формированием наночастиц) является актуальной задачей. Об этом свидетельствует значительное количество публикаций (см., например, [1-4]). При изучении влияния электрического поля на горение рассматривают три возможных механизма: тепловой, гидродинамический (воздействие ионного ветра) и кинетический. Существование их подтверждено экспериментами [5]. Реализация того или иного механизма зависит от физико-химических свойств горючего, гидродинамических условий, геометрии электрического поля, его напряженности и частоты [6]. Для ламинарного режима скорость горения при воздействии импульсно-периодическим электрическим полем может быть выше, чем при постоянном поле [7]. Могут возникнуть изменения, приводящие к устойчивости пламени [8]. Информация о динамических характеристиках процесса перестройки фронта горения полезна для понимания механизма воздействия электрическим полем. С этой целью была изучена динамика формы пламени при импульсном воздействии поля на горение пропановоздушной смеси в горелке

типа бунзеновской.

В экспериментах исследовалась динамика участков фронта ламинарного гомогенного пламени, помещенного между плоскими электродами.

Схема экспериментальной установки приведена на рис. 1. Горючая смесь подготавливалась в газовой системе 1 с контролем расходов пропана и воздуха. Пламя 2 стабилизировалось на срезе кварцевой трубки с внутренним диаметром 13 мм, в которой формировался параболический профиль скорости смеси (течение Пуайзеля), и помещалось между электродами 3, расположенными на расстоянии 30 мм друг от друга. Импульсно-периодическое напряжение (до 3.8 кВ) подавалось на электроды от электрической схемы, включающей в себя источник питания 4, высоковольтный ключ 5 (время нарастания переднего фронта импульса не превышало 1 мкс) и задающий генератор 6. Временные характеристики импульсов электрического поля формировались сигналом с задающего генератора; им же, через компьютер и систему синхронизации 11, управляли усилителем изображения 8 и ССД-камерой 9. Такая схема позволяла программно задавать задержку начала экспозиции камеры относительно переднего фронта высоковольтного импульса. Одновременно осциллографом 10 регистрировалось изменение напряжения и тока. Элементы 7-9, 11 входят в состав системы «FlameMaster» фирмы «LaVision», Геттинген, Германия.

В работе представлены результаты измерений, которые проводились при следующих

Работа выполнена при финансовой поддержке научной программы Президиума РАН (П-09) «Фундаментальные аспекты магнитоплазменной аэродинамики», Российского фонда фундаментальных исследований (проект № 08-01-00582-а) и фонда Президента РФ по поддержке ведущих научных школ (НШ-2414.2008.1).

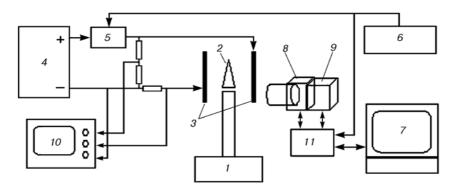


Рис. 1. Схема экспериментальной установки:

1 — газовая система, 2 — пламя, 3 — электроды, 4 — высоковольтный источник питания, 5 — высоковольтный ключ, 6 — задающий генератор, 7 — персональный компьютер, 8 — усилитель изображения, 9 — ССD-камера, 10 — осциллограф, 11 — блок синхронизации

условиях: средняя скорость потока смеси в большинстве случаев $1.44~\rm m/c$, коэффициент избытка воздуха $\alpha=1.45$, частота импульсов $5~\Gamma$ ц, длительность импульса $100~\rm mc$. Геометрическая форма пламени регистрировалась камерой технического зрения по собственному свечению пламени на длине волны радикала СН с экспозицией $500~\rm mkc$.

На рис. 2, а приведено изображение пламени без воздействия электрического поля. В этом случае форма фронта горения определяется физико-химическими характеристиками смеси и гидродинамическими параметрами. На рис. 2, б показано изображение пламени после наложения поля. Как известно [5], источником заряженных частиц является процесс хемоионизации. Геометрия фронта соответствует состоянию динамического равновесия с участием электростатических сил, возникших в результате перераспределения зарядов и формирования заряженных слоев, согласованных с результирующим распределением локальных напряженностей поля. В этом состоянии процесс является самосогласованным как с гидродинамическими, так и с электростатическими силами.

Движение противоположных (относительно оси трубки на одинаковой высоте от ее среза) участков фронта горения отражает изменение геометрии пламени. На рис. 3,a приведены зависимости величины смещения этих участков (δ) от времени на высоте 20 мм от среза сопла. Можно отметить следующие особенности. Изменение положения фронта при включении поля происходит в течение $30 \div 35$ мс, обратная перестройка фронта (при снятии напряжения) длится около 40 мс, смещение ре-

жимов горения в сторону более богатых смесей $(\kappa \alpha = 1)$ ведет к уменьшению этих времен. Движения правой и левой частей фронта подобны, отличие заключается лишь в амплитуде движения (смещение левой части больше, чем правой). Это наблюдается на различных высотах от среза сопла (5, 10, 15 и 20 мм). Представленные данные свидетельствуют о растяжении пламени электрическим полем. Такое поведение пламени при наложении импульснопериодического поля может служить объяснением случаю, представленному на на рис. 2,в $(\alpha = 1.5, \text{ средняя скорость смеси } 2.1 \text{ м/с}, \text{ часто-}$ та следования импульсов f = 5 Γ ц и длительность 100 мс), часть фронта пламени со стороны отрицательного электрода оторвана от среза горелки, а с другой стороны присоединена. В отсутствие электрического поля стабилизация пламени происходит по всему срезу горелки.

Положение фронта горения при воздействии электрического поля зависит от частоты и длительности импульсов. Очевидно, можно подобрать такой частотный режим, что пламя будет зафиксировано в определенном состоянии. Таким образом, характеристики электрического поля могут использоваться для управления положением области горения.

На рис. $3, \delta$ приведены осциллограммы напряжения и тока. Форма осциллограммы тока отражает движение фронта пламени. Время нарастания тока соответствует времени перестройки фронта ($\approx 30 \div 40 \text{ мc}$).

Следует отметить, что величина тока зависит от положения пламени в межэлектродном промежутке. При приближении к отрицательному электроду ток увеличивается. То есть основной вклад в общее сопротивление

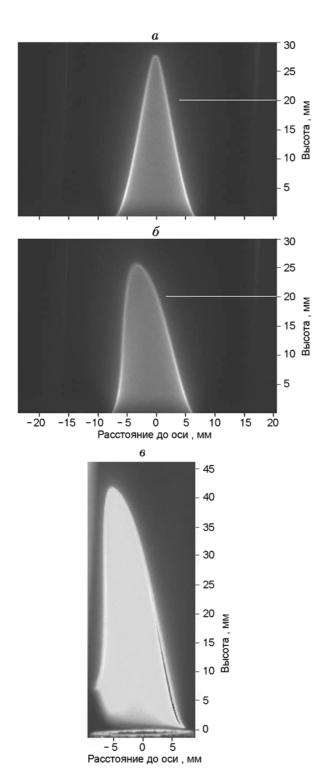


Рис. 2. Изображения пламени: a — без электрического поля, b — с электрическим полем и установившейся формой пламени, b — частичный отрыв пламени от среза горелки под воздействием импульсно-периодического электрического поля

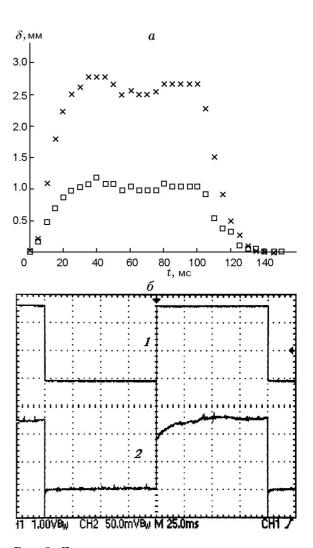


Рис. 3. Динамика пламени: a — зависимость смещения участков фронта горения на высоте 20 мм от среза сопла при наложении электрического поля: \times — фронт вблизи отрицательного электрода (левая часть), \square — вблизи положительного электрода (правая); δ — осциллограммы напряжения (1) и тока (2)

промежутка вносит участок между отрицательным электродом и ближней к нему частью фронта горения.

Полученные результаты можно объяснить гидродинамическим воздействием ионного ветра. Движение положительных ионов к отрицательному электроду ведет к изменению структуры потока (меняется распределение скоростей в потоке), и, как следствие, устанавливается новое положение фронта горения. Величина смещения левой части фронта больше, так как движение фронта в этом случае идет в сторону покоящегося газа, а правая часть смещается в область более высоких скоростей. В

заключение следует отметить, что такое объяснение носит качественный характер. Более обоснованный вывод о механизме воздействия электрического поля может быть сделан при получении детальной информации о структуре фронта на основе количественных данных о концентрации промежуточных продуктов реакции и распределении температуры.

ЛИТЕРАТУРА

- 1. Zake M., Turlajs D., Purmals D. Electric field control of NO_x formation in the flame channel flows // Global Nest: The Intern. J. 2000. V. 2, N 1. P. 99–108.
- 2. Sakhrieh A., Lins G., Dinkelacker F., Hammer T., Leipertz A., Branston D. W. The influence of pressure on the control of premixed turbulent flames using an electric field // Combust. Flame. 2005. V. 43, N 3. P.313–322.
- 3. Yuegang Zhang, Aileen Chang, Jien Cao, et al. Electric field directed growth of aligned single-walled carbon nanotubes // Appl. Phys. Lett. 2001. V. 79. P. 3155.

- 4. Qiaoliang Bao, Chunxu Pan. Electric field induced growth of well aligned carbon nanotubes from ethanol flames // Nanotechnology.— 2006.— V. 17.— P. 1016–1021.
- 5. **Лаутон Дж.**, **Вайнберг Ф.** Электрические аспекты горения. М.: Энергия, 1976.
 6. **Ягодников Д. А.**, **Воронецкий А. В.** Влия-
- 6. Ягодников Д. А., Воронецкий А. В. Влияние внешнего электрического поля на особенности процессов воспламенения и горения // Физика горения и взрыва. 1994. Т. 30, № 3. С. 3–12.
- Гаранин А. Ф., Третьяков П. К., Тупикин А. В. Влияние постоянного и импульсно-периодического электрического поля на горение пропановоздушной смеси // Физика горения и взрыва. 2008. Т. 44, № 1. С. 22–25.
 Ganeev O. V., Garanin A. F., Tretyakov
- 8. Ganeev O. V., Garanin A. F., Tretyakov P. K., Tupikin A. V. Integral parametrs of a propane/air flame in an electrric field // Proc. XIII Intern. Conf. on the Methods of Aerophysical Research. Novosibirsk, 2007. Pt V. P. 52–56.

Поступила в редакцию 29/VIII 2008 г., в окончательном варианте — 18/II 2009 г.