2010. Tom 51. № 2

Март – апрель

C. 404 - 406

КРАТКИЕ СООБЩЕНИЯ

УДК 547.425.1:548.737

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 2-(2-*p*-ТОЛИЛОКСИЭТОКСИ)ЭТИЛХЛОРАЦЕТАТА

© 2010 Л.Е. Фосс, Ю.К. Воронина, П.И. Грязнов*, А.Т. Губайдуллин, П.С. Фахретдинов, И.А. Литвинов, Г.В. Романов

Учреждение Российской академии наук Институт органической и физической химии им. A.E. Арбузова КазHЦPAH

Статья поступила 25 марта 2009 г.

Синтезирован 2-(2-*p*-толилоксиэтокси) этилхлорацетат и проведено рентгеноструктурное исследование его кристалла.

Ключевые слова: 2-(2-*p*-толилоксиэтокси) этилхлорацетат, кристаллическая и молекулярная структура, рентгеноструктурный анализ.

β-(Алкиларилокси) этилхлорацетаты являются присадками к смазочным маслам [1а, б], пластификаторами [1в], исходным сырьем для получения 2H-1,2-бензизотиазолин-3-он 1,1-диоксидов, которые используются как интермедиаты для синтеза противовоспалительных лекарственных средств [2]. Арилоксиполи(этиленокси)хлорацетаты [3] являются синтонами для N-[алкилфеноксиполи(этиленокси)карбонилметил] гетерилоний хлоридов, обладающих бактерицидной, вирусоцидной, фунгицидной активностью и свойствами ингибиторов коррозии [4а] и N-[алкилфеноксиполи(этиленокси)карбонилметил]-аммоний и -морфолиний хлоридов — присадок-регуляторов вязкоупругих свойств нефтяных систем [4б] и ингибиторов выпадения из нефти асфальто-смоло-парафиновых отложений [4в].

 β -(Алкиларилокси)этилхлорацетаты были получены конденсацией хлоруксусных кислот и β -оксифенетола в присутствии катализатора — хлорной [1в, 5] или серной кислот [1б]. Ацилирование 2-феноксиэтанола хлорангидридом монохлоруксусной кислоты приводит к 2-феноксиэтилхлорацетату [2]. Арилоксиполи(этиленокси)хлорацетаты [3] синтезированы взаимодействием арилоксиполиэтиленгликолей с хлоруксусной кислотой в присутствии H^+ -формы катионобменной смолы KY-2-8 в качестве катализатора гетерогенного катализа.

 β -[β -(Алкилфенокси)этокси]этиловые эфиры хлоруксусных кислот до настоящего времени не были описаны. В данной работе представлен метод получения 2-(2-p-толилоксиэтокси)этил-хлорацетата (3) взаимодействием 2-(2-p-толилоксиэтокси)этанола (1) с монохлоруксусной кислотой (2) в присутствии катионита КУ-2-8 в качестве катализатора.

Геометрия молекулы **3** в кристалле показана на рисунке a, геометрические параметры имеют стандартные значения. Упаковка молекул в кристалле соединения **3** (см. рисунок δ) представляет собой слои, образованные за счет взаимодействий С—Н...О и Н... π (см. таблицу),

_

^{*} E-mail: pavelgr@iopc.ru

КРАТКИЕ СООБЩЕНИЯ 405

причем молекулы внутри каждого слоя расположены так, что можно выделить гидрофильную и гидрофобную области в каждом слое. Распределение слоев внутри кристалла организовано таким образом, что гидрофильные и гидрофобные области разделены в пространстве. Как и следовало ожидать, основываясь на литературных данных, бензольное кольцо не вступает во взаимодействие типа $H \ni \Pi \dots \pi$. Для ароматической системы бензольного кольца характерны контакты типа $H \dots \pi$, относящиеся к слабым водородным связям [6, 7], которые и наблюдаются в кристаллах соединения 3. Данные взаимодействия на сегодняшний день довольно широко изучены и показана их значимость в различных химических и биологических системах [8а—г]. Однако взаимодействия $H \dots \pi$ значительно слабее водородных связей $C \dots H \dots O$, которые, очевидно, и являются структурообразующими в кристаллах соединения 3.

Экспериментальная часть. Спектры ЯМР ¹Н регистрировали на спектрометре Bruker Avance-600 (600 МГц), ИК спектры — на ИК Фурье спектрометре Vector-22 фирмы Bruker.

2-(2-*p***-Толилоксиэтокси)этилхлорацетат 3**. К 3,52 г 2-(2-*p*-толилоксиэтокси)этанола **1** в 7 мл абсолютного толуола добавили 1,77 г монохлоруксусной кислоты **2** в 7 мл толуола и 0,175 г КУ-2-8 в H^+ форме (5 % от массы спирта **1**) в 10 мл толуола. Азеотропной отгонкой отделили воду, отфильтровали катализатор, отогнали толуол, остаток перегнали и получили 2,85 г (58,3 %) этилхлорацетата **3**, $T_{\text{кип}}$ 190—195 °C (10 мм рт. ст.), n_{D}^{20} 1,5125. Ацетат **3** на следующий день закристаллизовался, $T_{\text{пл}}$ 33—34 °C. Найдено, %: С 57,04, Н 6,11, Сl 13,27. С₁₃H₁₇ClO₄. Вычислено, %: С 57,25, Н 6,24, Сl 13,03. Спектр ЯМР ¹Н (CDCl₃), δ , м.д. (J, Γ ц): 2,30 с (3H, C**H**₃); 3,82 т [2H, $^3J_{\text{HH}}$ 4,9, C**H**₂COC(O)]; 3,86 т (2H, $^3J_{\text{HH}}$ 4,9, ArOCC**H**₂); 4,08 с (2H, C**H**₂Cl); 4,12 т (2H, $^3J_{\text{HH}}$ 4,9, ArOCC**H**₂); 4,38 т [2H, $^3J_{\text{HH}}$ 4,9, C**H**₂OC(O)]; 6,83 д (2H, $^3J_{\text{HH}}$ 8,6,

Параметры взаимодействий С—H...О и *С—H... в кристалле соединения **3**

Связь	Симметрическое преобразование	Расстояние, Å		Угол, град.
		НА	DA	D—HA
C^1 — $H^{12}O^2$	2/2 1/2 -	2.40(2)	2 2709(2)	1.45(2)
	x, 3/2-y, -1/2+z	2,49(2)	3,2798(3)	145(2)
$C^3 - H^{31} O^6$	x, $1/2-y$, $1/2+z$		3,4083(3)	162(2)
C^3 — $H^{32}O^3$	x, $1/2-y$, $1/2+z$	2,54(2)	3,3369(3)	139(2)
C^{12} — $H^{134}O^4$	x, $1/2-y$, $-1/2+z$	2,52(2)	3,249(3)	129(2)
$*C^6$ — H^{61} $Cg(1)$	x, 3/2-y, 1/2+z	HCg 2,74(2)		C—HCg 151(1)

 Ar С \mathbf{H}^{o}); 7,09 д (2H, $^{3}J_{HH}$ 8,6, Ar С \mathbf{H}^{m}). ИК спектр, ν , см $^{-1}$: 3031 (С Ar —H, СH $_{2}$ —СI); 2876—2953 и 1455 (СН $_{3}$ и СН $_{2}$); 1759 (С=О); 1512 (бензольное кольцо); 1245 и 1039—1068 (С Ar —О—С Alk); 1134—1179 (С Alk —О—С Alk); 820 (два смежных атома водорода бензольного кольца); 703 (С—СI) [9].

Кристаллографические данные соединения **3** при +20 °C: бесцветные призматические кристаллы, брутто-формула $C_{13}H_{17}ClO_4$, моноклинные, пространственная группа $P2_1/c$, a=22,31(1), b=7,396(4), c=8,394(4) Å, $\beta=93,448(6)$ °, V=1382,3(1) Å³, Z=4, M=272,72, $d_{calc}=1,31$ г·см⁻³, F(000)=576. Интенсивности 3017 независимых отражений, из которых 1788 с $I \ge 2\sigma(I)$, измерены на дифрактометре Smart Apex II CCD (λ Mo K_a , ω -сканирование, $\theta < 27,0$ °).

Учет поглощения проводили по программе SADABS [10], μ 2,8 см⁻¹. Индексация, уточнение параметров ячейки, обработка экспериментального массива проведены по программам APEX2 [11]. Структура расшифрована прямым методом по программе SHELXS [12] и уточнена в изотропном, затем в анизотропном приближении. Атомы водорода выявлены из разностных рядов электронной плотности, уточнялись в изотропном приближении. Уточнение структуры проводили по программам SHELXL-97 [12] и WinGX [13]. Окончательные значения факторов расходимости R 0,040, wR_2 0,0835 по 1788 отражениям с $F^2 \ge 2\sigma(I)$, число уточняемых параметров 231, добротность 1,018, величины остаточных экстремумов на карте электронной плотности 0,243/–0,244 еÅ³. Рисунки и анализ межмолекулярных контактов получены по программе PLATON [14]. Координаты атомов и их температурные параметры депонированы в Кембриджской базе кристаллоструктурных данных (ССDC 724494).

СПИСОК ЛИТЕРАТУРЫ

- 1. а) *Кулиев А.М., Зейналова Г.А., Кулиев А.Б.* // Автор. свид. СССР 232429, 1969; б) *Кулиев А.М., Зейналова Г.А., Кулиев А.Б. и др.* // Азербайдж. хим. журн. − 1970. − № 3. − С. 67 − 69; в) *Зейналов Б.К., Насиров А.Б., Керимов П.М. и др.* // Автор. свид. СССР 273189, 1970.
- 2. Svoboda J., Palecek J., Dedek V. // Collect. Czechoslovak Chem. Commucat. 1986. 51, N 6. P. 1304 1310.
- 3. Φ ахретдинов П.С., Романов Г.В., Угрюмов О.В. и др. // Заявка на патент РФ 98119862, 1998.
- 4. a) Угрюмов О.В., Варнавская О.А., Хлебников В.Н. и др. // Патент РФ 2220957, 2004; б) Фахретдинов П.С., Мизипов И.Р., Романов Г.В. и др. // Патент РФ 2221777, 2004; в) Фахретдинов П.С., Романов Г.В., Романов А.Г. // Патент РФ 2322435, 2008.
- 5. Зейналов Б.К., Насиров А.Б., Керимов П.М., Гаджиев Т.П. // Учен. зап. Азербайдж. ун-та. Сер. хим наук. -1972. -№ 3. C. 51 53.
- 6. Tamres M.J. // J. Amer. Chem. Soc. 1952. 74. P. 3375 3378.
- 7. Babu M.M. // Nucleic Acids Res. 2003. 31. P. 3345 3348.
- 8. a) *Nishio M., Hirota M., Umezawa Y.* // The CH/p interaction. Evidence, Nature and Consequences. New York: Wiley-VCH, 1998; 6) *Steiner T.* // Angew. Chem. 2002. **41**. P. 48 76; в) *Steiner T., Koellner G.* // J. Mol. Biol. 2001. **305**. P. 535 557; г) *Meyer E.A., Castellano R.K., Diederich F.* // Angew. Chem. 2003. **42**. P. 1210 1250.
- 9. Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир. 1965.
- 10. Sheldrick G.M. // SADABS, Program for empirical X-ray absorption correction, Bruker-Nonis, 1990—2004
- 11. APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A, Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
- 12. Sheldrick G.M. SHELX-97, release 97-2. Germany, University of Goettingen, 1998.
- 13. Farrugia L.J. / WinGX 1.64.05 An Integrated System of Windows Programs for The Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data // J. Appl. Crystallogr. 1999. 32. P. 837 838.
- 14. Spek A.L. / PLATON for Windows Version 98. // Acta Crystallogr. 1990. A46, N 1. P. 34 41.