УДК 536.2:532.5

НЕУСТАНОВИВШАЯСЯ ДВОЙНАЯ СМЕШАННАЯ КОНВЕКЦИЯ В ПОТОКЕ ЖИДКОСТИ ВБЛИЗИ РАСТЯГИВАЕМОЙ ПЛАСТИНЫ ПРИ НАЛИЧИИ ВДУВА И ОТСОСА ЧЕРЕЗ ЕЕ ПОВЕРХНОСТЬ

М. Даба, П. Деварадж*

Колледж естественных наук Университета г. Джимма, Джимма, Эфиопия * Инженерный колледж Университета Анны, 600025 Ченнай, Индия E-mails: mitbru2007@yahoo.com, devaraj@annauniv.edu

Исследуется двойная смешанная конвекция в пограничном слое потока жидкости вдоль растягиваемой вертикальной поверхности с учетом вдува (отсоса). Система дифференциальных уравнений в частных производных с помощью соответствующего преобразования переменных сводится к системе нелинейных обыкновенных дифференциальных уравнений, которая решается методом ячеек Келлера. Исследуется влияние различных параметров течения на скорость и температуру потока и концентрацию примеси в жидкости. Исследовано влияние ряда параметров задачи на коэффициент поверхностного трения в случаях вдува и отсоса.

Ключевые слова: смешанная конвекция, вдув и отсос, растягиваемая пластина, силы плавучести.

DOI: 10.15372/PMTF20170206

Введение. В тех случаях, когда вызывающие движение жидкости силы плавучести обусловлены наличием градиентов и температуры, и концентрации, конвекция называется двойной смешанной конвекцией. Такая конвекция возникает, например, в океане, где имеют место и градиент температуры, и градиент концентрации соли. Данные течения встречаются также в астрофизических, технологических, биологических, геологических, химических процессах [1].

Пограничный слой в ламинарном потоке жидкости на пластине впервые исследовал Г. Блазиус [2], в работе [3] полученные результаты обобщены на случай движущейся пластины. В [4] исследовано течение Блазиуса с учетом теплового излучения. В [5] с учетом теплового излучения изучено движение потока вдоль движущейся в покоящейся жидкости пластины, на поверхности которой заданы конвективные граничные условия. В [6] с использованием неявного метода конечных разностей и квазилинеаризации численно исследовано конвективное течение жидкости вдоль движущейся вертикальной пластины при наличии диффузии тепла и массы. В работе [7] выполнен анализ характеристик ламинарного пограничного слоя на пористой пластине при наличии вдува (отсоса) через ее поверхность. Задача теплопереноса в случае течения жидкости вдоль растягиваемой пластины при различных значениях теплопроводности жидкости решена в [8]. В [9] исследована задача о смешанной конвекции в пограничном слое жидкости на вертикальной пластине, на поверхности которой заданы граничные условия проскальзывания для скорости и температуры. В работе [10] решена задача магнитогидродинамики о смешанной конвекции с учетом омического тепла и вязкости жидкости, в [11] — задача о пограничном слое жидкости на растягиваемой пластине при наличии магнитного поля. В [12] исследована задача о ламинарном течении вдоль растягиваемой пластины с конвективными краевыми условиями и условиями частичного проскальзывания. В [13] решена задача о теплопереносе в пограничном слое жидкости на растягиваемой по линейному закону пластине, при этом теплопроводность полагалась переменной. В [14] аналитически изучался теплоперенос на растягиваемой поверхности при различных значениях задаваемой температуры. В [15] решена задача о смешанной конвекции в окрестности точки торможения ламинарного магнитогидродинамического потока несжимаемой вязкой жидкости вблизи вертикальной растягиваемой пластины.

Неустановившаяся конвекция в пограничном слое жидкости вблизи движущейся поверхности исследована в работе [16]. Такая же задача для растягиваемой вертикальной поверхности, находящейся в неподвижной жидкости, рассмотрена в [17], для непрерывно движущейся вертикальной пластины — в [18]. Конвекция вблизи мгновенно растягиваемой вертикальной проницаемой пластины, находящейся в безграничной неподвижной жидкости, при наличии поперечного магнитного поля исследовалась в [19] с использованием метода гомотопического анализа и численного метода ячеек Келлера. Неустановившаяся смешанная конвекция и теплоперенос в пограничном слое жидкости с изменяющимися свойствами, обусловленные растяжением вертикальной поверхности, изучались в работе [20]. Аналогичная задача для наножидкости исследована в [21]. Задача, рассмотренная в работе [20], изучалась в [22] с учетом теплового излучения, а в [23] — с учетом вязкости жидкости и ее диссипации. Во всех указанных выше работах краевые задачи для пограничного слоя рассматривались либо в случае установившегося течения жидкости с постоянными свойствами и постоянной концентрацией примеси в ней, либо в случае неустановившегося течения жидкости с изменяющимися свойствами при отсутствии в ней примесей.

В данной работе изучается неустановившаяся смешанная конвекция в пограничном слое жидкости с изменяющимися свойствами вблизи вертикальной растягиваемой пластины при наличии вдува (отсоса) через ее поверхность. Дифференциальные уравнения в частных производных сводятся к системе нелинейных обыкновенных дифференциальных уравнений, которые решаются с использованием метода ячеек Келлера, подробно описанного в работах [24, 25].

1. Математическая формулировка задачи. Исследуется неустановившаяся смешанная конвекция в потоке несжимаемой вязкой жидкости вдоль полубесконечной пористой растягиваемой пластины. Задача решается в декартовой системе координат, в которой ось x направлена вдоль пластины, ось y — по нормали к ней (рис. 1). Предполагается, что при t < 0 потоки массы и тепла являются установившимися; скорость $U_w(x,t)$, с которой растягивается пластина, температура пластины $T_w(x,t)$ и концентрация вещества на ней $C_w(x,t)$ при каждом значении времени t являются линейными функциями переменной x; все термофизические характеристики пластины и окружающей жидкости, за исключением теплопроводности, постоянные; жидкость имеет один и тот же коэффициент поглощения при любой длине волны, выделяет тепло, но не является рассеивающей средой. Система уравнений пограничного слоя в приближении Буссинеска имеет следующий вид:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0; \tag{1}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} \pm g\beta_T (T - T_\infty) \pm g\beta_C (C - C_\infty);$$
(2)

Рис. 1. Схема задачи

$$\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left(K(T) \frac{\partial T}{\partial y} \right) - \frac{\partial q_r}{\partial y}; \tag{3}$$

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2},\tag{4}$$

граничные условия записываются в виде

$$y = 0: \qquad u = U_w, \quad v = v_w(t), \quad T = T_w, \quad C = C_w, \\ y \to \infty: \qquad u \to 0, \quad T \to T_\infty, \quad C \to C_\infty.$$

Здесь u, v — компоненты вектора скорости в направлениях x, y соответственно; $K(T) = K_{\infty}(1 + \varepsilon(T - T_{\infty})/\Delta T)$ — теплопроводность [13]; $\Delta T = T_w - T_{\infty}$; T_w — температура пластины; ε — малый параметр; K_{∞} — значение теплопроводности на бесконечности; ν — кинематическая вязкость; β_T, β_C — коэффициенты объемного температурного и концентрационного расширения соответственно; ρ — плотность жидкости; c_p — удельная теплоемкость; q_r — поток теплового излучения; D — коэффициент диффузии массы. Последние два слагаемых в уравнении (2) представляют собой силы плавучести. Знак "+" соответствует силе, способствующей течению, знак "-" — силе, препятствующей течению.

Следуя [13, 20, 22], определим величины

$$U_w(x,t) = \frac{ax}{1-ct}, \qquad T_w(x,t) = T_\infty + \frac{bx}{(1-ct)^2}, \qquad C_w(x,t) = C_\infty + \frac{mx}{(1-ct)^2}$$

(*a*, *b*, *c*, *m* — константы). В приближении Росселанда [26] выражение для радиационного теплового потока записывается в виде

$$q_r = -\frac{4\sigma^*}{3k^*} \frac{\partial T^4}{\partial y},\tag{5}$$

где σ^* , k^* — константа Стефана — Больцмана и среднее значение коэффициента поглощения соответственно. Предполагается, что перепад температуры внутри области течения T^4 является линейной функцией. Разлагая в ряд Тейлора величину T^4 на бесконечности и пренебрегая членами более высокого порядка, получаем линейную аппроксимацию температуры

$$T^4 \simeq 4T_\infty^3 T - 3T_\infty^4. \tag{6}$$

С использованием выражения для теплопроводности K(T) и аппроксимаций (5), (6) уравнение (3) приводится к виду

$$\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y}\right) = \frac{\varepsilon k_\infty}{T_w - T_\infty} \left(\frac{\partial T}{\partial y}\right)^2 + \left(K(T) + \frac{16\sigma^* T_\infty^3}{3k^*}\right) \frac{\partial^2 T}{\partial y^2}.$$
(7)

Введем следующие преобразования подобия:

$$\eta = y \left(\frac{a}{\nu(1-ct)}\right)^{1/2}, \quad \psi(x,y,t) = \left(\frac{\nu a}{1-ct}\right)^{1/2} x f(\eta), \quad G(\eta) = \frac{T-T_{\infty}}{T_w - T_{\infty}}$$
$$H(\eta) = \frac{C-C_{\infty}}{C_w - C_{\infty}}, \quad \operatorname{Gr} = \frac{g\beta_T (T_w - T_{\infty})L^3}{\nu^2}, \quad \operatorname{Gr}_* = \frac{g\beta_C (C_w - C_{\infty})L^3}{\nu^2}$$
$$\lambda = \frac{\operatorname{Gr}_*}{\operatorname{Re}_L^2}, \quad \lambda_1 = \frac{\operatorname{Gr}_*}{\operatorname{Re}_L^2}, \quad \operatorname{Re}_L = \frac{U_w L}{\nu}, \quad \operatorname{Pr} = \frac{\nu}{\alpha_{\infty}}, \quad \alpha_{\infty} = \frac{K_{\infty}}{\rho c_p}.$$

Здесь $\psi(x, y, t)$ — функция тока ($u = \partial \psi / \partial y$, $v = -\partial \psi / \partial x$); Gr, Gr_{*} — числа Грасгофа, зависящие от температуры и концентрации соответственно; L — длина пластины; λ, λ_1 — параметры сил плавучести, обусловленных наличием градиентов температуры и концентрации соответственно; U_w — скорость растяжения пластины; α_{∞} — коэффициент тепловой диффузии. С использованием введенных преобразований подобия и выражения для теплопроводности K(T) уравнения (2), (7), (4) приводятся к связанной системе нелинейных обыкновенных дифференциальных уравнений

$$f''' + ff'' - f'^2 - M(f' + \eta f''/2) + \lambda(G + NH) = 0,$$

((1 + \varepsilon G + N_r)G')' - Pr (f'G - G'f) - M Pr (2G + \eta G'/2) = 0,
H'' - Sc (f'H - H'f) - M Sc (2H + \eta H'/2) = 0 (8)

с краевыми условиями

 $\eta \to \infty$: f(0) = s, f'(0) = 1, G(0) = 1, H(0) = 1, $f' \to 0$, $G \to 0$, $H \to 0$. (9) В (8), (9) штрих обозначает дифференцирование по переменной η ; M = c/a — параметр нестационарности течения; $N_r = 16\sigma^*T_{\infty}/(3K_{\infty}k^*)$ — параметр излучения; $s = -v_0/\sqrt{(1-ct)/(\nu a)}$ (значения s < 0 соответствуют вдуву, s > 0 — отсосу, s = 0 — непроницаемой поверхности); $N = \lambda_1/\lambda$ (значение N = 0 соответствует отсутствию сил плавучести, обусловленных диффузией вещества, $N = \infty$ — силам плавучести, обусловленных диффузией тепла).

Наибольший интерес представляют следующие физические величины: коэффициент поверхностного трения

$$C_f = 2\tau_w / (\rho u_w^2), \tag{10}$$

локальное число Нуссельта

$$Nu_x = xq_w/(k_\infty(T_w - T_\infty)), \tag{11}$$

локальное число Шервуда

$$Sh_x = xq_m/(D(C_w - C_\infty))$$
(12)

 $(\tau_w = \mu \partial u/\partial y|_{y=0}$ — поверхностное напряжение; $q_w = -k_\infty \partial T/\partial y|_{y=0}$ — поток тепла на стенке; $q_m = -k_\infty \partial T/\partial y|_{y=0}$ — поток массы на стенке; μ — динамическая вязкость.

С учетом переменных подобия уравнения (10)–(12) записываются в виде

$$C_f \sqrt{\operatorname{Re}_x}/2 = f''(0), \qquad \operatorname{Nu}_x/\sqrt{\operatorname{Re}_x} = -G'(0), \qquad \operatorname{Sh}_x/\sqrt{\operatorname{Re}_x} = -H'(0),$$

где $\operatorname{Re}_x = U_w x / \nu$ — локальное число Рейнольдса.

2. Метод решения. Система нелинейных обыкновенных дифференциальных уравнений (8) с граничными условиями (9) решалась методом ячеек Келлера [24, 25]. Программа реализована в пакете Matlab. Метод ячеек Келлера является неявным конечно-разностным методом решения дифференциальных уравнений.

Введя новые переменные $u(x,\eta), v(x,\eta), p(x,\eta), q(x,\eta)$:

$$f' = u, \qquad u' = v, \qquad G' = p, \qquad H' = q,$$

уравнения (8) запишем в следующем виде:

$$v' + fv - u^2 - M(u + \eta v/2) + \lambda(G + NH) = 0,$$

(1 + N_r + \varepsilon G)p' + \varepsilon p^2 - \Pr(uG - pf) - M \Pr(2G + \eta p/2) = 0,
q' - \Pr(uH - qf) - M \Pr(2H + \eta q/2) = 0.

В плоскости (x, η) зададим прямоугольную сетку:

$$x^{0} = 0,$$
 $x^{n} = x^{n-1} + k_{n},$ $n = 1, 2, ..., N,$
 $\eta_{0} = 0,$ $\eta_{j} = \eta_{j-1} + h_{j},$ $j = 1, 2, ..., J$

 $(k_n, h_j$ — расстояния между узлами в направлениях x, η соответственно). С использованием центральных разностей запишем конечно-разностные уравнения для узла $(x^n, \eta_{j-1/2})$:

$$(f_{j} - f_{j-1})h_{j}^{-1} = u_{j-1/2}, \qquad (u_{j} - u_{j-1})h_{j}^{-1} = v_{j-1/2}, (G_{j} - G_{j-1})h_{j}^{-1} = p_{j-1/2}, \qquad (H_{j} - H_{j-1})h_{j}^{-1} = q_{j-1/2}, (v_{j} - v_{j-1})h_{j}^{-1} + f_{j-1/2}v_{j-1/2} - (u_{j-1/2})^{2} - M(u_{j-1/2} + \eta_{j}v_{j-1/2}/2) - -\lambda(G_{j-1/2} + NH_{j-1/2}) = 0, \qquad (13)$$
$$(1 + N_{r} + \varepsilon G_{j-1/2})(p_{j} - p_{j-1})h_{j}^{-1} + \varepsilon(p_{j-1/2})^{2} - \Pr(u_{j-1/2}G_{j-1/2} - p_{j-1/2}f_{j-1/2}) - -M\Pr(2G_{j-1/2} + \eta_{j}p_{j-1/2}/2) = 0,$$

$$(q_j - q_{j-1})h_j^{-1} - \operatorname{Sc}\left(u_{j-1/2}H_{j-1/2} - q_{j-1/2}f_{j-1/2}\right) - M\operatorname{Sc}\left(2H_{j-1/2} + \eta_j q_{j-1/2}/2\right) = 0,$$

где $u_{j-1/2} = (u_j + u_{j-1})/2$ и т. д. Система (13) представляет собой систему нелинейных алгебраических уравнений. Прежде чем применить метод факторизации, эту систему необходимо линеаризовать. Запишем итерационную схему Ньютона. Для (i+1)-й итерации имеем

$$f_j^{i+1} = f_j^i + \delta f_j^i, \tag{14}$$

где f — любая искомая функция. Используя представления (14) в уравнениях (13) и пренебрегая квадратичными членами и членами более высокого порядка относительно δf_j^{i+1} , получаем трехдиагональную систему алгебраических уравнений

$$\begin{split} \delta f_{j} - \delta f_{j-1} - h_{j} (\delta u_{j} + \delta u_{j-1})/2 &= (r_{1})_{j-1/2}, \\ \delta u_{j} - \delta u_{j-1} - h_{j} (\delta v_{j} + \delta v_{j-1})/2 &= (r_{2})_{j-1/2}, \\ \delta G_{j} - \delta G_{j-1} - h_{j} (\delta p_{j} + \delta p_{j-1})/2 &= (r_{3})_{j-1/2}, \\ \delta H_{j} - \delta H_{j-1} - h_{j} (\delta q_{j} + \delta q_{j-1})/2 &= (r_{4})_{j-1/2}, \\ (a_{1})_{j} \, \delta v_{j} + (a_{2})_{j} \, \delta v_{j-1} + (a_{3})_{j} \, \delta f_{j} + (a_{4})_{j} \, \delta f_{j-1} + (a_{5})_{j} \, \delta u_{j} + (a_{6})_{j} \, \delta u_{j-1} + \\ &+ (a_{7})_{j} \, \delta G_{j} + (a_{8})_{j} \, \delta G_{j-1} + (a_{9})_{j} \, \delta H_{j} + (a_{10})_{j} \, \delta H_{j-1} = (r_{5})_{j-1/2}, \end{split}$$

$$(b_1)_j \,\delta p_j + (b_2)_j \,\delta p_{j-1} + (b_3)_j \,\delta G_j + (b_4)_j \,\delta G_{j-1} + (b_5)_j \,\delta u_j + (b_6)_j \,\delta u_{j-1} + (b_7)_j \,\delta f_j + (b_8)_j \,\delta f_{j-1} = (r_6)_{j-1/2},$$

$$(c_1)_j \,\delta q_j + (c_2)_j \,\delta q_{j-1} + (c_3)_j \,\delta u_j + (c_4)_j \,\delta u_{j-1} + (c_5)_j \,\delta H_j + (c_6)_j \,\delta H_{j-1} + (c_7)_j \,\delta f_j + (c_8)_j \,\delta f_{j-1} = (r_7)_{j-1/2},$$

где

$$\begin{split} (a_1)_j &= 1 + h_j(f_j + f_{j-1})/4 - Mh_j\eta_j/4, \qquad (a_2)_j = -1 + h_j(f_j + f_{j-1})/4 - Mh_j\eta_j/4, \\ (a_3)_j &= (a_4)_j, \qquad (a_4)_j = h_j(v_j + v_{j-1})/4, \qquad (a_5)_j = (a_6)_j, \\ (a_6)_j &= -h_j(u_j + u_{j-1})/2 - Mh_j/2, \qquad (a_7)_j &= (a_8)_j, \qquad (a_8)_j = \lambda h_j/2, \\ (a_9)_j &= (a_{10})_j, \qquad (a_{10})_j = N\lambda h_j/2, \\ (b_1)_j &= 1 + \frac{\varepsilon}{2(1 + N_r)} (G_j + G_{j-1}) + \frac{\varepsilon h_j}{2(1 + N_r)} (p_j + p_{j-1}) + \frac{\Pr h_j}{4(1 + N_r)} (f_j + f_{j-1}) - \frac{\Pr \eta_j h_j}{4(1 + N_r)}, \\ (b_2)_j &= -1 - \frac{\varepsilon}{2(1 + N_r)} (G_j + G_{j-1}) + \frac{\varepsilon h_j}{2(1 + N_r)} (p_j + p_{j-1}) + \frac{\Pr h_j}{4(1 + N_r)} (f_j + f_{j-1}) - \frac{\Pr \eta_j h_j}{4(1 + N_r)}, \\ (b_3)_j &= (b_4)_j &= \frac{\varepsilon}{2(1 + N_r)} (p_j - p_{j-1}) - \frac{\Pr h_j}{4(1 + N_r)} (u_j + u_{j-1}) - \frac{\Pr h_j}{1 + N_r}, \\ (b_5)_j &= (b_6)_j &= -\frac{\Pr h_j}{4(1 + N_r)} (G_j + G_{j-1}), \qquad (b_7)_j &= (b_8)_j &= \frac{\Pr h_j}{4(1 + N_r)} (p_j + p_{j-1}), \\ (c_1)_j &= 1 + \operatorname{Sc} (f_j + f_{j-1})/4 - M\operatorname{Sc} \eta_j h_j/4, \qquad (c_2)_j &= -1 + \operatorname{Sc} (f_j + f_{j-1})/4 - M\operatorname{Sc} \eta_j h_j/4, \\ (c_3)_j &= (c_4)_j &= -\operatorname{Sc} h_j (H_j + H_{j-1})/2, \qquad (c_5)_j &= (c_6)_j &= -\operatorname{Sc} h_j (u_j + u_{j-1})/4 - M\operatorname{Sc} h_j, \\ (c_7)_j &= (c_8)_j &= \operatorname{Sc} h_j (q_j + q_{j-1})/4, \\ (r_1)_j &= f_{j-1} - f_j + h_j (u_j + u_{j-1})/2, \qquad (r_2)_j &= u_{j-1} - u_j + h_j (v_j + v_{j-1})/2, \\ (r_5)_j &= v_{j-1} - v_j - h_j (f_j + f_{j-1}) (v_j + v_{j-1})/4 + h_j (u_j + u_{j-1})^2/4 + Mh_j (u_j + u_{j-1})/2, \\ (r_6)_j &= p_{j-1} - p_j - \frac{\varepsilon}{2(1 + N_r)} (G_j + G_{j-1}) (p_j - p_{j-1}) - \frac{\varepsilon h_j}{4(1 + N_r)} (p_j + p_{j-1})^2 + \\ + \frac{\operatorname{Pr} h_j}{4(1 + N_r)} (u_j + u_{j-1}) (G_j + G_{j-1}) - \frac{\operatorname{Pr} h_j}{4(1 + N_r)} (f_j + f_{j-1}) (p_j + p_{j-1}), \\ (r_7)_j &= q_{j-1} - q_j + \operatorname{Sc} h_j (u_j + u_{j-1}) (H_j + H_{j-1})/4 - \operatorname{Sc} h_j (f_j + f_{j-1}) (p_j + q_{j-1}), \\ (r_7)_j &= q_{j-1} - q_j + \operatorname{Sc} h_j (u_j + u_{j-1}) (H_j + H_{j-1})/4 - \operatorname{Sc} h_j (f_j + f_{j-1}) (g_j + q_{j-1})/4 + \\ + M\operatorname{Sc} h_j (H_j + H_{j-1}) + M\operatorname{Sc} h_j (q_j + q_{j-1})/4 + \\ \end{array}$$

Линеаризуя граничные условия, находим

 $\delta f_0 = s, \quad \delta u_0 = 1, \quad \delta G_0 = 1, \quad \delta H_0 = 1, \quad \delta u_J = 0, \quad \delta G_J = 0, \quad \delta H_J = 0.$ Запишем линеаризованную систему в матричной форме

$$A\delta = r,\tag{15}$$

где

 δ_1

$$A = \begin{bmatrix} \begin{bmatrix} A_1 \\ B_2 \end{bmatrix} & \begin{bmatrix} C_1 \\ A_2 \end{bmatrix} & \begin{bmatrix} C_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ B_{J-1} \end{bmatrix} \begin{bmatrix} A_{J-1} \end{bmatrix} \begin{bmatrix} C_{J-1} \\ B_{J} \end{bmatrix} \begin{bmatrix} C_{J-1} \\ \vdots \\ A_{J} \end{bmatrix} \\, \quad \delta = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \vdots \\ \vdots \\ \delta_{J-1} \\ \delta_{J} \end{bmatrix}, \quad r = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ \vdots \\ \vdots \\ r_{J-1} \\ r_{J} \end{bmatrix}.$$

Элементы блока A определены следующим образом:

Полагая, что в (15) матрица А является невырожденной, факторизуем ее следующим образом:

$$A = LU. \tag{16}$$

Здесь

$$L = \begin{bmatrix} [\alpha_1] & & & \\ [\beta_2] & [\alpha_2] & & & \\ & \ddots & \ddots & & \\ & & & [\alpha_{J-1}] & \\ & & & & [\beta_2] & [\alpha_J] \end{bmatrix}, \qquad U = \begin{bmatrix} [I] & [\Gamma_1] & & & \\ & [I] & [\Gamma_2] & & \\ & \ddots & \ddots & \ddots & \\ & & & & & [I] & [\Gamma_{J-1}] \\ & & & & & & [I] \end{bmatrix}$$

[I] — единичная матрица размерностью 7 × 7; $[\alpha_i]$, $[\Gamma_i]$ — матрицы размерностью 7 × 7, элементы которых определяются из следующих уравнений:

$$[\alpha_1] = [A_1], \quad [A_1][\Gamma_1] = [C_1], \quad [\alpha_j] = [A_j] - [B_j][\Gamma_{j-1}], \ j = 2, 3, 4, \dots, J.$$

Подставляя (16) в (15), получаем

$$LU\delta = r.$$
 (17)

Вводя обозначение

 $U\delta = W,$

уравнение (17) запишем в виде

$$LW = r, (18)$$

где $W = [W_1, W_2, W_3, W_4, W_5, W_6, W_7]^{\mathrm{T}}; W_j$ — матрицы-столбцы размерностью 7 × 1. Элементы W определяются из решения уравнения (18):

$$[\alpha_1][W_1] = [r_1], \qquad [\alpha_j][W_j] = [r_j] - [\beta_j][W_{j-1}], \quad j = 2, 3, 4, \dots, J.$$

Определив элементы W, можно найти решение уравнения (18) по рекуррентным соотношениям

$$[\delta_J] = [W_J], \qquad [\delta_j] = [W_j] - [\Gamma_j][\delta_{j+1}], \quad 1 \le j \le j - 1.$$

Итерации продолжаются до тех пор, пока не будет выполнено условие сходимости $|\delta v_0^i| \leq \varepsilon_1 \ (\varepsilon_1 - \text{заданное малое положительное число}).$

3. Результаты исследования и их обсуждение. Расчеты выполнены при различных значениях числа Прандтля Pr, числа Шмидта Sc, параметра λ сил плавучести, обусловленных наличием градиента температуры, параметра нестационарности течения M, параметра теплопроводности ε , параметра излучения N_r , отношения сил плавучести Nи параметра вдува (отсоса) s. Значения скорости теплопереноса на поверхности -G'(0), полученные с использованием приведенного выше алгоритма, согласуются со значениями этой величины, полученными в работах [14, 15, 20, 22] (табл. 1).

На рис. 2,*a* приведены распределения скорости f' по пространственной координате η при различных значениях параметра λ в случаях вдува (s < 0), непроницаемой поверхности (s = 0) и отсоса (s > 0) для установившегося и неустановившегося течений. Из рис. 2,*a* следует, что с увеличением параметра λ скорость жидкости увеличивается. Вблизи поверхности скорость увеличивается с увеличением координаты η , а затем уменьшается и при $\eta \to \infty$ стремится к нулю. В случае вдува скорость жидкости больше, чем в случае отсоса. Наконец, при установившемся течении скорость жидкости больше, чем при неустановившемся.

	М	λ	\Pr	Данные [14]	Данные [15]	Данные [20]	Данные [22]	Данные настоящей работы	
	0	0	0.72	0.8086	0.8058	0.8086	0.808636	0.808 637	
	0	0	1,00	1,0000	0,9610	1,0000	1,000 000	1,000 000	
	0	0	3,00	1,9237	1,9144	1,9237	1,923687	1,923691	
	0	0	10,00	3,7207	3,7006	3,7207	3,720788	3,720791	
	0	0	100,00	12,2940		12,2941	12,300 390	12,300395	
	1	0	1,00			1,6820	$1,\!681921$	$1,\!680799$	
	1	1	1,00			1,7039	1,703910	1,702720	
	1	1	1,00			1,0873	1,087206	1,087279	
	0	2	1,00			1,4230	$1,\!422980$	$1,\!142341$	
	0	3	$1,\!00$			1,1853	$1,\!185197$	$1,\!185293$	
f' 1,5 1,0 0,5	f' = a ,5 ,0 0,5 - 2' 1' 1' 1' 2' 1' 1' 1' 1' 1' 1' 1' 1					G 6 1,0 0,8 0,6 0,4 0,2 2' 1' 2' 2' 1' 2' 2' 1' 2' 2' 1' 2'			
0	1	. 4	$2 \ 3 \ 4$	567	$8 \ 9 \ 10 \ \eta$	0 1	$2 \ 3 \ 4 \ 5$	6 7 8 9 10 r	

Значения -G'(0), полученные в различных работах

Рис. 2. Зависимости скорости (*a*) и температуры (*б*) от пространственной координаты η при $N = \varepsilon = N_r = 0,2$, $\Pr = 0,7$ и различных значениях λ , *s*, *M*: сплошные линии — M = 1, штриховые — M = 0; $1-3 - \lambda = 0,5$, $1'-3' - \lambda = 5$; 1, 1' - s = -1, 2, 2' - s = 0, 3, 3' - s = 1

На рис. 2,6 приведены распределения температуры по пространственной координате η при тех же значениях параметров задачи, что и на рис. 2,*a*. Видно, что с увеличением параметра λ температура жидкости уменьшается как в случаях вдува и отсоса через поверхность, так и в случае ее непроницаемости. В случае вдува толщина теплового пограничного слоя больше, чем в случае отсоса. При установившемся течении температура жидкости больше, чем при неустановившемся.

С увеличением параметра плавучести N скорость жидкости увеличивается как в случаях вдува и отсоса через поверхность, так и в случае ее непроницаемости (рис. 3). На рис. 3 видно, что при установившемся течении скорость жидкости больше, чем при неустановившемся. В случае сил плавучести, способствующих течению (N > 0), решение уравнений движения существует при больших значениях N, в случае сил плавучести, препятствующих течению (N < 0), решение этих уравнений существует при малых значениях N.

На рис. 4 приведены распределения температуры по пространственной координате η при различных значениях параметра ε для установившегося и неустановившегося течений как в случаях вдува и отсоса через поверхность, так и в случае непроницаемой по-

Таблица 1

Рис. 3. Зависимость скорости от пространственной координаты η при $\lambda = \varepsilon = N_r = 0,5$ и различных значениях N, s, M: 1-3 - N = 0,5, 1'-3' - N = 5; остальные обозначения те же, что на рис. 2 Рис. 4. Зависимость температуры от пространственной координаты η при $\lambda = N = N_r = 0,5$, $\Pr = 1$ и различных значениях ε, s, M : $1-3 - \varepsilon = 0,25, 1'-3' - \varepsilon = 1$; остальные обозначения те же, что на рис. 2

и скорости массопереноса $-II$ (б) на поверхности пластины при $s = 0, \varepsilon = 0,1, N_r = 0,1$								
λ	N	\Pr	Sc	M	f''(0)	-G'(0)	-H'(0)	
0,1	1,00	0,7	0,23	0	-0,858408	0,768940	0,406 118	
0,1	1,00	1,0	0,23	0	-0,865023	$0,\!953517$	$0,\!403615$	
0,1	1,00	7,0	0,23	0	-0,890728	$2,\!844145$	$0,\!398804$	
$_{0,1}$	1,00	0,7	0,23	0	$-1,\!235140$	$1,\!290678$	0,773027	
$_{0,1}$	1,00	1,0	0,23	1	$-1,\!238657$	$1,\!557566$	0,772696	
$_{0,1}$	1,00	7,0	0,23	1	$-1,\!255358$	$4,\!276605$	0,771587	
$_{0,1}$	-0,01	7,0	0,23	1	-0,729728	0,784582	$0,\!410264$	
$_{0,1}$	0	0,7	0,23	0	-0,726130	0,785696	$0,\!411591$	
0,5	1,00	0,7	0,23	0	$-0,\!414382$	$0,\!852052$	$0,\!475624$	
0,5	10,00	0,7	0,23	0	0,059986	$0,\!015111$	0,010195	
$_{0,5}$	-0,01	0,7	0,23	0	$-1,\!136448$	$1,\!296389$	0,777035	
$_{0,5}$	0	0,7	0,23	1	$-1,\!134162$	$1,\!296559$	0,777170	
$_{0,5}$	1,00	0,7	0,23	1	-0,910271	$1,\!312644$	0,789867	
$_{0,5}$	10,00	0,7	0,23	1	0,860174	$1,\!416167$	$0,\!867530$	
$_{0,5}$	10,00	0,7	0,23	1	$-0,\!562480$	$0,\!824953$	$0,\!451661$	
0,5	0,50	0,7	0,94	0	$-0,\!620637$	$0,\!800854$	1,047223	
0,5	0,50	0,7	2,56	0	$-0,\!651321$	$0,\!793737$	1,832906	
0,5	0,50	0,7	10,00	0	$-0,\!676175$	$0,\!793609$	3,772886	
0,5	0,50	0,7	0,23	0	-1,021099	$1,\!304807$	0,783711	
0,5	0,50	0,7	0,94	1	$-1,\!053660$	$1,\!301129$	$1,\!646042$	
0,5	0,50	0,7	2,56	1	$-1,\!075946$	$1,\!299083$	2,771 281	
0,5	0,50	0,7	10,00	1	-1,099863	$1,\!297477$	5,572851	

Значения	коэффициента поверхностно	го трения	f''(0), скорости	теплопереноса	-G'(0)
скорости	массопереноса $-H^{\prime}(0)$ на по	оверхности	пластины при	$s = 0, \varepsilon = 0.1, \lambda$	$N_r = 0.1$

верхности. Видно, что с увеличением параметра ε температура жидкости незначительно увеличивается во всех трех случаях. При установившемся течении температура жидкости больше, чем при неустановившемся.

На рис. 5 приведены распределения температуры по пространственной координате η при различных значениях параметра излучения N_r . Видно, что с увеличением параметра излучения температура жидкости увеличивается и в случаях вдува и отсоса через поверхность, и в случае непроницаемой поверхности. При установившемся течении температура жидкости больше, чем при неустановившемся.

На рис. 6 приведена зависимость коэффициента поверхностного трения от параметра λ при различных значениях параметра M. Видно, что с уменьшением параметра M и увеличением параметра λ коэффициент поверхностного трения увеличивается. В случае вдува коэффициент поверхностного трения больше, чем в случае отсоса. В табл. 2 для случая непроницаемой поверхности приведены значения коэффициента поверхностного трения f''(0), скорости теплопереноса -G'(0) и скорости массопереноса -H'(0) при различных значениях параметров задачи. Из табл. 2 следует, что с увеличением параметра плавучести N уменьшается коэффициент поверхностного трения, с увеличением числа Прандтля увеличивается скорость теплопереноса, с увеличением числа Шмидта — скорость массопереноса на поверхности.

Заключение. В работе с использованием метода ячеек Келлера получено численное решение задачи о двойной смешанной конвекции в пограничном слое вязкой несжимаемой жидкости при неустановившемся течении вдоль растягиваемой поверхности. Задача решена с учетом теплового излучения для случаев вдува через поверхность, отсоса с нее, а также для случая непроницаемой поверхности.

Таблица 2

В результате исследования установлено, что с увеличением параметра излучения N_r температура жидкости увеличивается, а с увеличением параметра плавучести λ уменьшается как при установившемся течении, так и при неустановившемся. В случае вдува температура жидкости больше, чем в случае отсоса. С увеличением параметра теплопроводности ε температура жидкости увеличивается. С уменьшением параметра M и увеличением параметра плавучести λ поверхностное трение увеличивается, причем в случае вдува коэффициент поверхностного трения больше, чем в случае отсоса.

ЛИТЕРАТУРА

- Patil P. M., Momoniat E., Roy S. Influence of convective boundary condition on double diffusive mixed convection from a permeable vertical surface // Intern. J. Heat Mass Transfer. 2014. V. 70. P. 313–321.
- Blasius H. Grenzschichten in Flussigkeiten mit kleiner Reibung // Z. angew Math. Phys. 1908. Bd 56. S. 1–37.
- 3. Sakiadis B. C. Boundary layer behavior on continuous solid surface: the boundary layer on a continuous flat surface // AIChE J. 1961. V. 7. P. 221–225.
- 4. Cortell B. Radiation effects in the Blasius flow // Appl. Math. Comput. 2008. V. 198. P. 333–338.
- 5. Cortell R. Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition // Appl. Math. Comput. 2008. V. 206. P. 832–840.
- Patil P. M., Roy S., Chamkha A. J. Double diffusive mixed convection flow over a moving vertical plate in the presence of internal heat generation and a chemical reaction // Turkish J. Engng Environ Sci. 2009. V. 33. P. 193–205.
- Aydn O., Kaya A. Laminar boundary layer flow over a horizontal permeable flat plate // Appl. Math. Comput. 2005. V. 161. P. 229–240.
- Ahmad N., Siddiqui Z. U., Mishra M. K. Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity // Intern. J. Non-Linear Mech. 2010. V. 45. P. 306–309.
- Bhattacharyya K., Mukhopadhyay S., Layek G. C. Similarity solution of mixed convective boundary layer slip flow over a vertical plate // Ain Shams Engng J. 2013. V. 4. P. 299–305.
- Aydn O., Kaya A. MHD mixed convection of a viscous dissipating fluid about a permeable vertical flat plate // Math. Model. 2009. V. 33. P. 4086–4096.
- Pop I., Na T. A note on MHD flow over a stretching permeable surface // Mech. Res. Comm. 1998. V. 25. P. 263–269.
- Bakar N., Zaimi W., Hamid R., et al. Boundary layer flow over a stretching sheet with a convective boundary condition and slip effect // World Appl. Sci. J. 2012. V. 17. P. 49–53.
- Chiam T. C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet // Acta Mech. 1998. V. 129. P. 63–72.
- Grubka L. G., Bobba K. M. Heat transfer characteristics of a continuous stretching surface with variable temperature // Trans. ASME. J. Heat Transfer. 1985. V. 107. P. 248–250.
- Ali F. M., Nazar R., Arifin N. M., Pop I. Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field // Appl. Math. Mech. (English ed.) 2014. V. 35. P. 155–166.
- Kumari M., Slaouti A., Taldlar H. S., et al. Unsteady free convection flow over a continuous moving vertical surface // Acta Mech. 1996. V. 116. P. 75–82.
- 17. Ishak A., Nazar R., Pop I. Unsteady mixed convection boundary layer flow due to a stretching vertical surface // Arabian J. Sci. Engng. 2006. V. 31, N 2B. P. 165–182.

- Anilkumar D. Nonsimilar solutions for unsteady mixed convection from a moving vertical plate // Comm. Nonlinear Sci. Numer. Simulat. 2011. V. 16. P. 3147–3157.
- Kumari M., Nath G. Unsteady MHD mixed convection flow over an impulsively stretched permeable vertical surface in a quiescent fluid // Intern. J. Non-Linear Mech. 2010. V. 45. P. 310–319.
- Ishak A., Nazar R., Pop I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface // Meccanica. 2009. V. 44. P. 369–375.
- Mahdy A. Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet // Nuclear Engng Design. 2012. V. 249. P. 248–255.
- Vajravelu K., Prasad K. V., Chiu-On Ng. Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties // Nonlinear Anal.: Real World Appl. 2013. V. 14. P. 455–464.
- Mohamed A. E. Unsteady mixed convection heat transfer along a vertical stretching surface with variable viscosity and viscous dissipation // J. Egyptian Math. Soc. 2014. V. 22, iss. 3. P. 529–537.
- Cebeci T. Physical and computational aspects of convective heat transfer / T. Cebeci, P. Bradshaw. N. Y.: Springer-Verlag, 1984.
- Na T. Y. Computational methods in engineering boundary value problems. N. Y.: Acad. Press, 1979. (Math. Sci. Engng; V. 145).
- Cortell R. A numerical tackling on sakiadis flow with thermal radiation // Chin. Phys. Lett. 2008. V. 25. P. 1340–1342.

Поступила в редакцию 10/IX 2014 г., в окончательном варианте — 10/VIII 2015 г.