УДК 620.179.18

Исследование возможности применения теплового метода неразрушающего контроля для выявления отслоения обшивки в композитных сотовых конструкциях современных воздушных судов^{*}

Н.И. Клочков^{1,4}, И.Д. Зверков^{1,2}, Д.А. Гаврилов^{3,5}

¹Новосибирский государственный технический университет

²Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

³Новосибирский государственный университет

⁴ООО «Аэрофлот Техникс», Москва

⁵Высший колледж информатики НГУ, Новосибирск

E-mail: nik.klochkov.nstu@mail.ru

В современном авиастроении композитным сотовым панелям (КСП) находят все большее применение. Номенклатура изделий, изготовленных из КСП, становится более широкой. Вследствие этого возрастает необходимость применения наиболее эффективных и экономичных методик неразрушающего контроля целостности КСП для обеспечения приемлемого уровня безопасности полетов. Одним из перспективных методов неразрушающего контроля является тепловой метод. В представленной работе рассмотрена и проанализирована возможность применения данного метода для выявления отслоения внешней обшивки от сотового заполнителя КСП. Для этого выполнено числовое моделирование и рассмотрен наглядный эксперимент с образцом КСП, применяемым в авиастроении. Получены положительные результаты, подтверждающие возможность обнаружения с помощью тепловизионного оборудования отслоения обшивки с учетом технических ограничений, выявленных при проведении экспериментов на физическом образце КСП.

Ключевые слова: композитные сотовые конструкции, тепловой метод неразрушающего контроля, отслоение обшивки, оборудование неразрушающего контроля.

Введение

Композитные сотовые панели (КСП) широко используются в конструкциях современных самолетов различного назначения. Это обусловлено тем, что их применение позволяет снизить массу конструкций до 30-50 %, повысить ресурс эксплуатации в 2-5 раз, а также снизить трудоемкость изготовления на 20-40 % и материалоемкость до 50 % [1].

^{*} Работа выполнена в рамках государственного задания (№ госрегистрации 121030500149-8).

[©] Клочков Н.И., Зверков И.Д., Гаврилов Д.А., 2023

В качестве конкретных примеров использования КСП можно привести такие элементы конструкции, как рулевые поверхности, элементы механизации крыла, панели пола и перегородок пассажирской кабины, панели багажных отсеков, створок ниши шасси [2]. Указанные изделия регулярно подвергаются ударным нагрузкам от посторонних предметов, птиц, средств наземного обслуживания.

Проблема выявления ударных повреждений и отслоений обшивки из КСП очень актуальна, так как из этих материалов изготовлены отдельные элементы конструкции воздушного судна, влияющие на безопасность полетов. Для выявления и мониторинга данных повреждений существует несколько методов неразрушающего контроля (МНК): визуально-оптический [3, 4], вакуумный [5], радиографический [6–8], импедансный [9, 10], ультразвуковой [11], тепловой [12–15], метод простукивания (Тар Test) [16] и шерография [17–19]. Каждый из этих методов имеет свои преимущества и недостатки. Наиболее общую картину состояния изделий дают оптический и тепловой МНК. Из полученных оптических и тепловых снимков можно создать накапливаемую базу данных для каждого объекта контроля, что, в свою очередь, позволит вести объективную оценку и контроль целостности авиационных конструкций и изделий [20].

Отдельно следует выделить тепловой МНК, который обладает определенными преимуществами. Он характеризуется хорошей точностью полученных результатов контроля, высокой производительностью и возможностью выполнять контроль на определенной дистанции от объекта контроля. К недостаткам можно отнести зависимость от параметров окружающей среды, большое количество дорогостоящего оборудования, высокую стоимость обучения персонала. Несмотря на вышеперечисленные минусы, развитие технических характеристик тепловизионного оборудования позволяет выявлять в авиационных конструкциях не только наличие влаги в сотовом наполнителе, но и вмятины после воздействия ударных нагрузок [21]. Такие результаты свидетельствуют о возможности применения тепловой МНК для выявления отслоений общивки композитных сотовых конструкций.

Цель настоящей работы заключается в исследовании возможности проведения неразрушающего контроля при помощи теплового метода с использованием компьютерного моделирования теплового распределения композитной сотовой конструкции с заранее известным дефектом, а также проведения физического эксперимента с реальным образцом композитной сотовой панели, применяемой в конструкциях современных воздушных судов.

1. Моделирование теплового контроля композитной сотовой панели

1.1. Основные уравнения моделирования

На первом этапе исследования целесообразность применения теплового МНК для выявления отслоения обшивки в КСП проверялась с помощью численного моделирования с использованием специального программного обеспечения — программы ANSYS 2021 R2.

Для моделирования распределения температуры по поверхности образца применялся метод температурного анализа Steady-State Thermal [22], выбор которого обуславливался интересом к конечному состоянию теплового равновесия после теплового воздействия длительностью 15 секунд.

Для вычисления использовалось уравнение теплопроводности в следующем виде [22-24]:

$$\rho c \left(\frac{\partial T}{\partial t} + \frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z} \right) = \frac{\partial}{\partial x} \left(K_{xx} \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial T}{\partial z} \right) + \dot{q}, \tag{1}$$

где ρ — плотность материала (1857 кг/м³ — для композитного материала, 1,2 кг/м³ — для воздуха), c — удельная теплоемкость материала (10,69 кДж/(кг.°С) — для композитного материала, 10,69 кДж/(кг.°С) — для воздуха), T = T(x, y, z, t) — температура, t — время, \dot{q} — тепловой поток внутренних источников (в рассматриваемом случае принимается равным 0), K_{xx} , K_{yy} , K_{zz} — диагональные элементы матрицы теплопроводности [D],

где
$$[D] = \begin{bmatrix} K_{xx} & 0 & 0\\ 0 & K_{yy} & 0\\ 0 & 0 & K_{zz} \end{bmatrix}.$$

В расчетах учитываются три рода граничных условий. По умолчанию (если иное не задано пользователем) предполагается, что данные условия применяются ко всей поверхности модельного объекта [22].

1.2. Граничные условия

1. Задается температура поверхности S_1 (в виде функции температуры): $T = T_{S_1}(x, y, z, t)$. В представленных расчетах температура задавалась одинаковой для всей поверхности: + 22 °C, где S_1 — площадь полной поверхности панели, включая соты.

2. Задается тепловой поток относительно поверхности S_2 : q(x, y, z, t), $q\{\mathbf{n}\} = -q^*$, здесь $\{\mathbf{n}\}$ — вектор нормали к поверхности (в нашем случае вектор нормали задавался перпендикулярно поверхности со стороны отслоившейся общивки), q^* — заданная величина теплового потока (в нашем случае он равнялся 72 Вт/м), S_2 — внешняя поверхность образца со стороны отслоенной общивки.

3. Задаются области конвективного теплообмена поверхности S_3 , где S_3 — площадь внешней поверхности панели, соприкасающейся с окружающей средой: тепловой поток на единицу поверхности $q\{\mathbf{n}\} = h_f(T_s - T_b)$, здесь h_f — коэффициент теплопередачи ($h_f = 5 \text{ Bt/m}^{2.\circ}\text{C}$); ($T_s - T_b$) — разница температур поверхности и окружающей среды, T_s изменялась под воздействием заданного теплового потока q^* в течение 15 с, что составляло время симуляции, T_b равнялась + 22 °C и оставалась неизменной.

участок обшивки с дефектом в виде
воздушной прослойки (отслоением) между обшивкой
и сотовым наполнителем, 2 — сотовый наполнитель,
3 — обшивка без дефекта, 4 — участок без дефекта;
размеры приведены в мм.

Рис. 2. Модель КСП Gilfab 4223 (вид снизу), сторона с отслоением обшивки после нагрева.

В указанном программном обеспечении был смоделирован фрагмент КСП Gilfab 4223 [25]. Общий вид объекта контроля представлен на рис. 1. Данная КСП используется для производства и ремонта элементов конструкции самолетов семейства Airbus A320F. Габаритные размеры составляют 100×25 мм, общая толщина — 12,60 мм, толщина верхней и нижней обшивок — 1,27 мм и 0,50 мм соответственно. Изначально был задан дефект, а именно: воздушная прослойка (отслоение обшивки) между обшивкой и сотовым наполнителем. Габаритный размер отслоения нижней обшивки был равен 50×25 мм, толщина воздушной прослойки — 0,5 мм.

При нагреве дефектной стороны КСП более интенсивно нагревается обшивка в районе отслоения. Температура области отслоения оказалась выше ($\approx +30,03$ °C) по сравнению с температурой целой области ($\approx +28,0$ °C). Кроме этого, в области отслоения общивки структура сотовых ячеек отображается четче. Такая разница связана с различием в значениях теплопроводности воздуха и композитного материала (рис. 2).

Результат моделирования в виде термопрофилограммы продольной оси КСП, представленный на рис. 3, позволяет увидеть разницу в температурах целой и дефектной областей. Также результаты моделирования теплового распределения позволяют сделать вывод,

что после нагрева дефектной области КСП возможно получить визуальное отображение отслоения за счет разницы значений удельной теплоемкости композитного материала и воздуха. Даже при низких значениях мощности нагрева разница температур на приклеенном и отслоившемся участках составляет около 1,5 °C, что вполне регистрируется современными тепловизионными приборами.

2. Проведение эксперимента теплового контроля композитной сотовой панели

2.1. Оборудование для проведения тепловизионных исследований. Тепловизор COX CG 640

На втором этапе для проведения экспериментального исследования был выбран измерительный тепловизор COX CG 640, выполненный на базе ULIS-детектора с разрешением 640×480 пикселей [26]. С учетом взаимного расположения камеры и образца пространственное разрешение составляло 2 пикселя/мм.

В качестве источника теплового нагружения для создания температурного градиента была выбрана инфракрасная сушка (лампа нагревательная) WIEDERKRAFT WDK-1H [27].

2.2. Изготовление тестового образца

Для экспериментального исследования распределения температур и сравнения полученных данных с результатами моделирования теплового нагружения КСП в программе ANSYS 2021 R2 был изготовлен образец КСП с заранее известным дефектом (отслоением общивки). Образец состоял из панели марки Gillfab 4223 (см. рис. 4), которая имеет легкую слоистую структуру. Панель с двух сторон покрыта ламинированным слоем фенольной смолы, армированной стекловолокнистой тканью, а ее центральная часть изготовлена из сотового заполнителя марки NOMEX. Данная панель используется в конструкции грузовых отсеков самолетов семейства Airbus A320 Family. Область экспериментального исследования с помощью тепловизора составляла 180×80 мм (линия *1*, рис. 4). Область моделирования в пакете ANSYS показана линией 2. Линия 3 обозначает границы дефекта, который представлял собой отслоение общивки с зазором от 0,5 до 0,8 мм.

Рис. 4. Тестовый образец из панели Gillfab 4223.

 Граница дефекта (отслоение обшивки),
область, смоделированная в пакете ANSYS 2021 R2,
область экспериментального исследования с помощью тепловизора; размеры приведены в мм.

Рис. 5. Распределение поля температур на поверхности образца в начале цикла нагрева.

Рис. 6. Распределение поля температур на поверхности образца в конце цикла нагрева.

2.3. Описание эксперимента (этапы)

Лампа устанавливалась на расстоянии 350 мм от поверхности образца. Исходная температура образца была равна + 22 °C. Тепловизор включался в режим записи с частотой 25 кадров в секунду. Одновременно включалась инфракрасная лампа. Далее происходил нагрев поверхности до температуры + 35 °C, который занимал 15 секунд. По достижении указанной температуры лампа выключалась и следовало остывание образца до первоначальной температуры. На рис. 5–8 приведены поля распределения температур на различных стадиях процесса нагрева и охлаждения.

По распределению температур визуально можно выделить участки, где сотовая структура проявляется отчетливо. Эти участки ассоциируются с присоединенной обшивкой, а те, где изображение смазано, ассоциируются с отслоившейся обшивкой, но это не дает объективной оценки о границах дефекта. Температурные неравномерности, проявляющие сотовую структуру, «размываются» также и в конце цикла нагрева.

Рис. 8. Распределение поля температур на поверхности образца в конце цикла охлаждения.

Наибольшая трудность состоит в том, что лампа дает неравномерное поле нагрева, из-за чего определение дефекта по распределению температур становится затруднительным. Однако так как в проводимых экспериментах съемка последовательности кадров велась с одного положения, оказалось возможным применить прием вычисления поля разности температур на этапе нагрева и этапе охлаждения после нагрева. В результате того, что участки, подкрепленные стенками сот, имеют большую тепловую инерцию, а неравномерность внешнего теплового потока компенсируется, поле разности температур более четко демонстрирует область с отслоившейся общивкой. На рис. 9 показана разница температур между кадрами, представленными на рис. 6 и 8.

При такой процедуре даже в случае неравномерности нагрева поверхности образца границы отслоившейся и присоединенной обшивки четко диагностируются. В области присоединенной обшивки явно просматривается сотовая структура, в то время как в районе дефекта наблюдается общий повышенный уровень разницы температур с неоднородностями, превосходящими размер ячейки соты.

Определяются границы дефекта и на графиках распределения температур, расположенных по линии вдоль одной из осей координат. На рис. 10 представлен график распределения температуры по оси x на координате y = -20 (в области дефекта) и на координате y = -60 (где дефект отсутствует). По линии с наличием дефекта (при y = -20) в диапазоне от 40 до 130 мм по оси x наблюдается повышенная разность температур и более хаотическое распределение пульсаций температуры.

Вместе с тем для практического применения рассматриваемого метода необходимы критерии и процедуры, которые позволили бы определить границы дефекта. Опишем дополнительные процедуры и приведем результаты измерений.

Рис. 9. Распределение поля разницы температур на поверхности образца в начале цикла нагрева и конца цикла остывания.

Сначала вычисляется средняя по поверхности образца разница температур между данными на этапе нагрева (рис. 6) и охлаждения (рис. 8) $\Delta T_{\rm m}$:

$$\Delta T_{\rm m} = \frac{1}{n} \sum_{1}^{n} \Delta T, \qquad (2)$$

где $\Delta T_{\rm m}$ — средняя разница температур поверхности образца в фазе нагрева и охлаждения, ΔT — разница температур, регистрируемая 1 пикселем камеры, *n* — число пикселей тепловизионного снимка исследуемого участка.

Далее строится поверхность потенциала разницы температур \overline{T} (рис. 11). Такая поверхность дает возможность визуального восприятия дефекта человеком – оператором устройства сканирования. Однако для нужд автоматизированного анализа необходимо подобрать численные критерии оценки дефекта, поэтому вводятся две полезные функции:

$$Q = \{\mathbf{L}\}\overline{T},\tag{3}$$

где: $\{\mathbf{L}\} = \begin{cases} \partial/\partial x \\ \partial/\partial y \end{cases}$ — векторный оператор, Q — градиент потенциала разницы темпера-

тур \overline{T} по поверхности образца;

$$D = \oint Q ds, \tag{4}$$

Рис. 11. Распределение потенциала разницы температур *Т* по поверхности образца.

гис. 12. газмеры и смещение контура S для определения дивергенции D.
а — шаг ячейки сотового заполнителя, b — размер стороны контура S, h — шаг смещения контура S.

Рис. 13. Распределение значения дивергенции *D* по поверхности образца в соответствии с формулой (4).

где D — дивергенция градиента Q от потенциала разницы температур \overline{T} по замкнутому контуру S (рис. 12) со стороной b, равной половине шага ячейки a.

Контуром S сканировалась вся термограмма с шагом h, равным одному пикселю, что физически приравнивается к 0,5 мм на образце.

На рис. 13 представлено распределение величины дивергенции D по поверхности образца. Высота по оси z соответствует величине D. На рисунке хорошо видно, что в области дефекта происходит ярко выраженное уменьшение данного параметра. Поэтому в качестве численного критерия можно взять наличие дивергенции D на данном участке образца на 40 % ниже пиковых значений. Это можно отобразить в виде распределения изолиний уровня 60 % от $D_{\rm max}$ по поверхности образца (рис. 14). Область образца, где линии уровня не присутствуют на протяжении шага ячейки, является областью дефекта. Это хорошо заметно при сравнении образца (рис. 4 и 14*a*) и распределения изолиний уровня 60 % от $D_{\rm max}$.

Рис. 14. Положение дефекта на образце композитной сотовой панели (*a*) и на распределении изоконтуров *D*, соответствующих 60 % от максимального значения (*b*).

Заключение

В настоящей работе исследовалась возможность применения теплового метода неразрушающего контроля для определения отслоения обшивки композитной сотовой панели, применяемой на современных пассажирских самолетах.

В результате моделирования теплового воздействия на образец в программе ANSYS 2021 R2 установлено, что при тепловой мощности нагрева 72 Вт/м в течение 15 секунд средняя температура обшивки в области дефекта становится на 1,5 °C выше, чем на приклеенном участке. Этого достаточно для попытки обнаружения дефекта современным тепловизионным оборудованием.

При проведении экспериментов с тепловизионным оборудованием, имеющим разрешающую способность 2 пикселя/мм и температурную чувствительность 0,05 K, было установлено следующее:

 — как и в численном эксперименте, наличие сотового заполнителя образца обшивки проявляется в виде периодической неравномерности поля температуры на поверхности образца в местах соединения обшивки с сотовым заполнителем;

 отслоение общивки от сотового заполнителя приводит к общему повышению температуры общивки, что может служить критерием дефекта;

— границы дефекта непосредственно по термограммам определить затруднительно в силу неравномерности нагрева образца от реального физического источника.

Для определения границ дефекта авторами разработана процедура обработки результатов эксперимента. Можно выделить 4 ключевых этапа этой процедуры:

 — определение разницы в распределении температур на этапе нагрева и охлаждения путем вычитания соответствующих снимков термограмм;

— получение векторного распределения Q градиентов потенциала разницы температур \overline{T} ;

— определение дивергенции D от поля градиентов Q через замкнутый контур S с размерами стороны контура b = 1/2a, где a — шаг ячейки сотового заполнителя;

— построение изолинии уровня дивергенции D в 60 % максимального значения. Те области образца, где уровень не достигает 60 % максимума на протяжении шага ячейки, являются областью отслоения обшивки.

Для дальнейшего развития метода с целью получения надежных численных критериев диагностики необходимо решить две ключевых задачи: обеспечить для исследуемой поверхности повторяемый цикл в виде нагрева и охлаждения; обеспечить равномерный тепловой поток от физического источника нагрева или охлаждения по всей поверхности для исследуемого образца. На решение этих задач будут направлены дальнейшие исследования в продолжение данной работы.

Список литературы

- 1. Гуняев Г.М., Кривонос В.В., Румянцев А.Ф., Железина Г.Ф. Полимерные композиционные материалы в конструкциях летательных аппаратов // Конверсия в машиностроении. 2004. № 4. С. 65–69.
- 2. Сливинский В.И., Ткаченко Г.В., Сливинский М.В. Эффективность применения сотовых конструкций в летательных аппаратах // Вестн. Сиб. гос. аэрокосмического ун-та им. академика М.Ф. Решетнева. 2005. № 7. С. 169–173.
- 3. Одареев В.А. Надежность и техническая диагностика: конспект лекций. Иркутск: Изд-во ИрГТУ, 2007. 76 с.
- 4. Каневский И.Н. Неразрушающие методы контроля: Учеб. пособ. Владивосток: Изд-во ДВГТУ, 2007. 243 с.
- 5. Руководство по неразрушающему контролю самолетов Airbus A318, A319, A320, A321. Руководство № 51-10-26-РВ1, ревизия № 135. Введ. с 01.02.2022.

- 6. Коннов В.В., Добромыслов В.А., Соснин Ф.Р., Фирсов В.Г., Косарина Е.Н., Гагин Е.Н. Типовые методики радиационно-дефектоскопического контроля (Россия, Германия, США) // Контроль. Диагностика. 1998. № 3. С. 29–41.
- 7. Клюев В.В., Соснин Ф.Р. Теория и практика радиационного контроля. М.: Машиностроение, 1998. 170 с.
- Кулешов В.И., Сертаков Ю.И., Ефимов П.В. Физические и экспериментальные основы радиационного контроля и диагностики. Ч. 1: Основы теории и практики радиационного контроля. Томск: Изд-во ТПУ, 2007. 341 с.
- Кашубский Н.В., Сельский А.А., Смолин А.Ю. Методы неразрушающего контроля. Неразрушающие методы контроля материалов и изделий. Электрон. учеб. пособие. Красноярск: Изд-во СФУ, 2009. 108 с.
- Мартыненко Е.В. Неразрушающий контроль авиационной техники: Учебное пособие. 2-е изд., перераб. и доп. М.: Инфра-М, 2018. 148 с.
- 11. Кретов Е.Ф. Ультразвуковая дефектоскопия в энергомашиностроении. СПб.: Изд-во «СВЕН», 2007. 296 с.
- 12. Ковалёв А.В., Матвеев В.И., Кошкин В.В., Хижияк С.А. Тепловой контроль авиационных конструкций // Megatech. Новые технологии в промышленной диагностике и безопасности. 2011. № 2–3 С. 16–22.
- Вавилов В.П., Климов А.Г., Ширяев В.В. Активный тепловой контроль воды в авиационных сотовых конструкциях // Дефектоскопия. 2002. № 12. С. 73–84.
- 14. Руководство по неразрушающему контролю самолетов Airbus A318, A319, A320, A321. Руководство № 51-10-25-PB1, ревизия № 135. Введ. с 01.02.2022.
- **15.** Руководство по неразрушающему контролю самолетов Airbus A318, A319, A320, A321. Руководство № 55-20-07-РВ10, ревизия № 135. Введ. с 01.02.2022.
- 16. Руководство по неразрушающему контролю самолетов Airbus A318, A319, A320, A321. Руководство № 51-10-03-PB5, ревизия № 135. Введ. с 01.02.2022.
- Нева Технолоджи, инновационные решения в метрологии и системах неразрушающего контроля, шерография [Электронный pecypc]. URL: https://nevatec.ru/products/ndt/shearography.html (дата обращения: 05.10.2022).
- 18. Иванов А.Д., Минаев В.Л., Вишняков Г.Н. Шерограф для неразрушающего контроля изделий, полученных посредством аддитивных технологий // Приборы и техника эксперимента. 2019. № 6. С. 121–125.
- 19. Левин Г.Г., Вишняков Г.Н., Минаев В.Л., Иванов А.Д. Методы шерографии для контроля внутренних дефектов изделий аддитивных технологий // HOLOEXPO 2019: XVI междунар. конф. по голографии и прикладным оптическим технологиям: Тезисы докладов. М.: МГТУ им. Н.Э. Баумана, 2019. С. 377–379.
- 20. Клочков Н.И., Зверков И.Д. Выбор методов для повышения эффективности неразрушающего контроля композитных сотовых панелей современных воздушных судов // Полет. 2021. № 5. С. 12–21.
- Чернышев С.Л., Зиченков М.Ч., Голован В.И. Тепловой неразрушающий контроль ударных повреждений изделий из полимерных композиционных материалов // Тр. ЦАГИ. 2021. № 2797
- 22. Справочник по теории расчетов в программе Ansys Mechanical. США: Канонсбург, 2021. 934 с.
- 23. Grebenişan G., Negrău D.C., Salem N. A connected steady-state thermal with a structural analysis using FEA in ANSYS // Conf.: Annual Session of Scientific Papers IMT Oradea 2021. April 2022. 7 p.
- 24. Jikol F., Akop M.Z., Arifin Y.M., Salim M.A., Herwan S.G. A study of steady-state thermal distribution on circular plate using ANSYS // Intern. J. of Nanoelectrics and Materials. 2021. Vol. 14. P. 479–488.
- 25. Руководство по структурному ремонту самолётов Airbus A318, A319, A320, A321. Руководство № 53-22-00, ревизия № 140. Введ. с 01.02.2022.
- 26. Руководство пользователя тепловизоров COX CG320 и CG640. Руководство № CG320 & CG640 Manual (COX Thermal Imaging Cameras), ревизия № 1А. Введ. с 28.04.2017.
- Руководство по эксплуатации и паспорт изделия Wiederkraft коротковолновая инфракрасная сушка WDK-1H // ООО «Видеркрафт РУС». 2022. 4 с.

Статья поступила в редакцию 26 августа 2022 г.,

после доработки — 1 мая 2023 г.,

принята к публикации 16 июня 2023 г.