2017. Том 58, № 5

Июнь – июль

C. 1014 – 1021

УДК 542.06:546.96:548.736.5

ПЕРВЫЙ ПРИМЕР КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ТРИНИТРАТОКОМПЛЕКСА НИТРОЗОРУТЕНИЯ(II)

В.А. Воробьёв^{1,2}, В.А. Емельянов^{1,2}, И.А. Байдина¹, Д.А. Пирязев^{1,2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: vasily.vorob@gmail.com

²Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 20 июня 2016 г.

Проведено рентгеноструктурное исследование *oc*-тринитратокомплекса нитрозорутения [RuNO(NH₃)₂(NO₃)₃]. Кристаллографические данные H₆N₆O₁₀Ru: *a* = 7,6477(1), *b* = 10,8404(2), *c* = 24,0168(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$, *V* = 1991,09(7) Å³, *Z* = 8, *d*_{выч} = 2,338 г/см³, пространственная группа *P*2₁2₁2₁. Структура построена из двух структурно неэквивалентных незаряженных комплексов *oc*-[RuNO(NH₃)₂(NO₃)₃]. Комплекс кристаллизуется в виде желтых игл или оранжевого порошка, принадлежащих к ромбической сингонии. Вещество плохо растворимо в воде, этиловом спирте и ацетоне, устойчиво при хранении в темноте. Проведены сопоставления с данными EXAFS для этого комплекса и с теоретическими расчетами методом функционала плотности в различных функционалах.

DOI: 10.15372/JSC20170517

Ключевые слова: рутений, нитрозокомплексы, нитратокомплексы, амминокомплексы, отработанное ядерное топливо, рентгеноструктурный анализ, расчеты DFT.

введение

Азотнокислые растворы отходов переработки отработанного ядерного топлива (ОЯТ) содержат значительное количество ценных легких металлов платиновой группы, преимущественно в виде смеси стабильных изотопов [1]. Помимо того, что эти металлы представляют несомненную практическую ценность, их наличие в отходах, подлежащих захоронению, приводит к ряду весьма нежелательных последствий. В первую очередь, это такие явления, как образование летучих радиоактивных соединений рутения при остекловывании отходов и разрушающее действие дисперсных металлических фаз в стеклоподобных матрицах [2]. Однако эффективная технология выделения радиогенного рутения из растворов ОЯТ до сих пор не разработана, что связано с распределением этого металла в таких растворах по многим инертным комплексным формам, превращения между которыми кинетически заторможены.

Тем не менее известно, что доминирующими формами существования рутения в азотнокислых растворах являются комплексы нитрозорутения (RuNO³⁺), которые легко обнаружить методом ИК спектроскопии по характерным интенсивным полосам в области 1830—1960 см⁻¹ [3]. Остальными лигандами, дополняющими координацию рутения до октаэдрической, являются нитрат-, нитрит-, гидроксид-ионы, а также молекулы воды.

Вплоть до конца прошлого века идентификация состава комплексов рутения в таких растворах проводилась косвенными методами (хроматография, экстракция, электрофорез и т.д.). Прямую координацию нитрат-иона к рутению в азотнокислых растворах удавалось наблюдать

[©] Воробьёв В.А., Емельянов В.А., Байдина И.А., Пирязев Д.А., 2017

только с помощью спектроскопии, наиболее информативной из которых оказалась спектроскопия ЯМР на разных ядрах [4—7].

В литературе описано несколько методик [8, 9] получения нитратоаквакомплексов нитрозорутения. Однако продукты, выделяемые авторами в твердую фазу, являются рентгеноаморфными, гигроскопичными и стеклообразными. Одной из причин образования таких продуктов может являться полимеризация нитратоаквакомплексов посредством мостиковых OH- и NO₃групп, как это установлено для комплексов родия(III) [10]. Избежать полимеризации или затруднить этот процесс можно на модельных системах, зафиксировав часть координационных мест в нитрозокомплексе рутения прочно связанными с ним лигандами.

Наиболее адекватными моделями аквакомплексов нитратонитрозорутения являются амминокомплексы, поскольку молекулы аммиака и воды весьма близки по целому ряду параметров (заряд, размер, дипольный момент, способность к образованию водородных связей и т.д.). Синтез и установление структурных характеристик нитратоамминокомплексов нитрозорутения, образующихся в крепких азотнокислых растворах, позволит судить о способах координации нитрат-иона к рутению в растворах ОЯТ, геометрии образующихся комплексов, их константах устойчивости и получить другую фундаментальную информацию о состоянии рутения в этих растворах.

В работах [11—13] нами описаны методы синтеза и результаты рентгеноструктурных исследований моно- и динитратоамминокомплексов нитрозорутения. Тринитратокомплексы *гран*и *oc*-[RuNO(NH₃)₂(NO₃)₃] также были нами ранее получены [12, 13], однако их строение было установлено на основании косвенных данных. Целью настоящей работы являлось исследование строения соединения тринитратокомплекса нитрозорутения *oc*-[RuNO(NH₃)₂(NO₃)₃] методами рентгеноструктурного анализа и DFT расчетов, а также сопоставление полученных данных с результатами EXAFS-исследования, приведенного в работе [12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез *oc*-[RuNO(NH₃)₂(NO₃)₃] (1-нитрозо-2,4,6-тринитрато-3,5-диамминрутений(II)). По данным [12], комплекс *oc*-[RuNO(NH₃)₂(NO₃)₃] в виде малорастворимого поликристаллического порошка образуется при кипячении *mpaнc*-[RuNO(NH₃)₂(NO₂)₂OH] в азотной кислоте. Для получения монокристаллов *oc*-[RuNO(NH₃)₂(NO₃)₃], пригодных для рентгеноструктурного исследования, нами была разработана несколько иная методика, заключающаяся в медленном взаимодействии *mpaнc*-диаммино-*цис*-динитратонитронитрозокомплекса с концентрированной азотной кислотой. Суть методики сводилась к следующему. Навеску 0,015 г комплекса [RuNO(NH₃)₂(NO₃)₂(NO₃)₂(NO₃)], синтезированного по методике [14], заливали 1 мл 16 М HNO₃ и выдерживали полученную смесь в закрытом бюксе при комнатной температуре. В результате такого взаимодействия образуются желтые игольчатые кристаллы и оранжевый порошок *oc*-[RuNO(NH₃)₂(NO₃)₃]:

 $[RuNO(NH_3)_2(NO_3)_2(NO_2)] + 2HNO_{3(KOHII,)} = [RuNO(NH_3)_2(NO_3)_3] + NO_2 + H_2O.$

Рентгенографическое исследование измельченных кристаллов проведено на дифрактометре ДРОН-RM4 (R = 192 мм, Cu K_{α} -излучение, Ni-фильтр, детектор сцинтилляционный с амплитудной дискриминацией) в области углов 20 от 5 до 50°. Образцы наносили тонким слоем на гладкую сторону стандартной кварцевой кюветы.

Рентгеноструктурный анализ монокристалла размерами $0,10\times0,10\times0,08$ мм проведен при комнатной температуре на автоматическом дифрактометре BRUKER X8 APEX (Мо K_{α} -излучение, графитовый монохроматор, 16875 отражений в области углов θ от 2,80 до 31,71°). Поглощение было учтено с помощью Ψ -сканирования. Кристаллы *oc*-[RuNO(NH₃)₂(NO₃)₃], относящиеся к ромбической сингонии, имеют следующие кристаллографические данные: бруттоформула H₆N₆O₁₀Ru, пространственная группа P2₁2₁2₁, *a* = 7,64770(10), *b* = 10,8404(2), *c* = 24,0168(6) Å, $\alpha = \beta = \gamma = 90^\circ$, *V* = 1991,09(7) Å³, *Z* = 8, *d*_{выч} = 2,338 г/см³. Коэффициент поглощения составил 1,642 мм⁻¹. Структура решена стандартным методом тяжелого атома (атомы водорода локализованы из разностного синтеза) и уточнена в анизотропном (для H — изотропном) приближении. Все расчеты выполнены по комплексу программ SHELX97 [15]. Окончательное значение *R*-фактора для 5757 независимых рефлексов при 312 параметрах равно 0,0334, а для $I > 2\sigma(I) - 0,0288$. Максимум и минимум остаточной электронной плотности составили 1,089 и −0,675 е/Å³. Координаты и тепловые параметры атомов в кристаллической структуре соединения депонированы в банке данных неорганических структур ICSD под номером CSD № 431366.

Расчеты по методу функционала плотности (DFT) проведены в пакете программ ADF-2014 [16—18]. Геометрические параметры комплекса *oc*-[RuNO(NH₃)₂(NO₃)₃] оптимизировали в газовой фазе в различных функционалах: B3LYP [19], VWN [20], BP [21, 22], BLYP [21, 23—25], OLYP [23—26], PBE [27], OPBE [26, 27], RPBE [27, 28], revPBE [27, 29] — с использованием базисных наборов слэйтеровского типа TZP и QZ4P [30]. Значения оптимизированных длин связей и углов сравнивали с данными PCA, для оценки сходимости вычисляли значение среднего абсолютного отклонения (mean absolute deviation, MAD) и максимального абсолютного отклонения в сторону нитрозогруппы и угол между плоскостями *mpaнc*-координированных нитратогрупп.

На основании оптимизированной геометрии проводили вычисление колебательных мод незаряженного комплекса в газовой фазе. Значение MAD рассчитано для всех видимых линий спектра в области 4000—400 см⁻¹, теоретическое волновое число для колебания или среднее для группы идентичных колебаний сопоставляли с экспериментальным значением.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгеноструктурное исследование. В кристалле *oc*-[RuNO(NH₃)₂(NO₃)₃] присутствуют две кристаллографически независимые нейтральные комплексные молекулы, которые размещены в общих позициях (рис. 1). Эти молекулы имеют разную ориентацию в элементарной ячейке и различный торсионный угол между двумя *транс*-координированными нитрат-анионами. Координационный полиэдр рутения в обоих случаях — искаженный октаэдр, в экваториальной плоскости которого попарно в *транс*-положениях находятся по два атома азота молекул аммиака и по два атома кислорода нитрат-анионов. Аксиальные позиции заняты нитрозогруппой и атомом кислорода нитратогруппы со средним расстоянием Ru—ONO₂ = 2,035 Å. Валентные углы, включающие атом рутения, отклоняются от идеальных 90° не более чем на 10,9°. Угол между экваториальными плоскостями двух независимых комплексов составляет 68,8°.

Величины основных межатомных расстояний и валентных углов в комплексных частицах приведены в табл. 1. Среднее расстояние Ru—NH₃ лежит в обычных для нитрозоамминокомплексов рутения пределах [31—34] и составляет 2,100 Å. Геометрия фрагмента Ru—N—O для обоих комплексов также согласуется с литературными данными [35—37] (среднее значение

Рис. 1. Строение двух независимых молекул комплексов с нумерацией атомов и эллипсоидами тепловых колебаний

1017

Таблица 1

	i	Ru(1)		Ru(2)	Ru(2)				
Расстояние	d	Угол	ω	Угол	ω				
Ru(1)—N(1)	1,740(3)	N(1)—Ru(1)—O(51)	174,28(12)	N(2)—Ru(2)—O(81)	97,94(12)				
Ru(1)—O(51)	2,033(2)	N(1) - Ru(1) - O(31)	97,31(11)	N(2)— $Ru(2)$ — $O(71)$	174,20(11)				
Ru(1)—O(41)	2,045(2)	O(51)— $Ru(1)$ — $O(31)$	79,07(9)	O(81)—Ru(2)—O(71)	84,80(9)				
Ru(1)—O(31)	2,033(2)	N(1) - Ru(1) - O(41)	95,60(11)	N(2)—Ru(2)—O(61)	95,48(12)				
Ru(1)—N(9)	2,081(2)	O(51)— $Ru(1)$ — $O(41)$	87,22(10)	O(81)—Ru(2)—O(61)	166,57(9)				
Ru(1)—N(10)	2,115(2)	O(31)— $Ru(1)$ — $O(41)$	163,48(9)	O(71)—Ru(2)—O(61)	81,80(10)				
N(1)—O(1)	1,131(3)	N(1) - Ru(1) - N(9)	94,20(12)	N(2)— $Ru(2)$ — $N(12)$	93,71(11)				
O(51)—N(5)	1,309(4)	O(51)—Ru(1)—N(9)	81,16(10)	O(81)—Ru(2)—N(12)	92,32(11)				
O(41)—N(4)	1,299(4)	O(31)— $Ru(1)$ — $N(9)$	85,38(10)	O(71)—Ru(2)—N(12)	81,05(9)				
O(31)—N(3)	1,319(4)	O(41)— $Ru(1)$ — $N(9)$	83,43(10)	O(61)—Ru(2)—N(12)	86,43(10)				
N(3)—O(32)	1,211(4)	N(1)—Ru(1)—N(10)	94,97(13)	N(2)—Ru(2)—N(11)	92,52(12)				
N(3)—O(33)	1,226(4)	O(51)—Ru(1)—N(10)	89,51(11)	O(81)—Ru(2)—N(11)	84,93(11)				
N(4)—O(42)	1,221(4)	O(31)— $Ru(1)$ — $N(10)$	90,59(10)	O(71)—Ru(2)—N(11)	92,81(10)				
N(4)—O(43)	1,214(4)	O(41)—Ru(1)—N(10)	98,53(11)	O(61)—Ru(2)—N(11)	94,87(11)				
N(5)—O(52)	1,215(4)	N(9)—Ru(1)—N(10)	170,38(10)	N(11)—Ru(2)—N(12)	173,48(10)				
N(5)—O(53)	1,222(5)	O(1) - N(1) - Ru(1)	177,5(3)	O(2) - N(2) - Ru(2)	179,9(4)				
Ru(2)		N(5)—O(51)—Ru(1)	126,1(2)	N(8)—O(81)—Ru(2)	122,2(2)				
Ru(2)—N(2)	1,723(3)	N(4) - O(41) - Ru(1)	123,02(19)	N(7)—O(71)—Ru(2)	128,1(2)				
Ru(2)—O(81)	2,025(2)	N(3) - O(31) - Ru(1)	123,91(19)	N(6)—O(61)—Ru(2)	121,58(18)				
Ru(2)—O(71)	2,036(2)	O(32)—N(3)—O(33)	125,5(3)	O(82)—N(8)—O(83)	123,6(3)				
Ru(2)—O(61)	2,052(2)	O(32)—N(3)—O(31)	120,1(3)	O(82)—N(8)—O(81)	120,0(3)				
Ru(2)—N(11)	2,106(3)	O(33)—N(3)—O(31)	114,4(3)	O(83)—N(8)—O(81)	116,3(3)				
Ru(2)—N(12)	2,101(2)	O(43)—N(4)—O(42)	123,3(3)	O(72)—N(7)—O(73)	123,7(3)				
N(2)—O(2)	1,143(3)	O(43)—N(4)—O(41)	117,3(3)	O(72)—N(7)—O(71)	116,6(3)				
O(81)—N(8)	1,306(4)	O(42)—N(4)—O(41)	119,4(3)	O(73)—N(7)—O(71)	119,7(3)				
O(71)—N(7)	1,302(3)	O(52)—N(5)—O(53)	125,1(3)	O(63)—N(6)—O(62)	123,6(3)				
O(61)—N(6)	1,307(3)	O(52)—N(5)—O(51)	115,1(4)	O(63)—N(6)—O(61)	119,4(3)				
N(6)—O(62)	1,224(3)	O(53)—N(5)—O(51)	119,8(3)	O(62)—N(6)—O(61)	116,9(3)				
N(6)—O(63)	1,211(4)								
N(7)—O(72)	1,212(4)								
N(7)—O(73)	1,221(4)								
N(8)—O(82)	1,220(4)								
N(8)—O(83)	1,222(3)								

Межатомные расстояния d(Å) и валентные углы ω (град.) в комплексе oc-[RuNO(NH₃)₂(NO₃)₃]

1,731 и 1,137 Å, 178,7°). Следует отметить, что центральный атом смещен из экваториальной плоскости в сторону нитрозогруппы на 0,19 Å в обеих независимых молекулах. Эта величина практически совпадает со значением 0,2 Å для комплекса *цис*-[RuNO(NH₃)₂(NO₃)₂(H₂O)](NO₃)· ·H₂O [11], также имеющего два координированных нитрат-иона в *цис*-положении к нитрозогруппе. Для нитрозоамминокомплексов такое смещение составляет от 0,10 [38] до 0,16 Å [39].

Среднее значение длин связей рутения с координированными атомами кислорода нитратанионов составляет 2,037 Å. Такое расстояние попадает как в интервал 2,035—2,075 Å для известных длин связей рутения с координированным нитрат-анионом [11—13], так и в интервал 2,035—2,110 Å для длин связей с координированными молекулами воды [40—44]. Авторы обзора [45] отметили стереохимические особенности нитрат-анионов в неорганических соедине-

Рис. 2. Проекция кристаллической структуры *ос*-[RuNO(NH₃)₂(NO₃)₃] вдоль оси *X*

ниях, которые характерны для них и в полученном веществе. Координация атома кислорода к рутению приводит к увеличению длины связи $O_{\text{коорд}}$ —N (среднее значение 1,308 Å) и уменьшению длины терминальных связей N—O (среднее значение 1,218 Å). Стоит отметить, что средний угол O—N—O в нитратогруппе составляет 120,0°, тогда как усредненный угол $O_{\text{коорд}}$ —N— $O_{\text{терм}}$ всего 117,9°, а угол между терминальными атомами кислорода увеличивается до 124,1°.

Координированные молекулы аммиака образуют сеть водородных связей с атомами кислорода нитрат-анионов, что проиллюстрировано на рис. 2. Кратчайшие расстояния N_{NH_3} — O_{NO_3} и H_{NH_3} — O_{NO_3} имеют оценки 2,95 и 2,10 Å, средние же расстояния составляют 3,06 и 2,24 Å соответственно. Молекулы первого типа окружены 13 соседними комплексами, тогда как их аналоги второго типа имеют 11 соседей. Расстояния между центрами Ru—Ru варьируются от 5,828 до 7,882 Å. В структуре соединения можно выделить условные слои, связанные водородными связями, причем межслоевое расстояние составляет d[020] = 5,420 Å.

Рентгенографическое исследование. Дифрактограммы продукта, получаемого по методике [12], отличаются от теоретической дифрактограммы, построенной нами по данным монокристалльного исследования *oc*-[RuNO(NH₃)₂(NO₃)₃], полученного по методике, описанной в настоящей работе. Это свидетельствует о том, что синтез комплекса *oc*-[RuNO(NH₃)₂(NO₃)₃] по этим двум разным методикам приводит к образованию кристаллических фаз различного строения. Данные рентгенофазового анализа показывают, что поликристаллический образец *oc*-[RuNO(NH₃)₂(NO₃)₃], образующийся в реакции *транс*-[RuNO(NH₃)₂(NO₂)₂OH] с азотной кислотой при повышенной температуре (методика [12]), кристаллизуется в моноклинной сингонии, пространственная группа $P2_1/c$. Взаимодействие [RuNO(NH₃)₂(NO₂)(NO₃)₂] с концентрированной азотной кислотой при комнатной температуре (методика, использованная в настоящей работе) приводит к получению другой полиморфной модификации *oc*-[RuNO(NH₃)₂(NO₃)₃], кристаллизующейся в ромбической сингонии, пространственная группа $P2_12_12_1$.

Строение моноклинной модификации *oc*-[RuNO(NH₃)₂(NO₃)₃] установлено методом спектроскопии EXAFS и описано в работе [12]. В табл. 2 для сравнения приведены данные EXAFS и PCA для близких по строению *транс*-динитрато- и *oc*-тринитратодиамминокомплексов нитрозорутения.

Как можно видеть из данных табл. 2, метод EXAFS несколько завышает расстояния между атомами в обоих случаях. Среднее абсолютное отклонение (MAD) составляет 0,025 Å для ди-

Таблица 2

Вещество	транс-[RuNO(N	$H_{3}_{2}(NO_{3})_{2}(H_{2}O)](NO_{3}) \cdot H_{2}O$	oc-[RuNO(NH ₃) ₂ (NO ₃) ₃]				
Метод	EVAES[12]	DCA [11]	EXAFS,	РСА, ромбическая			
	EAAF5[12]	ICA[II]	моноклинная [12]	Ru1	Ru2		
Ru—N	1,749(2)	1,727(2)	1,745(7)	1,740(3)	1,723(3)		
Ru—O1	2,058(6)	2,0323(15)	2,054(8)	2,033(2)	2,025(2)		
Ru—O2	2,063(6)	2,037(2)	2,058(8)	2,033(2)	2,036(2)		
Ru—O3	2,064(6)	2,0383(11)	2,059(8)	2,045(2)	2,052(2)		
Ru—N1	2,113(6)	2,087(2)	2,108(8)	2,081(2)	2,101(2)		
Ru—N2	2,125(6)	2,098(2)	2,120(8)	2,115(2)	2,106(3)		

Длины связей (Å) в комплексных частицах транс- $[RuNO(NH_3)_2(NO_3)_2(H_2O)]^+$ и ос- $[RuNO(NH_3)_2(NO_3)_3]$

нитратоаквакомплекса, использованного в качестве модели для EXAFS исследования, и всего 0,017 Å для различных модификаций тринитратокомплекса, который был целевым объектом исследования. Стоит отметить, что значение MAD значительно меньше различия в длинах связей координированных молекул аммиака и нитрат-аниона. Это позволяет с достаточной уверенностью предполагать тип координированного атома, исходя из значений длин связей, установленных методом EXAFS. На основании данных, приведенных в табл. 2, можно сделать вывод о том, что изменение кристаллической решетки oc-[RuNO(NH₃)₂(NO₃)₃] с моноклинной на ромбическую не приводит к заметным изменениям в первой координационной сфере рутения.

Квантово-химические расчеты. Геометрические параметры комплексных частиц, такие как длины связей металла с лигандами, длины связей в координированных частицах, а также угловые характеристики, являются удобными геометрическими величинами для сравнения теоретических расчетов с экспериментальными данными. В табл. 3 сопоставлены геометрические

Т	а	б	Л	И	Ц	а	3
---	---	---	---	---	---	---	---

	Ru(1)				Ru(2)						ИК спектр, cm^{-1}	
Функцио- нал/базис	Длина связи, Å		Угол, град.		Длина связи, Å		Угол, град.		<i>d</i> , Å	∠NOON, град.	v(NO)	MAD
	MAD	$\mathrm{AD}_{\mathrm{max}}$	MAD	$\mathrm{AD}_{\mathrm{max}}$	MAD	$\mathrm{AD}_{\mathrm{max}}$	MAD	$\mathrm{AD}_{\mathrm{max}}$. ,	
BP/TZP	0,038	0,067	2,05	10,09	0,038	0,072	1,71	4,45	0,202	124,5	1857	53,1
BP/QZ4P	0,028	0,060	2,08	10,18	0,028	0,065	1,72	4,25	0,195	123,6	1873	40,2
BLYP/TZP	0,052	0,090	2,04	10,91	0,052	0,096	1,91	5,21	0,208	129,1	1807	60,6
BLYP/QZ4P	0,042	0,078	2,15	10,73	0,042	0,084	1,84	4,88	0,189	124,6	1831	48,0
OLYP/TZP	0,041	0,088	2,02	10,90	0,041	0,083	1,75	4,23	0,189	117,7	1870	55,2
OLYP/QZ4P	0,026	0,053	2,19	11,05	0,026	0,054	1,95	4,27	0,174	117,4	1910	36,8
PBE/TZP	0,037	0,066	1,98	10,24	0,037	0,072	1,71	4,19	0,205	121,6	1863	43,2
PBE/QZ4P	0,026	0,058	2,04	10,44	0,027	0,064	1,71	4,23	0,188	120,0	1885	41,1
OPBE/TZP	0,028	0,069	2,02	10,20	0,028	0,068	1,74	3,45	0,185	113,9	1922	30,6
OPBE/QZ4P	0,014	0,035	2,16	10,71	0,013	0,035	1,92	3,93	0,173	116,7	1963	39,4
RPBE/TZP	0,050	0,088	1,99	10,91	0,050	0,088	1,72	4,29	0,200	120,0	1831	43,1
RPBE/QZ4P	0,037	0,069	2,10	10,91	0,037	0,075	1,80	4,21	0,183	117,8	1862	44,4
revPBE/TZP	0,048	0,082	2,00	10,68	0,048	0,083	1,71	4,36	0,201	121,5	1838	41,8
revPBE/QZ4P	0,034	0,065	2,10	10,77	0,034	0,071	1,80	4,32	0,194	119,9	1868	39,1
VWN/TZP	0,014	0,035	1,98	9,35	0,016	0,039	1,85	4,97	0,213	126,4	1946	37,6
VWN/QZ4P	0,015	0,031	2,00	9,58	0,017	0,035	1,80	4,50	0,198	125,7	1954	34,1
B3LYP/TZP	0,028	0,057	2,10	9,84	0,029	0,056	1,44	3,17	0,188	107,4	1965	33,9
B3LYP/QZ4P	0,021	0,052	2,09	9,72	0,023	0,048	1,38	3,13	0,179	106,9	1976	37,5

Сопоставление DFT расчетов с экспериментальными данными

параметры, полученные методом РСА (см. табл. 1), с их теоретическими значениями, рассчитанными в нескольких функционалах с использованием различных наборов базисных функций.

Из данных табл. 3 видно, что для различных базисов и функционалов среднее абсолютное отклонение для длин связей варьируется в диапазоне от 0,013 до 0,052 Å, а интервал разброса значений MAD для углов в комплексе составляет 1,98—2,19° для молекул первого типа и 1,38— 1,95° — для молекул второго типа. Если сравнивать относительные отклонения, то можно заметить, что диапазон разброса значений МАД для углов существенно уже. Отметим, что расчеты проведены для комплексных частиц в газовой фазе, а рентгеноструктурный анализ выполнен для кристалла, в котором комплексные частицы плотно упакованы и геометрические параметры частично определяются взаимодействиями с соседними комплексами. По-видимому, отклонение расчетных углов от структурно определенных значений обусловлено именно таким взаимодействием. Это хорошо видно на примере двугранного угла между плоскостями двух транскоординированных нитрат-анионов: для комплекса с Ru(1) двугранный угол N—O—O—N между *транс*-координированными нитрат-анионами составляет 21,9°, тогда как для комплекса с Ru(2) — 94,3°. Расчетное значение этого угла еще больше и выбор функционала оказывает незначительное влияние на его величину. Сравнение с экспериментальными данными показало, что наилучшим образом геометрию комплекса oc-[RuNO(NH₃)₂(NO₃)₃] описывает расчет с использованием функционалов с базисными наборами VWN/TZP, VWN/QZ4P или OPBE/QZ4P.

Другим важным результатом расчетов является теоретический колебательный спектр молекулы, который можно использовать для интерпретации экспериментальных данных и отнесения полос поглощения в ИК спектре к определенным типам колебаний. Для нитрозокомплексов металлов характерной особенностью ИК спектра является полоса поглощения в диапазоне 1700—1950 см⁻¹, обусловленная валентным колебанием нитрозогруппы. В частности, для исследованного комплекса v(NO) 1926 см⁻¹ [12]. Наименьшее отличие теоретически рассчитанной частоты поглощения от этого значения колебания нитрозогруппы и наименьшее среднее абсолютное отклонение для всей остальной области спектра наблюдается для функционалов VWN или OPBE.

Как выяснилось при сопоставлении расчетных данных (геометрических и спектроскопических характеристик) с результатами экспериментов, функционалами, обеспечившими наилучшую сходимость этих параметров, являются VWN, OPBE и B3LYP. Стоит отметить, что для такого гибридного функционала, как B3LYP, большое расчетное время не дает существенного улучшения результатов, которые достижимы с той же точностью при расчете в функционале OPBE или VWN.

Таким образом, нами структурно охарактеризована ромбическая модификация *ос*-тринитратодиамминнитрозокомплекса рутения. Показано, что теоретические расчеты по методу функционала плотности в некоторых функционалах дают незначительные отклонения от структурных данных, сравнимые с отклонениями от данных EXAFS. Определены функционалы для расчета колебательных спектров поглощения с хорошей сходимостью с экспериментальными данными.

Авторы выражают благодарность А.Д. Васильеву за определение сингонии кристаллов и установление пространственной группы моноклинной модификации *oc*-[RuNO(NH₃)₂(NO₃)₃] по данным рентгенофазового анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kolarik Z., Renard E.V. // Platinum Metals Rev. 2003. 47, N 2. P. 74.
- 2. Шалдаев В.С. Извлечение платиновых металлов при обработке облученного топлива за рубежом. М.: ЦНИИ атоминформ, 1990.
- 3. Forsterling H.U. // ZFI-Mitteilungen Leipzig. 1983. N 82. P. 5.
- 4. Торгов В.Г., Шульман Р.С., Ус Т.В. и др. // Журн. неорган. химии. 2003. **48**, № 7. С. 1221. (*Tor-gov V.G., Shul'man R.S., Us T.V. et al.* // Russ. J. Inorg. Chem. 2003. **48**, N 7. Р. 1107.)
- 5. Емельянов В.А., Федотов М.А. // Журн. неорган. химии. 2006. **51**, № 11. С. 1923. (*Emel'yanov V.A., Fedotov М.A.* // Russ. J. Inorg. Chem. 2006. **51**, N 11. Р. 1811.)

- 6. Кабин Е.В., Емельянов В.А., Ткачев С.В. // Журн. неорган. химии. 2013. **58**, № 2. С. 268. (Kabin E.V., Emel'yanov V.A., Tkachev S. // Russ. J. Inorg. Chem. – 2013. – **58**, N 2. – P. 229.)
- 7. Кабин Е.В., Емельянов В.А., Торгов В.Г. и др. // Журн. неорган. химии. 2013. 58, № 8. С. 1113.
- (Kabin E.V., Emel'yanov V.A., Torgov V.G. et al. // Russ. J. Inorg. Chem. 2013. 58, N. 8. P. 994.)
- 8. Fletcher J.M., Jenkins I.L., Lever F.M. et al. // J. Inorg. Nucl. Chem. 1955. 1, N 2. P. 378.
- 9. Fletcher J.M. // J. Inorg. Nucl. Chem. 1958. 8, N 1. P. 277.
- Беляев А.В., Федотов М.А., Храненко С.П., Емельянов В.А. // Координац. химия. 2001. 27, № 12. – С. 907. (Belyaev A.V., Fedotov M.A., Khranenko S.P., Emel'yanov V.A. // Russ. J. Coord. Chem. – 2001. – 27, N 12. – Р. 855.)
- 11. Ильин М.А., Кабин Е.В., Емельянов В.А. и др. // Журн. структур. химии. 2009. **50**, № 2. С. 341. (*Il'yin M.A., Kabin E.V., Emel'yanov V.A. et al.* // J. Struct. Chem. 2009. **50**, N 2. Р. 328.)
- 12. Кабин Е.В., Емельянов В.А., Байдина И.А. и др. // Журн. структур. химии. 2010. **51**, Прил. С. S78. (Kabin E.V., Emel'yanov V.A., Baidina I.A. et al. // J. Struct. Chem. 2010. **51**, Suppl. Р. S73.)
- 13. Кабин Е.В., Емельянов В.А., Воробьев В.А. и др. // Журн. неорган. химии. 2012. **57**, № 8. С. 1225. (Kabin E.V., Emel'yanov V.A., Vorob'yev V.A. et al. // Russ. J. Inorg. Chem. 2012. **57**, N 8. Р. 1146.)
- 14. Кабин Е.В., Емельянов В.А., Алферова Н.И., Байдина И.А. // Тез. докл. 4 Российской школы по радиохимии и ядерным технологиям. – Озерск, 2010. – С. 27.
- 15. Sheldrick G.M. SHELX-97, release 97-2. University of Goettingen, Germany, 1998.
- 16. te Velde G., Bickelhaupt F.M., van Gisbergen S.J.A. et. al. // J. Comp. Chem. 2001. 22. P. 931.
- 17. Fonseca Guerra C., Snijders J.G., te Velde G., Baerends E.J. // Theor. Chem. Acc. 1998. 99. P. 391.
- 18. ADF2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- 19. Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. // J. Phys. Chem. 1994. 98. P. 11623.
- 20. Vosko S.H., Wilk L., Nusair M. // Can. J. Phys. 1980. 58, N 8. P. 1200.
- 21. Becke A.D. // Phys. Rev. 1988. A38. P. 3098.
- Perdew J.P. // Phys. Rev. 1986. B33. P. 8822. Erratum: Perdew J.P. // Phys. Rev. 1986. B34. P. 7406.
- 23. Lee C., Yang W., Parr R.G. // Phys. Rev. 1988. B37. P. 785.
- 24. Johnson B.G., Gill P.M.W., Pople J.A. // J. Chem. Phys. 1993. 98. P. 5612.
- 25. Russo T.V., Martin R.L., Hay P.J. // J. Chem. Phys. 1994. 101. P. 7729.
- 26. Handy N.C., Cohen A.J. // Mol. Phys. 2001. 99. P. 403.
- 27. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. 77. P. 3865.
- 28. Hammer B., Hansen L.B., Norskøv J.K. // Phys. Rev. 1999. B59. P. 7413.
- 29. Zhang Y., Yang W. // Phys. Rev. Lett. 1998. 80. P. 890.
- 30. Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. 24. P. 1142.
- Плюснина О.А., Емельянов В.А., Байдина И.А. и др. // Журн. структур. химии. 2007. 48, № 1. С. 114. (*Plyusnina O.A., Emel'yanov V.A., Baidina I.A. et al.* // J. Struct. Chem. – 2007. – 48, N 1. – Р. 114.)
- 32. Ильин М.А., Емельянов В.А., Байдина И.А. и др. // Журн. неорган. химии. 2007. **52**, № 1. С. 67. (*Ilyin M.A., Emel'yanov V.A., Baidina I.A. et al.* // Russ. J. Inorg. Chem. 2007. **52**, N 1. P. 62.)
- 33. Ильин М.А., Емельянов В.А., Байдина И.А. // Журн. структур. химии. 2010. **51**, № 1. С. 105. (*Il'yin M.A., Emel'yanov V.A., Baidina I.A.* // J. Struct. Chem. 2010. **51**, N 1. P. 99.)
- 34. Плюснина О.А., Емельянов В.А., Байдина И.А. и др. // Журн. структур. химии. 2011. 52, № 1. С. 144. (Plyusnina O.A., Emel'yanov V.A., Baidina I.A. et al. // J. Struct. Chem. – 2011. – 52, N 1. – Р. 140.)
- 35. Vorobyev V., Kostin G.A., Kuratieva N.V., Emelyanov V.A. // Inorg. Chem. 2016. 55. P. 9158.
- 36. Vorobyev V., Emelyanov V.A., Valuev I.A., Baidina I.A. // Inorg. Chem. Comm. 2017. 76. P. 40.
- 37. Vorobyev V., Emelyanov V.A., Plusnina O.A. et al. // Eur. J. Inorg. Chem. 2017. 2017, N 5. P. 971.
- Емельянов В.А., Громилов С.А., Байдина И.А. // Журн. структур. химии. 2004. 45, № 5. С. 923. (Emel'yanov V.A., Gromilov S.A., Baidina I.A. // J. Struct. Chem. – 2004. – 45, N 5. – Р. 879.)
- 39. Емельянов В.А., Кабин Е.В., Байдина И.А. // Журн. структур. химии. 2009. **50**, № 3. С. 598. (*Emel'yanov V.A., Kabin E.V., Baidina I.A.* // J. Struct. Chem. 2009. **50**, N 3. P. 577.)
- 40. Emel'yanov V.A., Baidina I.A., Il'yin M.A., Gromilov S.A. // Журн. структур. химии. 2006. 47, № 2. С. 385. (Emel'yanov V.A., Baidina I.A., Il'yin M.A., Gromilov S.A. // J. Struct. Chem. 2006. 47, N 2. Р. 380.)
- 41. Emel'yanov V.A., Virovets A.V., Baidina I.A. et al. // Inorg. Chem. Comm. 2001. 4, N 1. P. 33.
- 42. Ильин М.А., Емельянов В.А., Байдина И.А. // Журн. структур. химии. 2008. **49**, № 6. С. 1128. (*Il'yin M.A., Emel'yanov V.A., Baidina I.A.* // J. Struct. Chem. 2008. **49**, N 6. Р. 1090.)
- 43. Емельянов В.А., Байдина И.А., Храненко С.П. и др. // Журн. структур. химии. 2003. 44, № 1. С. 48. (Emel'yanov V.A., Baidina I.A., Khranenko S.P. et al. // J. Struct. Chem. – 2003. – 44, N 1. – Р. 37.)
- 44. Vorobyev V., Kabin E.V., Emelyanov V.A. et al. // Inorg. Chem. Comm. 2016. **68**. P. 1.
- 45. Морозов И.В., Сережкин В.Н., Троянов С.И. // Изв. АН, сер. хим. 2008. № 3. С. 429.