УДК 539.8

КРИТИЧЕСКАЯ СКОРОСТЬ ЖИДКОСТИ, ТРАНСПОРТИРУЕМОЙ ОДНОСЛОЙНОЙ УГЛЕРОДНОЙ ТРУБКОЙ, ПОМЕЩЕННОЙ В УПРУГУЮ СРЕДУ

Ч. К. Рао, Л. Б. Рао*

Объединение институтов Налла Нарасимха Редди, 500088 Хайдарабад, Индия

* Школа механических и строительных наук ВИТ-университета, 600048 Ченнай, Индия E-mails: chellapilla95@gmail.com, bhaskarbabu_20@yahoo.com

Исследуется устойчивость углеродной нанотрубки, помещенной в упругую среду Пастернака и транспортирующей жидкость. Уравнения задачи выводятся с использованием нелокальной теории упругости, учитывающей малый характерный размер среды. В случае трубки с шарнирно опертыми торцами задача решается с использованием метода разложения в ряды Фурье, в случае трубки с защемленными торцами — с использованием метода Галеркина. Получены замкнутые выражения для критической скорости, при которой происходит потеря устойчивости нанотрубки, при различных значениях параметров жесткости основания Пастернака и Винклера. Исследована зависимость критической скорости транспортируемой жидкости от нелокального характерного линейного размера среды. Установлено, что критическая скорость потока жидкости, переносимой нанотрубками, существенно зависит как от жесткости основания, так и от характерного линейного размера среды.

Ключевые слова: критическая скорость, однослойная углеродная нанотрубка, нелокальная теория упругости, двухпараметрическое основание.

DOI: 10.15372/PMTF20170420

Введение. В настоящее время активно исследуется поведение углеродных нанотрубок в различных условиях. Поскольку нанотрубки имеют уникальные механические, электрические и химические свойства, они широко используются в различных устройствах, например в биодатчиках, наноосцилляторах, для доставки лекарств в организм, а также в качестве элементов наноустройств.

В последние годы возрос интерес к исследованию устойчивости однослойных нанотрубок, транспортирующих жидкость, начало которому положено в 2005 г. В работах этого периода использовались уравнения классической механики сплошных сред [1–3] и не учитывались эффекты, обусловленные микроструктурой такой среды (наличием характерного малого размера). Диаметр однослойной углеродной нанотрубки составляет 1÷7 нм, а ее длина — 20÷140 нм (размеры порядка длины С–С-связи). При таких малых масштабах свойства материала зависят от его строения на атомном уровне. Поэтому использование классической механики сплошной среды при исследовании нанотрубок может оказаться неправомерным. В последнее время при исследовании свойств нанотрубок часто используется нелокальная теория сплошной среды Эрингена [4, 5], в которой напряженное состояние в точке определяется функционалом от деформаций в каждой точке тела.

Впервые для исследования колебаний однослойной углеродной нанотрубки, транспортирующей жидкость и помещенной в упругую среду Винклера, нелокальная теория сплошной среды применена в работе [6]. В [7] изучались колебания однослойных углеродных нанотрубок, транспортирующих жидкость и помещенных в упругую среду Винклера. С использованием постановки задачи [7] в работе [8] исследовались колебания однослойной углеродной нанотрубки, транспортирующей жидкость и помещенной в упругую среду Пастернака. В [9] указаны ошибки, допущенные в работе [6], и построены корректные уравнения задачи. Также корректные уравнения задачи сформулированы в [10], однако в этой работе не учитывалось влияние упругой среды, в которую помещена трубка. В [11] рассматривалась двухпараметрическая упругая среда, в которую помещена углеродная нанотрубка, транспортирующая жидкость. При этом для вмещающей среды использовалась как модель среды Пастернака, так и двухпараметрическая модель вязкоупругой среды, однако при формулировке уравнений движения нанотрубки применялась классическая модель сплошной среды. В работе [12] с использованием нелокальной модели вязкоупругой двухслойной балки исследовалось движение углеродной нанотрубки, транспортирующей жидкость и помещенной в двухпараметрическую среду Кельвина — Фойгхта. Однако при выводе уравнений задачи не учитывались локальные эффекты, обусловленные наличием параметров модели Кельвина — Фойгхта. Поэтому результаты решения задачи об устойчивости свободно опертой балки, полученные в работе [12], могут быть ошибочными.

В [13] с использованием нелокальной теории упругости решена задача о свободных колебаниях системы двухслойных углеродных нанотрубок, транспортирующих жидкость и помещенных в вязкоупругую среду Пастернака, при этом нанотрубки рассматривались как балки Бернулли — Эйлера, помещенные в однородные температурное и магнитное поля. В работе [14] изучались свободные колебания и устойчивость однослойных углеродных нанотрубок, транспортирующих жидкость и помещенных в мягкую биологическую ткань. В [15] задача о нелинейных колебаниях нанотрубок, транспортирующих жидкость, решалась с использованием моделей балки Бернулли — Эйлера и балки Тимошенко (система нелинейных дифференциальных уравнений решалась с помощью метода конечных элементов).

В работе [16] задача о нелинейном флаттере защемленной на торцах балки в потоке жидкости при наличии продольного магнитного поля решалась с использованием модели балки Редди. В [17] выведены трехмерные уравнения движения прямолинейных трубок, транспортирующих жидкость, с произвольными условиями закрепления торцов. В этой работе для моделирования различных способов закрепления торцов балки размещалась система пружин, смещения балки представлялись в виде рядов Фурье по косинусам, использовались четыре дополнительные функции, для того чтобы удовлетворить краевым условиям.

В настоящей работе задача решается в постановке, предложенной в [9], выводятся уравнения движения однослойной углеродной нанотрубки, помещенной в упругую среду Пастернака и транспортирующей жидкость. Трубка рассматривается как балка Бернулли — Эйлера. Для случая балки с шарнирно опертыми торцами решение получено с использованием рядов Фурье, для случая балки с защемленными торцами — с использованием метода Галеркина. При различных значениях малого параметра нелокальности среды, различных значениях жесткостей упругих оснований Винклера и Пастернака получено замкнутое выражение для критической скорости жидкости для двух случаев закрепления торцов балки.

Рис. 1. Схема углеродной трубки, транспортирующей жидкость и помещенной в упругую среду Пастернака:

1 — трубка, 2 — основание

1. Уравнения задачи и метод решения. Сформулируем уравнения движения углеродной нанотрубки, помещенной в упругую среду и транспортирующей жидкость.

1.1. *Нелокальные уравнения состояния*. В работе [5] предложено нелокальное уравнение состояния упругой среды

$$[1 - (e_0 a)^2 \nabla^2] \sigma_{kl} = \tau_{kl}, \tag{1}$$

где $\sigma_{kl}(x)$ — тензор нелокальных напряжений в точке x; $\sigma_{kl}(x')$ — классический тензор локальных напряжений в точке x'; e_0 — константа материала, определяемая по данным эксперимента; a — характерный размер (длина C–C-связи, или параметр решетки). В одномерном случае уравнение (1) записывается в виде

$$\sigma_{xx} - (e_0 a)^2 \frac{\partial^2 \sigma_{xx}}{\partial x^2} = E \varepsilon_{xx}, \qquad (2)$$

где σ_{xx} — осевое напряжение; ε_{xx} — осевая деформация; E — модуль Юнга углеродной нанотрубки.

1.2. Модель упругой среды Пастернака. Модель упругого основания Винклера представляет собой набор линейных упругих пружин. В модели упругого основания Пастернака полагается, что линейные упругие пружины взаимодействуют: на границах между пружинами действуют напряжения сдвига. Таким образом, модель Пастернака является двухпараметрической: помимо жесткости основания на растяжение, учитываемой в модели Винклера, в ней также учитывается жесткость основания на сдвиг.

Схема углеродной трубки, транспортирующей жидкость и помещенной в упругую среду Пастернака, представлена на рис. 1. Полагается, что торцы однослойной углеродной нанотрубки длиной *L* либо защемлены, либо свободно оперты, либо шарнирно закреплены. Масса нанотрубки единичной длины равна m_c , жесткость на изгиб нанотрубки равна *EI*.

Масса жидкости, транспортируемой через поперечное сечение трубки с площадью сечения A в направлении x со скоростью U, отнесенная к единице длины, равна m_f . Модель основания содержит два параметра: модуль Винклера k_W и модуль Пастернака k_P . В работе [18] получено следующее выражение для силы реакции, действующей на нанотрубку со стороны основания и отнесенной к единице длины:

$$k_P \frac{\partial^2 \sigma_{xx}}{\partial x^2} - k_W w = R_P(x, t). \tag{3}$$

1.3. Математическая модель однослойной углеродной трубки, транспортирующей жидкость. Зависимости между продольной деформацией, прогибом, перерезывающей силой Q и изгибающим моментом M_b для балки Бернулли — Эйлера запишем в виде

$$\varepsilon_{xx} = z \frac{\partial^2 \sigma_{xx}}{\partial x^2}; \qquad (4)$$
$$Q = -\frac{\partial M_b}{\partial x}, \qquad M_b = \int_A z \sigma_{xx} \, dA.$$

Из (2), (4) следует

$$M_b(x,t) = EI \frac{\partial^2 w}{\partial x^2} + (e_0 a)^2 \frac{\partial^2 M_b}{\partial x^2}.$$
(5)

Дифференцируя уравнение (5) по переменной x два раза, получаем

$$\frac{\partial^2 M_b}{\partial x^2} = EI \frac{\partial^4 w}{\partial x^4} + (e_0 a)^2 \frac{\partial^2}{\partial x^2} \left(\frac{\partial^2 M_b}{\partial x^2}\right). \tag{6}$$

Уравнение движения элемента однослойной углеродной нанотрубки, транспортирующей жидкость и помещенной в среду Пастернака, записывается в виде

$$-\frac{\partial^2 M_b}{\partial x^2} = -R_P + m_f a_{fz} + m_c a_{cz}.$$
(7)

Слагаемые $m_c a_{cz}$, $m_f a_{fz}$ в правой части уравнения (7) — инерционные силы элемента трубки и элемента жидкости соответственно. В поршневом приближении выражения для ускорений элемента трубки и элемента жидкости имеют вид [8]

$$a_{cz} = \frac{\partial^2 w}{\partial t^2}, \qquad a_{fz} = \left(\frac{\partial^2 w}{\partial t^2} + U^2 \frac{\partial^2 w}{\partial x^2} + 2U \frac{\partial^2 w}{\partial x \partial t}\right). \tag{8}$$

Из (6), (7) с учетом (3), (8) для прогиба w однослойной углеродной нанотрубки, транспортирующей жидкость, получаем дифференциальное уравнение

$$EI\frac{\partial^4 w}{\partial x^4} + M\frac{\partial^2 w}{\partial t^2} + (m_f U^2 - k_P)\frac{\partial^2 w}{\partial x^2} + 2m_f U\frac{\partial^2 w}{\partial x \partial t} + k_W - (e_0 a)^2 \left[M\frac{\partial^4 w}{\partial x^2 \partial t^2} + (m_f U^2 - k_P)\frac{\partial^4 w}{\partial x^4} + 2m_f U\frac{\partial^4 w}{\partial x^3 \partial t} + k_W\frac{\partial^2 w}{\partial x^2}\right] = 0.$$
(9)

1.4. Решение уравнения (9) для случая трубки с шарнирно опертыми торцами. В соответствии с работой [19] решение уравнения (9) для случая трубки с шарнирно опертыми торцами ищем в виде

$$w(x,t) = \sum_{n=1,3,5,\dots} \frac{a_n \sin(n\pi x)}{L} \sin\omega_j + \sum_{n=2,4,6,\dots} \frac{a_n \sin(n\pi x)}{L} \cos\omega_j, \qquad j = 1,2,3,\dots$$
(10)

 $(\omega_j - \text{собственная частота } j$ -й моды колебаний). Решение (10) удовлетворяет следующим краевым условиям:

$$w(0,t) = w(L,t) = 0, \qquad \frac{\partial^2 w(0,t)}{\partial x^2} = \frac{\partial^2 w(L,t)}{\partial x^2} = 0.$$

Подставляя (10) в (9) и разлагая полученное выражение в ряд Фурье, получаем систему алгебраических уравнений

$$[K - \omega_j^2 M I] \boldsymbol{a} = 0,$$

где K — матрица жесткости, выражения для элементов которой приведены в [8]; I — единичная матрица; $\mathbf{a}^{\mathrm{T}} = (a_1, a_2, a_3, \dots, a_n).$

При критическом значении скорости V_{cr} собственные частоты системы обращаются в нуль. Удерживая в разложении только два первых члена и полагая равными нулю детерминант алгебраической системы и собственные частоты системы трубка — жидкость, для критической скорости получаем уравнение

$$\begin{aligned} [4\pi^{4} + 20\pi^{6}e_{n}^{2} + 16\pi^{8}e_{n}^{4}]V^{4} + [(-20\pi^{6} - 8\pi^{4}\gamma_{P} - 5\pi^{2}\gamma_{W}) - e_{n}^{2}(320\pi^{8} + 40\pi^{6}\gamma_{P} + 25\pi^{4}\gamma_{W}) - e_{n}^{4}(20\pi^{6}\gamma_{W} + 32\pi^{8}\gamma_{P})]V^{2} + [(16\pi^{8} + 20\pi^{6}\gamma_{P} + 17\pi^{4}\gamma_{W} + 4\pi^{4}\gamma_{P}^{2} + 5\pi^{2}\gamma_{P}\gamma_{W} + \gamma_{W}^{2}) + e_{n}^{2}(20\pi^{6}\gamma_{W} + 5\pi^{2}\gamma_{W}^{2} + 32\pi^{8}\gamma_{P} + 20\pi^{6}\gamma_{P}^{2} + 25\pi^{4}\gamma_{P}\gamma_{W}) + e_{n}^{4}(16\pi^{6}\gamma_{P}^{2} + 20\pi^{6}\gamma_{P}\gamma_{W} + 4\pi^{4}\gamma_{W}^{2})] = 0, \quad (11) \end{aligned}$$

где

$$V = UL\sqrt{\frac{m_f}{EI}}, \quad \beta = \frac{m_f}{m_c + m_f} = \frac{m_f}{M}, \quad M = m_c + m_f,$$
$$\gamma_W = \frac{k_W L^4}{EI}, \quad \gamma_P = \frac{k_P L^2}{EI}, \quad e_n = \frac{e_0 a}{L}, \quad \Omega_j = \omega_j \sqrt{\frac{ML^4}{EI}}.$$

Уравнение (11) представляет собой квадратное уравнение относительно V^2 , решая которое находим критическое значение скорости трубки с шарнирно опертыми торцами.

1.5. *Решение уравнения* (9) *для случая трубки с защемленными торцами.* В случае трубки с защемленными торцами решение будем искать в виде [8, 19]

$$w(x,t) = \operatorname{Re}\left[\varphi_n(x/L)\,\mathrm{e}^{i\omega t}\right],\tag{12}$$

где Re — вещественная часть выражения; функции $\varphi_n(x/L)$ — конечные отрезки рядов по собственным функциям $\psi_r(\xi)$ балки с защемленными торцами:

$$\varphi_n(\xi) = \sum_{r=1}^n a_r \psi_r(\xi),$$

 $\xi = x/L; \psi_r = ch (\lambda_r \xi) - cos (\lambda_r \xi) - \sigma_r (sin (\lambda_r \xi) - sin (\lambda_r \xi)); \lambda_r$ — частоты балки с защемленными торцами. При r = 1, 2 $\lambda_1 = 4,730\,041, \lambda_2 = 7,853\,205$ [20].

Подставляя выражение (12) в уравнение движения (9), получаем

$$L_n(\varphi) = L_n\left(\sum_{r=1}^n a_r \psi_r(\xi)\right),$$

где дифференциальный оператор L_n имеет вид

$$\begin{split} L_n &= \left(EI - e_n^2 L^2 V^2 \frac{EI}{L^2} + e_n^2 L^2 \gamma_P \frac{EI}{L^2}\right) \frac{\partial^4}{\partial x^4} - 2e_n^2 L^2 M\beta \frac{V}{L} \sqrt{\frac{EI}{M\beta}} \, i\omega \, \frac{\partial^3}{\partial x^3} + \\ &+ 2M\beta \frac{V}{L} \sqrt{\frac{EI}{M\beta}} \, i\omega \, \frac{\partial}{\partial x} + \left(\frac{V^2 EI}{L^2} - \gamma_P \frac{EI}{L^2} - e_n^2 L^2 \gamma_W \frac{EI}{L^4}\right) \frac{\partial^2}{\partial x^2} + e_n^2 L^2 M\omega^2 \frac{\partial^2}{\partial x^2} = \\ &= M\omega^2 + \gamma_W \frac{EI}{L^4}. \end{split}$$

С использованием метода Галеркина получаем систему уравнений

$$\int_{0}^{L} L\Big(\sum_{r=1}^{N} a_r \psi_r(\xi)\Big) \psi_s(\xi) \, dx = 0, \qquad s = 1, 2, 3, \dots, N$$

Удерживая в разложении решения только два слагаемых и следуя работе [8], получаем уравнение для определения критической скорости потока в случае трубки с защемленными торцами

$$\begin{split} [C_{11}C_{22} - e_n^2(\lambda_1^4 C_{22} + \lambda_2^4 C_{11}) + e_n^2(\lambda_1^4 \lambda_2^4)]V^4 + \{ [\lambda_1^4 C_{22} + \lambda_2^4 C_{11} + (C_{11} + C_{22})\gamma_W - 2C_{11}C_{22}\gamma_P] + \\ &+ e_n^2 [2\gamma_P(\lambda_1^4 C_{22} + \lambda_2^4 C_{11}) - 2\lambda_1^4 \lambda_2^4 - (\lambda_1^4 + \lambda_2^4)\gamma_W - 2C_{11}C_{22}\gamma_W] - \\ &- e_n^4 [\gamma_W(\lambda_1^4 C_{22} + \lambda_2^4 C_{11}) + 2\lambda_1^4 \lambda_2^4 \gamma_P] \} V^2 + \{ [\lambda_1^4 \lambda_2^4 - \gamma_P(\lambda_1^4 C_{22} + \lambda_2^4 C_{11}) + (\lambda_1^4 + \lambda_2^4)\gamma_W + \\ &+ C_{11}C_{22}\gamma_P^2 + \gamma_W^2 - (C_{11} + C_{22})\gamma_P\gamma_W] + e_n^2 [2\gamma_P\lambda_1^4 \lambda_2^4 + 2C_{11}C_{22}\gamma_P\gamma_W - \\ &- \gamma_W(\lambda_1^4 C_{22} + \lambda_2^4 C_{11}) - \gamma_P^2(\lambda_1^4 C_{22} + \lambda_2^4 C_{11}) + (\lambda_1^4 + \lambda_2^4)\gamma_P\gamma_W - (C_{11} + C_{22})\gamma_W^2] + \\ &+ e_n^4 [\lambda_1^4 \lambda_2^4 \gamma_P^2 + C_{11}C_{22}\gamma_W^2 - \gamma_P\gamma_W(\lambda_1^4 C_{22} + \lambda_2^4 C_{11})] \} = 0. \end{split}$$

Уравнение (13) представляет собой квадратное уравнение относительно V^2 , константы C_{11}, C_{22} — константы интегрирования [21, 22].

2. Результаты исследования и их обсуждение. Критическое значение скорости V_{cr} является важной характеристикой устойчивости однослойной углеродной нанотрубки, переносящей жидкость. При критическом значении скорости собственные частоты обращаются в нуль, что приводит к неустойчивости однослойной углеродной нанотрубки. Наименьшие корни уравнений (11), (13) являются значениями критической скорости V_{cr}. Для трубок с защемленными и шарнирно опертыми торцами значения критической скорости вычислены для различных значений параметров жесткости Винклера γ_W и Пастернака γ_P, параметра нелокальности e_n.

2.1. Трубка с шарнирно опертыми торцами. В случае трубки с шарнирно опертыми торцами значение критической скорости определяется из решения уравнения (11). В табл. 1 приведены значения V_{cr} при различных значениях параметров жесткости упругого основания γ_W , γ_P и параметра нелокальности e_n . Критическая скорость уменьшается с увеличением параметра e_n , причем это уменьшение существеннее при малых значениях параметра жесткости Пастернака γ_P . Можно предположить, что при $\gamma_W = \gamma_P = 10^{-6}$ жесткость упругого основания равна нулю, а при $\gamma_W = \gamma_P = 10^6$ основание является абсолютно жестким. Из приведенных в табл. 1 данных также следует, что с увеличением жесткости основания увеличивается жесткость однослойной углеродной нанотрубки. Согласно результатам работы [6] критическая скорость не зависит от параметра нелокальности, однако этот вывод является следствием ошибки, допущенной при постановке задачи. В действительности от величины параметра нелокальности зависит величина критической скорости, причем эта зависимость существеннее при малых значениях параметров жесткости основания. При $e_n = 0$ результаты соответствуют результатам работы [6]. Данные, приведенные в табл. 1, соответствуют данным работы [10], что подтверждает правильность полученных результатов.

На рис. 2 приведена зависимость величины $\tilde{V}_{cr} = (V_{cr}|_{e_n}/V_{cr}|_{e_n=0}) \cdot 10^2$ от параметра нелокальности e_n при $\gamma_P = 0$ и различных значениях параметра жесткости γ_W . Из рис. 2 следует, что с увеличением параметра нелокальности критическая скорость уменьшается. Чем больше жесткость основания, тем меньше влияние параметра нелокальности на критическую скорость.

Таблица 1

γ_P	γ_W	V _{cr}							
		$e_n = 0$	$e_n = 0,05$	$e_n = 0,10$	$e_n = 0,15$	$e_n = 0,20$	$e_n = 0,25$	$e_n = 0,30$	
10^{-6}	10^{-6}	3,1416	$3,\!1035$	2,9972	2,8419	$2,\!6601$	2,4707	2,2862	
	1	3,1577	3,1198	3,0140	2,8596	$2,\!6791$	2,4911	2,3083	
	10^{2}	4,4723	4,4457	4,3721	4,2671	4,1483	3,7308	3,3472	
	10^{4}	17,1109	17,0069	16,7812	$16,\!5593$	$16,\!3893$	16,2693	$16,\!1856$	
	10^{6}	159,2789	159,2678	159,2438	159,2206	159,2030	159,1907	159,1822	
	10^{-6}	3,2969	3,2607	3,1596	3,0127	2,8418	2,6654	2,4954	
1	1	3,3122	3,2762	3,1756	3,0294	2,8596	2,6843	2,5156	
	10^{2}	4,5828	4,5568	4,4850	4,3827	4,2671	3,8625	$3,\!4934$	
	10^4	17,1401	17,0363	16,8109	$16,\!5895$	$16,\!4198$	16,3000	$16,\!2165$	
	10^{6}	159,2821	$159,\!2709$	159,2470	159,2237	159,2062	159,1938	$159,\!1853$	
	10^{-6}	10,4819	10,4705	10,4395	10,3960	10,3478	10,3007	10,2580	
	1	10,4867	$10,\!4754$	10,4443	10,4008	$10,\!3527$	10,3056	10,2629	
10^{2}	10^{2}	10,9545	10,9437	10,9140	10,8724	10,8263	10,6733	$10,\!5453$	
	10^{4}	19,8187	19,7290	19,5348	19,3445	19,1992	19,0968	19,0256	
	10^{6}	$159,\!5925$	$159{,}5814$	$159,\!5575$	$159{,}5343$	$159{,}5168$	159,5045	$159,\!4960$	
	10^{-6}	100,0493	100,0481	100,0449	100,0404	100,0354	100,0305	100,0261	
	1	100,0498	100,0487	100,0454	100,0409	100,0359	100,0310	100,0266	
10^{4}	10^2	100,1000	100,0988	100,0955	100,0910	100,0860	100,0696	100,0560	
	10^{4}	$101,\!4533$	$101,\!4359$	101,3983	101,3618	$101,\!3341$	101,3148	$101,\!3014$	
	10^{6}	188,0685	$188,\!0591$	188,0388	188,0192	188,0043	187,9938	$187,\!9866$	
106	10^{-6}	1000,0049	1000,0048	1000,0045	1000,0040	1000,0035	1000,0030	1000,0026	
	1	1000,0050	1000,0049	1000,0045	1000,0041	1000,0036	1000,0030	1000,0027	
	10^{2}	1000,0100	1000,0099	1000,0096	1000,0091	1000,0086	1000,0070	1000,0056	
	10^4	1000,1464	1000,1446	1000,1408	1000,1371	1000, 1343	1000,1320	1000, 1310	
	10^{6}	1012,6054	1012,6037	1012,5999	1012,5963	1012,5935	1012,5910	1012,5902	

Значения критической скорости V_{cr} для однослойной углеродной нанотрубки с шарнирно опертыми торцами при различных значениях параметра нелокальности e_n , параметров жесткости основания Пастернака γ_P и Винклера γ_W

Рис. 2. Зависимость величины \tilde{V}_{cr} для однослойной углеродной нанотрубки с шарнирно опертыми торцами от параметра нелокальности e_n при $\gamma_P = 0$ и различных значениях параметра жесткости основания Винклера γ_W : 1 — $\gamma_W = 0, 2 - \gamma_W = 1, 3 - \gamma_W = 10, 4 - \gamma_W = 10^2, 5 - \gamma_W = 10^4, 6 - \gamma_W = 10^6$

Рис. 3. Зависимость величины \tilde{V}_{cr} для однослойной углеродной нанотрубки с шарнирно опертыми торцами от параметра нелокальности e_n при $\gamma_W = 100$ и различных значениях параметра жесткости основания Пастернака γ_P : $1 - \gamma_P = 0, 2 - \gamma_P = 1, 3 - \gamma_P = 10, 4 - \gamma_P = 10^2, 5 - \gamma_P = 10^4, 6 - \gamma_P = 10^6$ Рис. 4. Зависимости величины \tilde{V}_{cr} для однослойной углеродной нанотрубки с шарнирно опертыми торцами от параметров жесткости основания γ_W (1), γ_P (2) при $e_n = 0,1$

На рис. 3 приведена зависимость критической скорости для шарнирно опертой однослойной углеродной нанотрубки от параметра нелокальности e_n при $\gamma_W = 100$ и различных значениях жесткости основания Пастернака γ_P . Видно, что параметр жесткости Пастернака оказывает более существенное влияние на устойчивость системы трубка жидкость, чем параметр жесткости основания Винклера. Влияние нелокального параметра также уменьшается.

На рис. 4 приведены зависимости критической скорости от параметров жесткости основания Пастернака и Винклера. Видно, что при увеличении параметра жесткости Пастернака критическая скорость увеличивается быстрее, чем при увеличении параметра жесткости Винклера.

2.2. Трубка с защемленными торцами. В случае трубки с защемленными торцами значение критической скорости определяется из решения уравнения (13). В табл. 2 приведены значения V_{cr} при различных значениях параметров жесткости упругого основания γ_W , γ_P и параметра нелокальности e_n . При малых значениях параметров жесткости основания критическая скорость для трубки с защемленными торцами больше, чем для трубки с шарнирно опертыми торцами. Для трубки с защемленными торцами влияние параметра нелокальности на критическую скорость существеннее, чем для трубки с шарнирно опертыми торцами (см. табл. 1 и рис. 5, 6). Характер зависимости критической скорости от параметра нелокальности среды для трубки с защемленными торцами отличается от характера аналогичной зависимости для трубки с шарнирно опертыми торцами.

На рис. 7 приведены зависимости критической скорости от параметров жесткости упругого основания. Как и предполагалось, параметр жесткости Пастернака оказывает на критическую скорость более существенное влияние, чем параметр жесткости Винклера.

Заключение. В работе исследована устойчивость однослойной углеродной нанотрубки, транспортирующей жидкость и погруженной в двухпараметрическую упругую среду Пастернака. Уравнения задачи выведены с использованием нелокальной теории упругости.

Таблица 2

γ_P	γ_W	V _{cr}							
		$e_n = 0$	$e_n = 0.05$	$e_n = 0,10$	$e_n = 0.15$	$e_n = 0,20$	$e_n = 0,25$	$e_n = 0,30$	
10 ⁻⁶	10^{-6}	6,3787	6,0771	5,3778	4,6089	$3,\!9351$	3,3888	2,9543	
	1	6,3851	6,0833	5,3838	$4,\!6147$	3,9410	3,3948	2,9605	
	10^{2}	6,9868	$6,\!6735$	5,9505	5,1633	4,4834	3,8432	3,3344	
	10^{4}	17,3133	16,4064	14,7962	$13,\!5492$	12,7510	12,2502	11,9272	
	10^{6}	147,6417	141,9136	131,9639	124,4889	119,8285	116,9607	115,1358	
1	10^{-6}	6,4566	$6,\!1588$	5,4700	4,7161	4,0602	3,5333	$3,\!1189$	
	1	6,4629	6,1650	$5,\!4759$	4,7218	4,0659	3,5390	$3,\!1248$	
	10^{2}	7,0580	6,7480	6,0340	5,2593	4,5936	3,9712	$3,\!4811$	
	10^{4}	17,3422	$16,\!4368$	$14,\!8299$	$13,\!5861$	12,7902	12,2910	$11,\!9691$	
	10^{6}	147,6451	$141,\!9172$	131,9677	$124,\!4930$	119,8327	116,9650	$115,\!1402$	
10^{2}	10^{-6}	11,8612	11,7018	11,3543	11,0110	10,7464	10,5586	$10,\!4273$	
	1	11,8646	11,7050	11,3572	11,0134	10,7486	10,5605	$10,\!4290$	
	10^{2}	12,1990	12,0223	$11,\!6365$	$11,\!2543$	10,9591	10,7131	$10,\!5413$	
	10^4	19,9938	19,2138	17,8585	$16,\!8399$	16,2046	$15,\!8135$	$15,\!5646$	
	10^{6}	147,9799	$142,\!2655$	132,3423	124,8899	120,2451	117,3874	115,5693	
	10^{-6}	100,2032	100,1845	100,1445	100,1062	100,0774	100,0574	100,0436	
	1	100,2036	100,1849	100,1448	100,1064	100,0776	100,0576	100,0438	
104	10^{2}	100,2438	100,2224	100,1769	100,1332	100,1005	100,0738	100,0556	
	10^4	101,4877	$101,\!3369$	101,0887	100,9137	100,8097	100,7475	100,7088	
	10^{6}	178,3201	173,6073	165,5732	159,6794	156,0733	153,8825	152,5000	
10^{6}	10^{-6}	1000,0200	1000,0190	1000,0150	1000,0110	1000,0080	1000,0060	1000,0040	
	1	1000,0200	1000,0190	1000,0150	1000,0110	1000,0080	1000,0060	1000,0040	
	10^2	1000,0240	1000,0220	1000,0180	1000,0130	1000,0100	1000,0070	1000,0060	
	10^4	1000,1500	1000, 1350	1000,1100	1000,0920	1000,0810	1000,0750	1000,0710	
	10^{6}	1010.8400	1010,0200	1008,6700	1007,7190	1007,1540	1006,8170	1006,6060	

Значения критической скорости V_{cr} для однослойной углеродной нанотрубки
с защемленными торцами при различных значениях параметра нелокальности e_n
параметров жесткости основания Пастернака γ_P и Винклера γ_W

Рис. 5. Зависимость величины \tilde{V}_{cr} для трубки с защемленными торцами от параметра нелокальности среды e_n при различных значениях параметра жест-кости основания Винклера γ_W :

 $1 - \gamma_W = 0, \ 2 - \gamma_W = 1, \ 3 - \gamma_W = 10, \ 4 - \gamma_W = 10^2, \ 5 - \gamma_W = 10^4, \ 6 - \gamma_W = 10^6$

Рис. 6. Зависимость величины \tilde{V}_{cr} для трубки с защемленными торцами от параметра нелокальности среды e_n при различных значениях параметра жест-кости основания Пастернака γ_P :

 $1-\gamma_P=0,\,2-\gamma_P=1,\,3-\gamma_P=10,\,4-\gamma_P=10^2,\,5-\gamma_P=10^4,\,6-\gamma_P=10^6$

Рис. 7. Зависимости величины \tilde{V}_{cr} для однослойной углеродной нанотрубки с защемленными торцами от параметров жесткости основания γ_W (1) и γ_P (2) при $e_n = 0,1$

Решение уравнения для критической скорости для трубки с шарнирно опертыми торцами получено с использованием разложения в ряд Фурье, для трубки с защемленными торцами — с использованием метода Галеркина. Установлено, что с увеличением параметра нелокальности среды трубка становится менее устойчивой.

ЛИТЕРАТУРА

- Yoon J., Ru C. Q., Mioduchowski A. Vibration and instability of carbon nanotubes conveying fluid // Composites Sci. Technol. 2005. V. 65. P. 1326–1336.
- Reddy C. D., Lu C., Rajendran S., Liew K. M. Free vibration analysis of fluid-conveying single-walled carbon nanotubes // Appl. Phys. Lett. 2007. V. 90. P. 122–133.
- Chang W. J., Lee H. L. Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model // Phys. Lett. A. 2009. V. 373. P. 982–985.
- Eringen A. C., Edelen G. B. On nonlocal elasticity // Intern. J. Engng Sci. 1972. N 10. P. 233–248.
- 5. Eringen A. C. Nonlocal continuum field theories. N. Y.: Springer-Verlag, 2002.
- Lee H. L., Chang W. J. Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory // J. Appl. Phys. 2008. V. 103. 24302.
- Lee H. L., Chang W. J. Vibration analysis of a viscous fluid-conveying single-walled carbon nanotube embedded in an elastic medium // Physica E. 2009. V. 41. P. 529–532.
- Simha H. S. Vibrations and stability of fluid conveying pipes resting on elastic media: Ph. D. Thesis. Hyderabad: Osmania Univ., 2013.
- Tounsi A., Heireche H., Bedia E. A. A. Comment on "Free transverse vibration of the fluidconveying single-walled carbon nanotube using nonlocal elastic theory" // J. Appl. Phys. 2009. V. 105. 126105.

- Wang L. Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory // Physica E. 2009. V. 41. P. 1835–1840.
- Farshidianfar A., Ghassabi A. A., Farshidianfar M. H. Transverse vibration of fluid conveying carbon nanotubes embedded in two-parameter elastic medium // Proc. of the 18th Intern. congress on sound and vibration, Rio de Janeiro (Brazil), 10–14 July, 2011. S. l.: Intern. Inst. of Acoustic and Vibration, 2012. P. 2380–2387.
- 12. Feng Liang, Bao Ridong. Stability analysis of a fluid-conveying carbon nanotube with consideration of nonlocal and surface effects // Mech. Engng. 2014. V. 36, N 1. P. 48–53.
- 13. Ghorbanpour Arani A., Amir S. Nonlocal vibration of embedded coupled CNTs conveying fluid under thermo-magnetic fields via Ritz method // J. Solid Mech. 2013. V. 5, N 2. P. 206–215.
- Hosseini M., Sadeghi-Goughari M., Atashipour S. A., Eftekhar M. Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model // Arch. Mech. 2014. V. 66, N 4. P. 217–244.
- Reddy J. N., Wang C. M. Dynamics of fluid-conveying beams. Singapore, 2004. (Rep. / Center for Offshore Res. and Engng, Nat. Univ. of Singapore; N 2004-03).
- Ghorbanpour Arani A., Amir S., Karamali Ravandi A. Nonlinear flow-induced flutter instability of double CNTs using Reddy beam theory // J. Comput. Appl. Mech. 2015. V. 46, N 1. P. 1–12.
- Zhang T., Ouyang H., Zhang Y. O., Lv B. L. Nonlinear dynamics of straight fluidconveying pipes with general boundary conditions and additional springs and masses // Appl. Math. Modelling. 2016. V. 40, N 17/18. P. 7880–7990.
- Kerr A. D. Elastic and viscoelastic foundation model // Trans. ASME. J. Appl. Mech. 1964. V. 31, iss. 3. P. 491–498.
- Rao Ch. K., Simha H. S. Critical velocity of fluid conveying pipes resting on two-parameter foundation // J. Sound Vibrat. 2007. V. 302. P. 387–397.
- 20. Rao S. S. Mechanical vibrations. S. l.: Addison-Wesley Publ. Company, 1986.
- 21. Felgar R. P. Formulas for integrals containing characteristic functions of a vibrating beam. S. l.: Univ. Texas, 1950.
- Rao Ch. K., Simha H. S. Vibrations of fluid-conveying pipes resting on two-parameter foundation // Open Acoust. J. 2008. N 1. P. 24–33.

Поступила в редакцию 1/X 2015 г., в окончательном варианте — 17/VI 2016 г.