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Проводится анализ эффективности использования одномерных сетевых моделей для
виртуальной оценки гемодинамических индексов, значения которых широко исполь-
зуются в клинической практике для принятия решения при выборе стратегии лече-
ния ишемической болезни сердца при стенотическом поражении коронарных артерий.
Показано, что в рамках существующих подходов возможна оценка гемодинамических
индексов на основе клинических данных, собранных без вмешательства в организм,
с точностью, сравнимой с точностью входных данных и непосредственных измерений.
Также показана важность учета состояния микроциркуляторного русла миокарда и его
влияния на интерпретацию результатов моделирования и непосредственных измерений
в клинике.
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Введение. В последнее время достигнуты существенные успехи в разработке вычис-
лительных моделей, описывающих гемодинамику в организме человека. Среди различных
видов моделей следует выделить одномерные сетевые модели, которые, с одной сторо-
ны, позволяют описывать достаточно разветвленные сети, содержащие тысячи сосудов и
покрывающие весь организм, с другой — не требуют использования значительных вычис-
лительных ресурсов и в некоторых практических случаях являются высокоэффективными

даже на персональных компьютерах. В этой связи среди наиболее важных работ советских
и российских исследователей можно выделить работы [1–5], а среди зарубежных — [6–10].
Подробные обзоры указанных моделей приведены, например, в работах [11, 12].

Сердце является одним из ключевых элементов, обеспечивающих кровоток и, как след-
ствие, жизнедеятельность организма. Физиология кровотока в коронарных сосудах суще-
ственно отличается от физиологии кровотока остальных отделов организма, поскольку
бо́льшая часть коронарных сосудов погружена в периодически сжимающуюся мышцу —
миокард. Поэтому требуется доработка моделей, введение в них соответствующих воздей-
ствий. Также для использования этих моделей необходимы алгоритмы определения пара-
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метров по данным, доступным в результате рутинной диагностики состояния конкретного
пациента.

В данной работе представлен один из вариантов математической постановки задачи

о кровотоке в коронарных сосудах в одномерном приближении. Проводится анализ эф-
фективности использования этой и аналогичных моделей для оценки гемодинамической

значимости стенозов в коронарном русле. Вводятся понятия гемодинамических индексов,
которые в настоящее время широко используются в клинике для принятия решений при

выборе стратегии лечения ишемической болезни сердца (ИБС). Обсуждается проблема
идентификации параметров моделей на основе данных пациентов, изучена целесообраз-
ность включения в модели данных о кровотоке в микроциркуляторной сети миокарда и их

влиянии на результаты как вычислений, так и непосредственных измерений в клинике.
1. Одномерная сетевая модель коронарного кровотока. Ниже представлен один

из вариантов математической постановки одномерной сетевой модели нестационарного те-
чения вязкой несжимаемой жидкости через сеть эластичных трубок, которая в дальнейшем
используется при численном моделировании коронарного кровотока и гемодинамических

показателей. Подробное описание данного подхода приведено, например, в работах [13–15].
Аналогичные модели представлены, например, в [2, 6–8].

Условия cохранения массы и импульса в одномерном приближении для жидкости (кро-
ви), протекающей по упругой трубке (сосуду), могут быть представлены в виде системы
нелинейных гиперболических уравнений [16]
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где t — время; x — расстояние вдоль трубки (сосуда); ρ — плотность крови (постоянная
величина, равная 1,06 г/см3); A(t, x) — площадь поперечного сечения трубки (сосуда);
p — давление жидкости (крови); u(t, x) — линейная скорость, осредненная по поперечно-
му сечению; ψ = −8πµu/A — сила трения; µ — динамическая вязкость жидкости (крови).
Эти уравнения с высокой точностью соответствуют условиям течения в артериях и по-
верхностных венах. Модели, более детально учитывающие реологию крови, представлены
в [11, 17].

Соотношение между давлением и площадью поперечного сечения задается определя-
ющим соотношением

p(A) = ρwc
2F (A), (2)

где ρw — средняя плотность материала стенки трубки (сосуда); c — скорость распро-
странения малых возмущений в материале стенки трубки (сосуда); F (A) — монотонная

S-образная функция:

F (A) =

{
eη−1−1, η > 1,

ln η, η 6 1,
η =

A

Ã
,

Ã — площадь поперечного сечения сосуда в ненапряженном состоянии. Параметр c в (2)
имеет смысл скорости пульсовой волны при ненапряженном состоянии стенки сосуда [18].
Обзор подходов к выбору данной функции приведен в [19]. Результаты исследований проч-
ностных характеристик тканей аорты человека и ее аневризмы представлены в [20].
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Область интегрирования для одномерной сетевой модели кровотока:
1 — аорта, 2 — правая коронарная артерия, 3 — левая коронарная артерия, 4 — стеноз

В точках соединения сосудов ставятся условия сохранения массы и непрерывности

полного давления, которые могут быть записаны в виде∑
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Здесь ki — номер сосуда; M — количество сосудов, соединенных между собой в рассмат-
риваемой области; k1, . . . , kM — номера сосудов, соединенных между собой в рассматри-
ваемой области; εki

— параметр, задающий положительное направление потока в области
соединения для каждого сосуда в зависимости от направления оси, определяющей про-
странственные координаты; εki

= 1, x̃ki
= Lki

для входящих сосудов, εki
= −1, x̃ki

= 0 для
исходящих сосудов; Lki

— длина сосуда с номером ki [14, 15].
Областью интегрирования в задаче о кровотоке является сеть артерий, включающая

корень аорты, аорту, левую и правую коронарные артерии и их ответвления (см. ри-
сунок). Корень аорты представляет собой короткий сосуд длиной приблизительно 3 см,
диаметр которого определяется с использованием данных компьютерной томографии па-
циента. Корень аорты разделяется на три ветви, включая аорту, левую коронарную ар-
терию и правую коронарную артерию. Аорта и другие системные артерии моделируются
как единый сосуд, длина которого принята равной 80 см, а диаметр — 2,17 см. Длина и
диаметр аорты могут быть скорректированы на основе данных пациента, включая резуль-
таты компьютерной томографии, измерения роста, давления и (или) скорости. В случае
если дополнительная информация недоступна, длины и диаметры могут быть заданы с
использованием физиологически корректных значений.

В качестве граничного условия на выходе из левого желудочка задается функция вре-
мени, описывающая сердечный выброс QH(t):

u(t, 0)A(t, 0) = QH(t). (4)
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Одним из физиологически корректных вариантов задания функции QH(t) является
следующий:

QH(t) =

{
SVπ/(2τ) sin (πt/τ), 0 6 t 6 τ,

0, τ < t 6 T.

Здесь SV — ударный объем левого желудочка; T — период сердечного цикла; τ — дли-
тельность систолы. Ударный объем связан с функцией сердечного выброса следующим
соотношением:

SV =

T∫
0

QH(t) dt,

сердечный выброс (систолический объем (CO)) равен [21]

QCO = SV HR.

Параметры SV, HR, T , τ могут быть определены по данным пациента или с использо-
ванием дополнительных математических моделей [22]. Аналогом данного подхода является
модель взаимодействия жидкости и стенки артерии при периодическом внешнем воздей-
ствии с различными частотами, кратными частоте сердечного цикла, использованная при
моделировании массажных манипуляций [23].

Граничные условия на выходе из сети формулируются в предположении, что конечная
артерия с индексом k соединена с резервуаром венозного давления pv = 8 мм рт. ст. через
гидравлическое сопротивление Rk. Условие для разности давлений может быть задано
в виде закона Пуазейля

pkAk − pv = RkAkuk, (5)

где pk, Ak, uk — давление крови, площадь поперечного сечения и осредненная линейная
скорость кровотока в концевой точке сосуда. Сопротивление Rk определяется с использо-
ванием закона Мюррея и итерационного алгоритма, подробно описанного в [14].

Система нелинейных гиперболических уравнений (1) в каждом сосуде может быть
численно решена с помощью сеточно-характеристического метода [24]. Система нелиней-
ных алгебраических уравнений в областях соединения сосудов (3), в корне аорты (4) и в
концевых точках терминальных артерий (5) решается методом Ньютона, в котором в ка-
честве начального приближения используются значения, полученные на предыдущем вре-
менном слое. В результате вычислительный алгоритм представляет собой вариант схемы
с расщеплением, в которой последовательно вычисляются значения гемодинамических па-
раметров во внутренних точках сосудов, а затем в точках вблизи областей их соединения,
в точке входа и точках выхода.

В [25, 26] предложен и апробирован вариант граничных условий, в котором точка
соединения сосудов рассматривается как упругий резервуар, описываемый точечной ди-
намической моделью. Такой подход позволяет более корректно с математической точки
зрения описать предельный переход, когда от магистрального сосуда отходит боковой со-
суд, диаметр которого стремится к нулю.

Аналогичный подход в более обобщенном виде использовался при решении ряда се-
тевых динамических задач, в которых исследуются транспортные, энергетические и ком-
пьютерные сети, а также системы вентиляции [27].

2. Оценка гемодинамических коэффициентов в стенозированных коронар-
ных артериях. Ниже вводится понятие гемодинамических индексов, используемых при
выборе стратегии лечения ИБС.
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2.1. Гемодинамические индексы. ИБС является одной из основных причин инвалидно-
сти или смертности в мире. Ее доля в общем числе всех смертей составляет 12,8 %. Распро-
страненной причиной ИБС является стеноз коронарных артерий— сужение просвета сосу-
да в результате атеросклероза. Атеросклероз представляет собой хроническое воспаление
стенки сосуда, которое математически может быть описано как реакционно-диффузионная
волна, скорость распространения которой зависит от концентрации холестерина и про-
цесса свертывания моноцитов. В работе [28] представлены усовершенствованные модели
этих процессов, а также приведен обзор моделей, описывающих взаимодействие кровотока
и атеросклеротических бляшек в сосудистой сети.

Важной задачей современной сердечно-сосудистой хирургии является определение ге-
модинамически значимого стеноза коронарных артерий. Это позволяет сделать выбор
между неинвазивным лечением с помощью лекарственных препаратов и инвазивным чрес-
кожным коронарным вмешательством (ЧКВ). В современных клинических методах оценки
функциональной тяжести эпикардиального коронарного стеноза используется набор гемо-
динамических индексов, которые представляют собой безразмерные показатели: FFR —
фракционный резерв кровотока, CFR — резерв коронарного кровотока и iFR — мгновен-
ный коэффициент отсутствия волн [29, 30].

Показатель FFR — отношение среднего артериального давления за стенозом (в ди-
стальной части) к среднему давлению в аорте при максимальном расширении сосудов

(гиперемии) пациента за счет введения сосудорасширяющих препаратов. Индекс FFR поз-
воляет оценить максимально возможное восстановление давления в крупных магистраль-
ных коронарных артериях после проведения ЧКВ. Параметр CFR — отношение величины

коронарного кровотока при гиперемии к величине коронарного кровотока в состоянии по-
коя [30]. Индекс CFR также позволяет оценить максимально возможное восстановление

кровотока в крупных коронарных артериях после проведения ЧКВ. Этот индекс более
информативен по сравнению с FFR. Однако для его измерения необходимо использовать
сложную методику, которая во многих клиниках недоступна [31]. Коэффициент iFR рас-
считывается как отношение среднего дистального коронарного давления к среднему дав-
лению в аорте за так называемый безволновой период в диастоле [32]. При использовании
этого индекса основным преимуществом является отсутствие необходимости принимать

сосудорасширяющие препараты, что приводит к уменьшению дискомфорта, испытывае-
мого пациентами, и стоимости процедуры по сравнению с методиками, основанными на
использовании индексов FFR и CFR [29, 33]. Однако высокоточные измерения iFR требу-
ют точного определения безволнового интервала, что существенно затруднено вследствие
невысокого качества данных и влияния человеческого фактора.

Для измерения трех указанных выше показателей в клинике требуется использовать

инвазивные дорогостоящие процедуры, при этом возможны побочные эффекты. Напри-
мер, для измерения FFR и iFR требуется вмешательство с использованием катетера [34].
При измерении CFR необходима цифровая субтракционная кинеангиография с коронар-
ной катетеризацией, доплеровская эхокардиография или позитронно-эмиссионная томогра-
фия [31]. В настоящее время предприняты попытки проведения неинвазивной оценки FFR,
CFR и iFR с помощью математического моделирования коронарного кровотока. Ряд та-
ких вычислительных моделей представлен в работах [35–38]. Примеры моделирования на
основе данных конкретного пациента приведены в [14, 39–41]. Погрешности, возникающие
при использовании таких методик, составляют приблизительно 7–10 %.

2.2. Идентификация параметров пациентов. Для проведения персонализированного
компьютерного моделирования коронарного кровообращения необходимо идентифициро-
вать параметры, специфичные для конкретного пациента. Одним из решений этой про-
блемы является предварительный расчет с использованием различных типичных наборов
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физиологических значений для виртуального пациента. В [42–45] предварительно сгенери-
рованные базы данных использовались для анализа процесса распространения пульсовой

волны и влияния заболеваний артерий на гемодинамику. В работе [46] база данных вирту-
альных пациентов адаптирована для разработки новых диагностических методик. В [45]
выполнена валидация существующих методологий.

Персонализация одномерных моделей коронарного кровотока, способных вычислять
коэффициенты FFR, CFR и iFR на основе индивидуальных данных конкретного паци-
ента [47], требует обработки большого объема данных. Современные методы машинного
обучения позволяют повысить точность оценки FFR как для виртуальных, так и для
реальных пациентов [48, 49]. В других подходах детально разрабатываются методы иден-
тификации отдельных параметров пациента, используемых для настройки вычислитель-
ной модели и определяющих конечный результат. Методика автоматической сегментации
структуры коронарных сосудов по данным коронарной компьютерной томографии была

разработана в [50]. В [14] представлен рекурсивный алгоритм вычисления коэффициентов
гидравлического сопротивления в терминальных точках сосудистого русла. Этот алго-
ритм позволяет снизить чувствительность модели к качеству входных данных. Другие
аспекты структурной и функциональной персонализации обсуждаются в работе [19].

Еще одним важным компонентом численного моделирования FFR, CFR и iFR с точ-
ностью, сравнимой с точностью входных данных и точностью прямых внутрисосудистых
измерений, является скорость распространения пульсовой волны (PWV) в коронарных
сосудах, которая может использоваться в качестве меры их эластичности. Для непосред-
ственного измерения PWV в коронарных сосудах требуется использовать сложные методы
и оборудование, включая датчики давления и доплеровские проводники [51]. Такое обору-
дование и соответствующие измерения в клиниках, как правило, недоступны. Параметр
PWV играет важную роль при моделировании кровотока в сосудах с точностью, сравни-
мой с точностью входных данных для конкретного пациента. В отличие от давления крови
и частоты сердечных сокращений этот параметр редко измеряется непосредственно при

клиническом обследовании. Ряд методов оценки параметра PWV для конкретного паци-
ента представлен в работе [52]. Многие методики измерения PWV в настоящее время не

стандартизованы [53]. Обычно значение параметра PWV для конкретного пациента оце-
нивается приближенно на основе данных о его возрасте и истории болезни. Характерные
значения PWV в аорте, полученные в различных исследованиях, находятся в диапазоне
4 ÷ 20 м/с [54, 55]. Данные магнитно-резонансной томографии для сердечно-сосудистой
системы позволяют получить оценки в диапазоне 5,5 ÷ 8,5 м/с [55]. Возраст большин-
ства пациентов, данные которых обычно используются для моделирования кровотока при
сердечно-сосудистых патологиях, превышает 55 лет. Поэтому в отсутствие другой инфор-
мации о пациенте используется приближенное значение 7,5 м/с [56].

Согласно клиническим исследованиям PWV в коронарных сосудах больше, чем в аорте
(AoPWV), в 1,15–1,5 раза [51, 57]. В работе [47] представлен алгоритм эффективной оценки
AoPWV для конкретного пациента с использованием нейронной сети. Нейронная сеть бы-
ла обучена с помощью базы данных виртуальных пациентов, разработанной в [45], и затем
валидирована с использованием данных виртуальных и реальных пациентов. Этот подход
позволил оценить AoPWV с погрешностью, не превышающей 15 %. Преимуществом такой
методики является отсутствие необходимости проведения анализа данных большого коли-
чества реальных пациентов. В методе используются легко измеряемые исходные данные:
возраст, ударный объем, частота сердечных сокращений, систолическое, диастолическое
и среднее артериальное давление. Уточнение значения PWV с помощью данного подхода

в некоторых случаях позволяет уменьшить погрешность оценки индекса FFR до 3,7 %.
Аналогичный подход использовался в работах [58, 59].



С. С. Симаков 197

2.3. Учет данных о перфузии миокарда. Несмотря на то что методы лечения ИБС

с помощью ЧКВ считаются эффективными, имеющиеся результаты свидетельствуют о

том, что даже после формально успешного ЧКВ с нормальными значениями FFR непо-
средственно после лечения у 30–50 % пациентов сохраняется остаточная ишемия миокарда,
которая является фактором риска позднего рестеноза и сердечных осложнений, повышаю-
щих вероятность повторной госпитализации или смертности. В работах [60, 61] показано,
что нарушение микроциркуляции в миокарде является одним из наиболее важных фак-
торов риска ИБС. КТ-перфузия миокарда позволяет получить подробную информацию о
нарушении микроциркуляции миокарда [62]. В ряде работ изучаются показатели перфузии
[63–65], а также их связь со значениями FFR, CFR и iFR [66, 67].

Диагностика с помощью КТ-перфузии проводится после введения йодсодержащего
контраста через катетер путем визуализации миокарда левого желудочка при первом вве-
дении контрастного болюса. Йодсодержащий контраст ослабляет рентгеновское излучение
пропорционально содержанию йода в тканях. Таким образом, дефекты перфузии миокарда
могут быть непосредственно визуализированы как участки с сильным и слабым затуха-
нием сигнала. Расширение сосудов за счет вазодилатации позволяет выявить большее
количество нарушений перфузии, а набор данных КТ-перфузии обычно соответствует со-
стояниям покоя и стресса (в состоянии гиперемии).

В большинстве известных математических моделей коронарного кровотока коэффи-
циенты FFR, CFR или iFR рассчитываются независимо от состояния микрососудистого

русла в миокарде. Дальнейшее развитие математических моделей коронарного кровотока
связано с разработкой методов усвоения этих данных. Расчетная оценка степени тяжести
ИБС с учетом таких данных выполнялась, например, в работах [15, 68, 69].

Разработан новый метод улучшения дифференциации и количественной оценки фак-
торов риска развития клинически выявленной ишемии миокарда после ЧКВ с учетом

особенностей состояния конкретного пациента путем интеграции мультимодальных ме-
дицинских изображений с вычислительной биомеханической моделью коронарного крово-
обращения в сочетании с системной гемодинамикой [70].

Для того чтобы показать, что метод применим для анализа состояния пациентов до и
после ЧКВ, с помощью неинвазивных методов (компютерная томография и КТ-перфузия)
были собраны клинические данные. Это позволило одновременно сегментировать структу-
ру магистральных коронарных сосудов и получить информацию о состоянии микроцирку-
ляторного русла, омываемого кровью из этих сосудов. Следует учитывать, что качество
КТ-изображений всегда ограничено количеством сосудов, доступных для включения в
вычислительную модель. В данном подходе предполагается, что каждый видимый конеч-
ный сосуд снабжает кровью отдельный участок ткани левого желудочка. Алгоритм делит
поверхность левого желудочка на области, связанные с концевыми точками сосудов, ко-
торые удалось сегментировать. Периферическое гидравлическое сопротивление перфузии
миокарда персонализируется на основе данных КТ-перфузии пациента и декомпозиции
левого желудочка по данным компьютерной томографии [71].

Одна из разработанных ранее моделей [70, 71] была модифицирована таким образом,
чтобы терминальное гидродинамическое сопротивление уменьшалось с увеличением коэф-
фициента трансмуральной перфузии. Это позволило провести моделирование и получить
вычислительную оценку изменений коронарной гемодинамики до и после ЧКВ у несколь-
ких пациентов. Были рассчитаны функциональные показатели (FFR, CFR и iFR), средний
кровоток в выбранных артериях в стрессовом (гиперемированном) и нормальном (в состо-
янии покоя) состояниях до ЧКВ, а также после ЧКВ в краткосрочной (непосредственно
после операции) и долгосрочной (через несколько месяцев) перспективе.
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Также в работах [70, 71] показано, что условно нормальные значения гемодинамиче-
ских индексов в предоперационном периоде могут наблюдаться и в случаях, требующих
ЧКВ. Это обусловлено нарушениями микроциркуляторного русла в расположенных ни-
же по течению (дистальных) зонах, вызванными увеличением их гидродинамического со-
противления. Анализ результатов позволил сделать вывод, что нормальные после ЧКВ
значения FFR и iFR в краткосрочной и долгосрочной перспективе необязательно вызыва-
ют улучшение показателя CFR и долгосрочное восстановление кровотока в коронарных

артериях.
Заключение. Математическое моделирование коронарного кровотока с помощью од-

номерных сетевых динамических моделей является перспективным для практического ис-
пользования в клинике методом. В настоящее время в основном устранены математиче-
ские трудности, связанные с описанием рассматриваемого процесса. Также решен ряд
проблем, возникающих при определении параметров моделей с использованием ограни-
ченного набора данных конкретного пациента, получаемых без вмешательства в организм
(неинвазивно) и доступных в результате рутинного обследования, проводимого в сердечно-
сосудистых центрах. Разработаны методики, позволяющие уменьшить чувствительность
моделей к зашумленным данным и данным с низким разрешением. Анализ получаемых
результатов показывает, что погрешность вычислительных экспериментов, в которых оце-
нивались гемодинамические индексы, сравнима с погрешностью параметров, измеряемых
у пациентов.

Однако проблему неинвазивной оценки гемодинамических индексов коронарного кро-
вотока нельзя считать полностью решенной, поскольку неверная оценка состояния микро-
циркуляторного русла миокарда может приводить к существенному искажению результа-
тов моделирования и их неверной интерпретации.
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